
1 Introduction

Automated Model Selection for Simulation

Abstract

Constructing an appropriate model is crucial
in reasoning successfully about the behavior
of a physical situation to answer a query. In
compositional modeling, a system is provided
with a library of composible pieces of knowl-
edge about the physical world called model
fragments . Its task is to select appropriate
model fragments to describe the situation, ei-
ther for static analysis of a single state, or
for the more complicated case simulation of
dynamic behavior over a sequence of states .
In previous work we showed how the model
construction problem in general can advanta-
geously be formulated as a problem of reason-
ing about relevance . This paper presents an
actual algorithm, based on relevance reason-
ing, for selecting model fragments efficiently
for the case of simulation . We show that the
algorithm produces an adequate model for a
given query and moreover, it is the simplest
one given the constraints in the query .

Constructing an appropriate model is crucial in reason-
ing successfully about the behavior of a physical situ-
ation to answer a query . In the compositional model-
ing approach [Falkenhainer and Forbus, 1991], a sys-
tem is provided with a library of composible pieces of
knowledge about the physical world called model frag-
ments . The model construction problem involves select-
ing appropriate model fragments to describe the situa-
tion . Model construction can be considered either for
static analysis of a single state, or for simulation of
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dynamic behavior over a sequence of states . The lat-
ter is significantly more difficult than the former since
one must select model fragments without knowing ex-
actly what will happen in the future states . In our
previous work [Levy et al ., 1992], we showed how the
model construction problem in general can advanta-
geously be formulated as a problem of reasoning about
relevance of knowledge that is available to the system .
In doing so, we used a general framework for reason-
ing about relevance described in [Levy and Sagiv, 1993,
Levy, 1993] . In this paper, we present an actual algo-
rithm that is based on the framework for selecting model
fragments efficiently for the case of simulation . For such
an algorithm to be useful, the generated model must
be adequate for answering the given query and, at the
same time, as simple as possible . We define formally
the concepts of adequacy and simplicity and show that
the algorithm in fact generates an adequate and simplest
model .

Our algorithm has three key features based on differ-
ent aspects of relevance reasoning . First, the framework
provides a well motivated definition of the notion of rel-
evance . Intuitively, assuming that the goal of modeling
is to explain how the value of a term changes over time,
what is relevant to this goal is all the things that could
causally influence the term . Consequently, the high level
mechanism driving the algorithm is backward chaining
on all the possible causal influences on the goal term .
This allows the system to determine the set of all the
things, including objects and physical phenomena, that
could causally influence the goal term directly or indi-
rectly .
Backward chaining is not sufficient for choosing a

model . Often there are multiple ways to describe the
same phenomenon, and these are grouped into assump-
tion classes [Falkenhainer and Forbus, 1991] . Choos-



ing between them depends on the underlying modeling
assumptions being made. As we showed in [Levy et
al ., 1992], many of these modeling assumptions can be
stated as relevance claims, in the language provided by
the framework . Relevance claims enable the user to ex-
press additional domain knowledge that comes to bear
in selecting a model . In the algorithm, we use rele-
vance claims to guide in selecting models from assump-
tion classes .

Finally, an important aspect of effective relevance rea-
soning is the ability to reason with partial knowledge,
i .e ., the ability to decide that certain facts are irrel-
evant to a problem even if we have partial knowledge
about these facts or partial knowledge about the prob-
lem at hand . Formulating a model for simulation has
exactly this flavor, since we don't know what states of
the world need to be modeled a priori . Even given com-
plete knowledge of the initial state, the future states are
not known until we construct a model and perform sim-
ulation . Thus, to build a model for simulation, we must
somehow determine what could be relevant to answering
the query without performing simulation . Our algorithm
chooses a model for simulation based only on knowledge
of some constraints on the possible states, but without
actually generating them .

Several pieces of work have addressed the model for-
mulation problem for the compositional modeling ap-
proach [Falkenhainer and Forbus, 1991, Nayak, 1992a,
Rickel and Porter, 1992] . Our work is distinguished in
that derives its generality from general considerations of
relevance reasoning . Specifically, it combines model for-
mulation for simulation with guarantees of adequacy and
simplicity which are not found in other works . Section 5
provides further details .

1.1

	

Knowledge representation and behavior
prediction

Before describing the model formulation problem, we
briefly describe the representation of physical knowledge
and the simulation method . A physical situation is mod-
eled as a collection of model fragments . Each fragment
represents some aspect of a physical object or a phys-
ical phenomenon . A model fragment consists of condi-
tions and consequences . The condition part specifies the
conditions under which the phenomenon occurs, includ-
ing the individuals that must exist and the conditions
they must satisfy for the phenomenon to occur . The
consequences specify the functional relations among the
attributes of the objects that are entailed by the phe-
nomenon .

If, at time t, there exists individuals al, . . . , a, that
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satisfy the operating conditions of a model fragment 1V.(
we say that an instance of M is active at that time .
We will call al, . . ., a, the participants of the instance
of M. We will also denote the particular instance by
M(al, . . . , a,) .
The basic idea behind the prediction mechanism is

the following : for a given situation, the system identifies
active model fragment instances by evaluating their con-
ditions . We will call the set of active model fragments in
each state the simulation model . The simulation model
gives rise to equations that must hold among variables
as a consequence of the phenomena taking place . The
equations are used to determine the next state of the
situation . Each state has a simulation model along with
a set of variable values and predicates that hold in the
state . In order to perform simulation effectively, we must
be able to efficiently select the appropriate set of model
fragments at every state . The output of our algorithm
is a small set of model fragment instances, from which
the system selects a simulation model at every step of
the simulation .

2

	

Problem definition

This section defines the model formulation problem as
well as some key concepts in our approach . The following
problem definition is based on that of Falkenhainer and
Forbus ([Falkenhainer and Forbus, 1991], p . 98) with
some modifications explained below :

Given a scenario description, a domain theory, and a
query about the scenario's behavior, the model formu-
lation problem is to produce the most useful, . coherent
scenario model . We elaborate on each part of this defi-
nition .

Scenario description: Our scenario description
specifies a set of facts about the initial state of the sit-
uation to be modeled . This typically includes a set of
individuals (i .e ., components of the system), their prop-
erties and relations among them, representing the phys-
ical structure in the initial state of the simulation .
Domain theory : The domain theory is represented

as a library of model fragments . As stated, each model
fragment has a set of operating conditions which are fur-
ther divided to activation conditions and modeling as-
sumptions . The activation conditions are conditions on
values of variables in a current state that are required
for the model fragment to be applicable . The model-
ing assumptions are meta-level conditions describing the
way we have decided to describe the domain, and are
meant to accommodate different ways of modeling a cer-
tain phenomenon . For example, these include assump-



tions about the temporal granularity of the model, the
simplifying assumptions or approximations it makes, or
the accuracy level it provides . To contrast the two sets
of conditions, activation conditions of a model fragment
may be satisfied at a certain step of the simulation and
cease to hold at a later point . Modeling assumptions are
assumed to hold throughout the simulation (or not hold
during all of it) . We make two assumptions about the
library of model fragments :

Consistency: Given an internally consistent set of
modeling assumptions and a given state, the subset of
the library whose conditions are satisfied forms a logi-
cally and mathematically consistent simulation model .

Completeness : Given a query, there is at least one con-
sistent set of modeling assumptions such that the subset
of the library based on the assumptions gives rise to a
simulation model that can determine the value of the
goal term in every state .

In addition to the basic representation of physical
knowledge as model fragments, we have additional con-
structs on model fragments, composite model fragments
and assumption classes . These constructs facilitate
model formulation by introducing a higher organiza-
tional structure into the model library.
A composite model fragment (CMF) is a set of model

fragments that represent behaviors of the same compo-
nents or process under different operating regions . For
example, the voltage produced by a rechargeable battery
is a different function of its charge-level in three differ-
ent ranges of the charge-level . This characteristic of a
battery is represented by three model fragments with
different conditions on the charge-level . However, they
can be seen as forming one complete "description" of a
particular aspect of the battery behavior over the en-
tire range of its charge-level . All model fragments in
the library are grouped together into such sets, though
a model fragment may constitute a singleton CMF.

CMFs are further grouped into assumption classes .
An assumption class is a set of CMFs that describe the
same phenomenon based on different and contradictory
modeling assumptions . Since CMFs in an assumption
class are contradictory, at most one of them should be
included in any scenario model .
Query: A query is expressed as the term (or a list of

terms) to be explained . A term may be quantitative such
as voltage or a non-quantitative such as the connectivity
between two objects . We assume that the purpose of
modeling is to explain how and why those terms change
over time; in other words, the purpose is to produce a

causal account of the way those terms change over time .
A query may also include an a priori list of explicit

modeling assumptions . Such lists can be provided by
the user in order to provide additional information about
the kinds of explanation desired, such as the level of de-
tails . In particular, they can include a list of exogenous
terms, i .e ., terms whose values are determined by factors
outside the scope of the current problem . They are also
used to delimit the set of possible states that should be
considered possible in the simulation .

Scenario model: Given the inputs described above,
the model formulation problem is to generate a set of
possible CMF instantiations (i .e ., a list of pairs : CMF ;
participant list) . During simulation, the operating con-
ditions of those CMF instances will be evaluated in every
state to generate a simulation model .

In contrast to the formulation given by [Falkenhainer
and Forbus, 1991], we define the problem as that of se-
lecting CMFs, not model fragments .

For a model formulation algorithm to be useful, a sce-
nario model generated should be adequate yet as simple
as possible . We say a model is adequate when it is con-
sistent and is sufficient for answering the given query . A
scenario model is said to be consistent if the union of
all the modeling assumptions underlying its members is
consistent . A scenario model is said to be sufficient for a
given query, if it gives rise to a simulation model in ev-
ery state that contains the complete causal paths from
exogenous terms to the query term . The exact definition
of a causal relation between values of any terms in simu-
lation states are given in [Iwasaki and Chandrasekaran,
1992] . Intuitively, a term ti is directly causally depen-
dent on another term tj if the value of ti is determined
by that of t j through an equation in which both ti and
tj appear, or if t j appears in the applicability condition
of an equation that determines the value of ti .

3

	

Model formulation algorithm

This section describes our model formulation algorithm
in detail . Informally, the algorithm consists of mak-
ing two choices . The first is deciding which assump-
tion classes should be represented . The second is to de-
cide which CMF should be included out of each of the
assumption classes . The first choice is done by back-
ward chaining through the possible causal influences on
the goal terms . The second is made by reasoning about
the modeling assumptions necessary to answer the query .
The algorithm is outlined in Figure 1 . We explain each
of the main steps in the loop : selection of assumption
classes, selection a CMF out of each such assumption



class, and deciding which terms to further backward
chain on. We use the following example throughout .

The example (see Figure 2) is a simple circuit con-
taining a solar array (SA1) and a rechargeable bat-
tery (BA1) . The figure shows the circuit, the sce-
nario description, and the assumption classes in
the domain theory . For each CMF in the domain
theory, its consequences and the list of terms ap-
pearing in its operating conditions are shown . The
query is Voltage(BA1), with a list of exogenous
terms, which includes all the terms mentioned
in the scenario description except Damaged(BA1) .
There is no a priori list of modeling assumptions .

3 .1

	

Finding the Assumption Classes

As the goal of modeling is to explain how and why the
goal terms change over time, the relevant things to in-
clude in a model are those that could causally influence
the goal terms . The consequences of model fragments
specify a functional relation among quantities, and thus
the ways one quantity can influence another . A term can
be influenced by a model fragment only if it appears in
its consequence . 1

Therefore, for each type of term, we can compile a list
of assumption classes which could possibly influence the
term . This information is represented in our knowledge
base in the Can-affect-list .' Given a term, the model
formulation procedure looks up the Can-affect-list for
assumption-classes that could affect the term, and re-
turns a list of assumption classes .

The Can-affect-list of our example is shown in
Figure 2 . For instance, a term of the form
Damaged(x) where x is an instance of Battery
can be causally influenced by a member CMF
of Battery-damage-due-to-overcharge-ac when
it is instantiated with x bound to ?b . The
query term Voltage (BA1) is the only item on the
queue initially, and it becomes the current goal .
Searching through the Can-affect-list, we identify

'Since we do not assume that the functional relations ap-
pearing as the consequence of model fragments are causally
directed, quantities appearing in such relations could possi-
bly influence each other in any direction . In general, it is only
after the functional relation is placed in some context and ex-
ogenous quantities are specified that one can determine the
direction of causal dependence among them .

'Note that this list can be generated automatically, how-
ever, in some cases it is better to do so manually in order
to eliminate some causal influences that we don't want to be
pursued .

Battery-voltage-ac(BA1) as possibly having in-
fluence on the term . Thus, we select this assump-
tion class .

3.2

	

Selection of CMF out of an assumption
class

Since CMFs in an assumption class represent alternative
ways to model the same phenomenon, we must pick one
CMF out of each assumption class thus deemed relevant .
We make the choice by reasoning about the modeling as-
sumptions being made about the problem . To facilitate
the selection, we make explicit the modeling assump-
tions that change between one CMF and another in the
assumption class . Each assumption class is represented
as a directed graph of CMFs. There is a link from a
CMF Cl to a CMF C if cl is simpler than c2 . A CMF cl
is said to be simpler than C if it makes more modeling
assumptions than c2 . The link is annotated with dif-
ference in the modeling assumptions, i.e ., the modeling
assumptions that can be removed as one goes from cl to
c2 . We assume that every assumption class has single
simplest CMF, and a single most complicated CMF.'

The graphs of CMFs in the assumption
classes that have more than one CMF for
our example are shown in the figure . In
the assumption class Battery-voltage-ac the
CMF Constant-voltage-CMF assumes that the
charge-level of the battery is irrelevant, while
Binary-voltage-CMF does not .

Given this representation of assumption classes, we
can choose a CMF by selecting the simplest one which
does not contradict the modeling assumptions collected
so far . After we choose the CMF, we update the model-
ing assumptions to include those implied by the chosen
CMF (which, in particular, include the assumption that
we model all the terms mentioned in that CMF) . As a
result of adding the new modeling assumptions, earlier
choices of CMFs might be invalidated, since they may
have been chosen based on stronger assumptions . In such
cases, we adjust earlier choices by selecting more com-
plicated model fragments out of the assumption classes
from which they were chosen . Importantly, the number
of times we will perform such adjustments is limited, and
therefore, the complexity of our algorithm is not affected
by these adjustments .

Returning to our example, we have just selected
Battery-voltage-ac . To select a CMF out of

`Note that this assumption is also made in other works,
such as [Nayak, 1992b] .



Domain theory

Battery-charge-level-ac

ormal-accumulation-C!MF

Irr(DOD), Irr(TSLC)

Scenario description

Constant-char e-level-CMF

Irr(I)
Irr(Rechargeable-battery(?b))

Ac cumulation-with-a in -CMF

Solar-array(SAl)
Battery(BAI)
Rechargeable(BAI)
Plus-terminal(BAl) = t4
Minus-terminal(BA1) = t3
Plus-terminal(SAI) = t2
Minus-terminal(SAI) = tl
Electrically-connected(t2, t4)
Electrically-connected(tl, t3)
-Damaged(BAI) .

Battery-voltage-ac

Figure 2: Model formulation problem example

Figure 2 : Model selection Example

Legend
CL : Charge-level(?b)
V : Voltage-produced(?b)
TEMP : Temperature-oft?b)
I: Current(Plus-terninal(?b))
DOD: Average-depth-of-discharge(?b)
TSLC : Time-since-last-conditioning(?b)

Constant-Voltage-CMF

Irr(CL)

	

i Large (TPOG)

Binary-voltage-CMF

	

Normal-degrading-CMF

Irr(Rechargeable(?b))
Small (Granularity)

	

Irr(CL)

Char e-sensitive-CMF

Irr(TEMP)

Temperature-sensitive-CMF

CMF Consequences Terms in the operating conditions
Assumption-class: Battery-voltage-ac
Constant-voltage-CMF V=co Battery(?b), Damaged(?b)
Binary-voltage-CMF V o if CL < cd= { Battery(?b), Damaged(?b)

vl if c0 <_ CL

Normal-degrading-CMF V=f(TIME) Battery(?b), Damaged(?b)
Charge-sensitive-CMF V = f(CL) Battery(?b), Damaged(?b), Rechargeable(?b)
Temperature-sensitive-CMF V= f(TEMP, CL) Battery(?b), Damaged(?b), Rechargeable(?b)

Assumption class: Battery-charge-level-ac
Constant-charge-level-CMF CL = cl Battery(?b), Damaged(?b)
Normal-accumulation-CMF CL = Idt Battery(?b), Damaged(?b), Rechargeable(?b)
Accumulation-with-aging-CMF CL = Idt - f(DOD, TSLC) Battery(?b), Damaged(?b), Rechargeable(?b)

Assumption-class: Battery-damage-due-to-overcharge-ac
Battery-damage-CMF Damaged(?b)

Batte~ry('~b), Damaged(?b), Recharggable(?b),

Can-affect-list

Relation-name Argument-types Assumption-class
Voltage (Battery) Battery-voltage-ac(?b)
Charge-level (Battery) Battery-charge-level-ac(?b)
Damaed (Battery) Battery-damage-due-to-overcharge-ac(?b)



procedure select-scenario- model (query)
begin
Q = goal terms of query
Assumptions = modeling assumptions given in the query.
Model = nil .
repeat

q = dequeue(Q)
As = assumption classes that can influence q
for each aEAsdo:

Select the simplest CMF in a that does not contradict
Update Assumptions .
Adjust previous CMF choices .
for all terms x such that x can influence g through As do

if x has been expanded and is not exogenous then
enqueue x onto Q .

until Q is empty .
Model is the scenario model .

end

this assumption class, we start from the simplest,
Constant-voltage-CMF . Since there is no earlier
relevance assumptions made so far, this choice is
consistent, and we select this CMF . This results in
addition of the following to our modeling assump-
tion list :
Rel(Battery(BA1)), Rel(Damaged(BA1)),
Large(TPOG), Irr(Charge-level(BA1)),
Small (Granularity), Irr(Rechargeable (BA1))
and Irr(Temperature-of(BA1)) .

3.3

	

Traversal of causal influence paths

Once a CMF is selected, we need to determine which
causal paths to pursue further by deciding which terms
to put on the queue . Essentially, we pursue the terms
that can affect the goal term through the CMF. These
are either terms that are part of the operating condition
or terms that appear in the same equation as the goal in
the consequence equations (and can therefore influence
it in some causal ordering of the equations) . We consider
every such candidate term . If it is neither exogenous nor
has already been put on the queue, it is pushed onto the
queue . The procedure then calls itself recursively with
the new queue .

Since Damaged(BAl) can influence Voltage(BA1)
through Constant-voltage-CMF(BA1) and is not
exogenous, it is placed on the queue and becomes
the new current goal .
A search through the Can-affect-list finds
Battery-damage-due-to-overcharge-ac, out of

Figure 1 : Model selection algorithm .

Assumptions and add it to Model.

which Battery-damage-CMF is selected since it is
the only member .
This selection adds Rel (Rechargeable (BA1) ) and
Rel(Charge-level(BA1)) to the assumption list .
However, this makes the assumption list incon-
sistent since both Irr(Rechargeable (BA1)) and
Irr(Charge-level(BA1)) are included .
To resolve the inconsistency, we adjust the ear-
lier choice of CMF from the assumption class,
Battery-voltage (BA1), since it resulted in the
addition of these irrelevance assumptions . We now
select Charge-sensitive-CMF, which is the sim-
plest CMF that does not contradict the current
modeling assumptions .
The current goal term now becomes
Charge-level (BA1) . A search through the Can-
affect-list finds Battery-charge-level-ac . The
simplest CMF that is consistent with the current
modeling assumptions in this assumption class
is Normal-accumulat ion-CMF (BA1), which we se-
lect . Current (Plus-terminal(BA1)) can influ-
ence Charge-level (BA1) through this CMF. How-
ever, since it is an exogenous term, it is not placed
on the queue . The queue is now empty and the
procedure terminates .
The resulting scenario model contains :
Charge-sensitive-CMF(BA1),
Battery-damage-due-to-overcharge-CMF(BAl),
Normal-accumulation-CMF(BAl) .
Notice that the procedure terminates here in this
example because Current (Plus-terminal(BA1))
was specified exogenous in the query . Had it
not been specified exogenous, the procedure would



have included more CMFs including those repre-
senting other components and processes affecting
the current .

4 Analysis

This section describes the properties of the algorithm we
presented . We first show that it produces an adequate
model . We then explain under what conditions it pro-
duces the simplest model . Finally, we discuss the com-
plexity of the algorithm . Due to space limitations, we do
not present the full proofs . These can be found in [Levy,
1993] . In our discussion we assume (1) that all model
fragments in a single CMF can determine the same set
of variables and (2) that All approximation relations are
causal approximations [Nayak, 1992b] .
The second assumption is only necessary in order to

assure that the algorithm as described will produce an
adequate model . The algorithm can be modified to relax
that assumption, but the resulting algorithm may not
run in polynomial time . Nayak [Nayak, 1992b] shows
that such approximations capture most ones encountered
in practice . Under these assumptions, our algorithm is
guaranteed to produce an adequate model for the query,
as stated by the following theorem .

Theorem 4.1 : Let C be the set of CMFs chosen by
the algorithm for the query v . The set C is an adequate
scenario model for v, i .e ., at every given point in the
simulation, there is a causal path from the exogenous
values to the current value of v .

The observation underlying the proof of the theorem
is the following . Consider the graph of causal influences
created by the algorithm . It consists of OR nodes (the
goal nodes) and AND nodes (the CMF nodes) . At every
given state, the actual model used for that state is one
of its subgraphs, in which every OR nodes has at most
one arc emanating from it (i .e ., for each goal, we choose
at most one CMF that explains it) . Consequently, since
the graph represents possible paths from the exogenous
variables to the goal, each of the subgraphs will too .
The algorithm also produces the simplest scenario

model in the following sense . Recall that we are choosing
the scenario model without performing the actual simu-
lation . Consequently, we do not know which states the
simulation will go through, and therefore which model-
fragments will be required for those specific states . In-
stead, we assume that the simulation can go through any
state that satisfies the input conditions, and our choice
of a scenario model is made to accommodate any such
state . A scenario model Cl is simpler than C2, iffor each

CMF cl in C1 there is some CMF cz in CZ for which cl
is simpler than C or they are the same .

Theorem 4.2 : Let C be the scenario model chosen by
the algorithm . Given that the simulation may go through
any state that satisfies the input conditions, there is no
scenario model C', such that C' is simpler than C and
is an adequate model for the query .

Here too, the proof is based on the correspondence
between states of the simulation and subgraphs of the
graph created by the algorithm .
The running time of the algorithm is polynomial in

the number of CMFs in the scenario model . To see
this, observe that although the algorithm requires that
we sometimes adjust previous choices of CMFs, the total
number of times backtracking can be done is polynomial .
Specifically, if d is the maximum number of CMFs in an
assumption class, and n is the number of CMFs in the
scenario model, the total number of backtracking steps
is at most nd . This is because every backtracking step
results in replacing some CMF with anothes that is more
complicated . After nd such replacements we will get the
most complicated scenario model, which is guaranteed
to be adequate .

5 Conclusions

We presented a novel algorithm for choosing a scenario
model for simulation . The algorithm has three distin-
guishing aspects that are based on applying general con-
siderations of relevance reasoning . The first is the back-
ward chaining through causal influences, motivated by
a general definition of relevance . The second is choos-
ing the simplest possible model, based on knowledge ex-
pressed as relevance claims . The third is that it reasons
with partial knowledge of the states that might occur in
the simulation . The algorithm is shown to produce an
adequate and most simple model . Moreover, it is shown
to be efficient .
We have implemented the algorithm as part of a

system called, Device Modeling Environment (DME)
[Iwasaki and Low, 1992], which is a device modeling pro-
gram to provide a computational environment for design
of electromechanical devices . Given the topological de-
scription of a device, DME formulates a model using the
compositional modeling approach and simulates its be-
havior . The system works on several examples, including
the electrical power system, of which the example used
in Section 3 is a much simplified version .

Several researchers have proposed methods for model
formulation . These works address one or both of the two



aspects of model formulation problem, namely model
construction and simplification .

Nayak [Nayak, 1992a] addressed both aspects . Nayak
describes an algorithm for constructing a model for
the single state case . His algorithm also follows possi-
ble causal influences, however, these influences must be
given explicitly using the component interaction heuris-
tic . In contrast, our work exploits the structure of the
model fragments to derive these links, thereby not bur-
dening the user with the error prone task of putting
them in . It should be noted however that user interven-
tion, as in Nayak's scheme, can enable to further focus
the search by inserting only a subset of the links . In
choosing a model fragment from every assumption class,
Nayak chooses the most complicated one . Later, he uses
a procedure to simplify the resulting model . Our work
attempts to build the model by selecting the simplest
CMF possible in every class, and only adjust the choice
if necessary. In cases where the CMFs vary significantly
in their complexity this will lead to substantial savings
in the search, since in our approach we only introduce
the complicated models if necessary . It should be em-
phasized that the more complicated CMFs will give rise
to additional subgoals in the backward chaining, thereby
significantly raising the branching factor the graph un-
necessarily .

Forbus and Falkenhainer's work [Falkenhainer and
Forbus, 1991] mainly addresses the construction prob-
lem . They select the physical scope of the model by
identifying the lowest object down the partonomic hier-
archy, that subsumes all the objects mentioned in the
query . They also rely on heuristics to select types of
properties to be modeled . This approach can easily lead
to inclusion of model fragments that are not causally
related to the query, and it cannot guarantee the suffi-
ciency of the model produced . They attempt to produce
the simplest model, by generating all possible consistent
sets of modeling assumptions and choosing the simplest
based on a very informal criteria of simplicity.

Rickel's work on model formulation is similar to ours
since it makes use of graphs of interactions paths among
quantities to select relevant model fragments . His graph
of interactions are less general than our causal influ-
ence graph since it only includes quantities while we
include all terms (including quantities, predicates, rela-
tions) that could directly or indirectly influence the goal
terms . His approach also does not provide guarantees of
sufficiency or simplicity .
The idea of graph of CMFs is similar to raph of mod-

els by Addanki et al . [Addanki et al ., 198. Their work
addresses the problem of selecting among complete mod-

els . Since the models in their graph are complete models
instead of fragments, the space requirement of their ap-
proach would increase exponentially as the number of
possible modeling assumptions increase .

The model simplification problem has been addressed
by Williams [Williams, 1990a] and Weld [Weld, 1990] .
Williams also makes use of causal influence graphs to
simplify a model . Both Weld and Williams assume a
complete model of the situation as an input . Williams
makes use of the idea of following causal influences also
in his work on innovative design Williams, 1990b] .
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