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Abstract

Much work in qualitative physics involves con-
structing models of physical systems using func-
tional descriptions such as "flow monotonically in-
creases with pressure." Semiquantitative meth-
ods improve model precision by adding numeri-
cal envelopes to these monotonic functions . Ad
hoc methods are normally used to determine these
envelopes. This paper describes a systematic
method for computing a bounding envelope of a
multivariate monotonic function given a stream
of data . The derived envelope is computed by
determining a simultaneous confidence band for
a special neural network which is guaranteed to
produce only monotonic functions. By compos-
ing these envelopes, more complex systems can be
simulated using semiquantitative methods.

Introduction
Scientists and engineers build models of continuous
systems to better understand and control them. Ide-
ally, these models are constructed based on the the
underlying physical properties of the system . Unfortu-
nately, real systems are seldom well enough understood
to construct precise models based solely on a priori
knowledge of physical laws . Therefore, process data is
often used to estimate some portions of the model.

Techniques for estimating a functional relationship
between an output variable y and the input vector
x typically assume that there is some determinis-
tic function g and some random variate e such that
y = g(x) + e, where c is a normally distributed, mean
zero random variable with variance o-2 that represents
measurement error and stochastic variations . The es-
timate is computed by using a parameterized fitting
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function f(x; 0) and then using regression analysis to
determine the values 0 such that f(x ; 0) .., g(x) .

Traditional regression methods require knowledge of
the form of the estimation function f. For instance,
we may know that body weight is linearly related to
amount of body fat. We may then determine that
f(weight; B)

	

= weight - B is an appropriate model.
Neural network methods have been developed for cases
where no information about f is known . This may be
the case if f models a complex process whose physics is
poorly understood . Such networks are known to be ca-
pable of representing any functional relationship given
a large enough network. In this paper, we consider the
case where some intermediate level of knowledge about
f is known. In particular, we are interested in cases
where we have knowledge of the monotonicity of f in
terms of the signs ofa where xk E x . For example,
we mightknow that outflow from a tank monotonically
increases with tank pressure . This type of knowledge
is prevalent in qualitative descriptions of systems, so it
makes sense to take advantage of it .

Since the estimate is based on a finite set of data, it
is not possible for it to be exact. We therefore require
our estimate to have an associated confidence measure
which takes into account the uncertainty introduced by
the finite sample size . For our semiquantitative repre-
sentation, we are therefore interested in deriving an
envelope that bounds all possible functions that could
have generated the datastream with some probability
P.

This paper describes a method for estimating and
computing bounding envelopes for multivariate func-
tions based on a set of data and knowledge of the
monotonicity of the functional relationship . First,
we describe our method for computing an estimate
f(x; 0) ;zz~ g(x) based on a neural network that is con-
strained to produce only monotonic functions. Second,
we describe our method for computing a bounding en-
velope, which is based on linearizing the estimation
function and then using F-statistics to compute a si-
multaneous confidence band . Third, we present several
examples of function fitting and its use in semiquanti-
tative simulation using QSIM. Next we discuss related



work in neural networks and nonparametric analysis
and finally we summarize the results and describe fu-
ture work .
Bounded monotonic functions are a key element of

the semiquantitative representation used by simulators
such as Q2 [Kuipers and Berleant, 1988], Q3 [Berleant
and Kuipers, 1992], and Nsim [Kay and Kuipers, 1993]
which predict behaviors from models that are incom-
pletely specified . To date, the bounds for such func-
tions have been derived in an ad hoc manner . The
work described in this paper provides a systematic
method for finding these functional bounds . It is par-
ticularly appropriate for semiquantitative monitoring
and diagnosis systems (such as MIMIC [Dvorak and
Kuipers, 1989]) because process data is readily avail-
able in such applications . By combining our function
bounding method with model abduction methods such
as MISQ [Richards et ad., 1992], we plan to construct
a self-calibrating system which derives models directly
from observations of the monitored process. Such a
system will have the property that as more data is ac-
quired from the process, the model and its predictions
will improve.

Computing the Estimate

Computing the estimate of g requires that we make
some assumptions about the nature of deterministic
and stochastic portions of the model. We assume that
the relationship between y and x is y = g(x)+c where e
is a normally distributed random variable with mean 0
and variance Q' . Other assumptions, such as different
noise probability distributions or multiplicative rather
than additive noise coupling could be made . The above
model, however, is fairly general and it permits us to
use powerful regression techniques for the computation
of the estimate and its envelope . For situations where
variance is not uniform, we can use variance stabiliza-
tion techniques to transform the problem so that it has
a constant variance.

In traditional regression analysis, the modeler sup-
plies a function f(x ; B) together with a dataset to a
least-squares algorithm which determines the optimal
values for 9 so that f(x; 9)

	

:z~ g(x) .

	

The estimated
value of y is then y = f(x ; 9) . In our case, however,
the only information available about f is the signs of
its n partial derivatives a where xk E x, so no ex-
plicit equation for f can be assumed . One way to work
without an explicit form for f is to use a neural net
function estimator. Figure 1 illustrates a network for
determining y given a set of inputs x. The network
has three layers . The input layer contains one node for
each element xk and one bias node set to a constant
value of 1 . The hidden layer consists of a set of nh
nodes which are connected to each input variable as
well as to the bias input. The output layer consists
of a single node which is connected to all the hidden
nodes as well as to another bias value which is fixed

Figure 1: A neural net-based function estimator .
This three-layer net computes the function

~~Al [w.[.i,l]a (E'i=, wi[i,j]xi +wi[n+l,i1)~ + wO[nh+1,1]) .

at 11 . All nodes use sigmoidal basis functions and all
connections are weighted . In our notation, wili j] rep-
resents the connection from input xi to hidden node j
and wo U,ll represents the connection from hidden node
j to the output layer' . This network represents the
function
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where v(x) is the sigmoidal function

	

We can
compute the weights by solving the nonlinear least
squares problem

Win

	

(yi - yi)z
i

where Pi = f(xi ; w) and w is a vector of all weights.
Cybenko [Cybenko, 1989] and others have shown that
with a large enough number of hidden units, any con-
tinuous function may be approximated by a network
of this form .
One drawback of using this estimation function is

that it can overfit the given data. This results in the
estimate following the random variate e as well as the
deterministic part of the model which means that we
get a poor approximation of g3. We therefore reduce
the scope of possible functions to include only mono-
tonic functions. To do this, note that if f is mono-
tonically increasing in xk, then a must be positive .

'The bias terms permit the estimation function to shift
the center of the sigmoid.

'The weight wi[n+l,i] represents the connection to the
input bias and the weight wo[nh+1,1] represents the connec-
tion from the hidden layer bias node to the output node .

'Visually, the estimate will try to pass through every
datapoint.



By constraining the weights, we can force this deriva-
tive to positive for all x, insuring that the resulting
function is monotonic. The derivative in question is

of
axk

p
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Since the derivative of the sigmoid function is positive
for all values of its domain,a will be positive if p is
positive . This will be the case ifbl<j<nwo[j,1] - wi[k,j] >-
0 . If the partial derivative is negative, then the inequal-
ity is reversed .

This set of additional constraints on weights causes
the network to produce only monotonic functions. We
may determine the values of the weights by solving the
problem

min

	

(ya -
yi)2

w
i

subject to d 1<j<nn wofjj] - Wi[k,j] > 0.
1<k<n

These nh - n constraints transform the least squares
problem into a constrained nonlinear optimization
problem. While more difficult to solve than the uncon-
strained problem, there are still a number of solutions
based on numerical methods . In our work we use the
SQP algorithm [Biegler, 1985 ; Biegler and Cuthrell,
1985] .
To compute the estimate, we need to find the best

value for nh . We determine nh by repeatedly solving
the optimization problem for increasing values of nh
starting at 1 and continuing until there is no improve-
ment in the sample standard error

Z:i (yi - yi)2
n-p

For our examples, nh runs around 2 .
Figure 2 shows the result of using the above method

to estimate a fit to a datastream derived from a
quadratic function with noise from a normal distribu-
tion with QZ = 4. Note that the estimate is in fact
monotonic and does not follow the noise.

Computing the Envelope
The estimate computed in the previous section is af-
fected by the sample dataset . Since this dataset is
of finite size, the estimate generated from it will not
be precisely correct. In this section, we describe our
method for bounding our estimate with an envelope
that captures the uncertainty introduced by using a
finite set of data .
The typical confidence estimate used in regression

analysis is the confidence interval, which is defined at
a point x as P(f(x) - bx < g(x) < f(x) -I- bx) = 1- a

Figure 2: Fitting a neural net estimator to a datas-
tream of 100 points . The data was generated by adding
noise with a variance of 4 to the line y = x2+5 (shown
as a dashed line) . The estimated function is shown as
a solid line . There are two hidden nodes.

where bx depends on x . The confidence interval is a
point probability measure since it expresses the uncer-
tainty of the estimated value f(x) at a single point x
in the domain . Since we wish our envelope to bound
all possible functions, we require that our confidence
interval holds simultaneously at all points in the do-
main . This measure (called a confidence band) can be
easily computed for linear regression models . Since our
model is nonlinear, we use a linearization of f to form
an approximate confidence band .
Assume that we have a linear model f(x; B) = xTo

where 8 is a parameter vector of length p and that
/ is our estimate of the parameters . If we represent
the datastream as a matrix [Y I X] where the ith row
represents a single sample datapoint (yi, xi), it can be
shown [Bates and Watts, 1988] that the 1 - a confi-
dence band for f is

xT/3

	

s

	

pF(a; P, n - P)IIXTR-111

2
where s2 is the sample standard error

	

YL, F
is the a quantile of the F-statistic with p and n - p
degrees of freedom, and R is the square portion of
the QR decomposition of the array of sample inputs

X (X = Q

	

~ ]).
Geometrically, the columns of X

form a p-dimensional linear subspace called the expec-
tation surface in which the solution must lie. The least
squares computation finds the point on the expectation
surface that is closest to Y.
To use this result, we must linearize the nonlinear

problem as follows. Note that the entry xnp of X is
axT~_
app

	

Using this, we linearize our estimator by defin-

ing a matrix V such that v,p

	

x^'*'

	

and a vector'lp -

	

aw~
v such that v

	

ofaw~
x'v~' . The envelope is then de-



fined by

f(X;*)fs pF(a ;p,n - p)IIvTRv -1 JJ

where V = Qv I

	

Ov I .

	

The linearization can be

viewed as defining a plane which is tangent to the true
expectation surface (which is not a linear subspace) at
w. Assuming that w is close to the exact value for w,
the linearization will hold near this point on the plane .

Because the linearization is only an approximation,
this estimate does not provide an exact 1-a confidence
band for f. However, the result is approximately cor-
rect and depends on the degree of nonlinearity of the
expectation surface [Bates and Watts, 1988] .
We use the LINPACK subroutine DQRDC to compute

the QR decomposition of V. This method performs the
decomposition using pivoting so that Rv is both upper
triangular and has diagonal elements whose magnitude
decreases going down the diagonal . With this form, we
can easily recognize the case where the linearized ma-
trix V may not have full rank (i .e ., only q < p columns
are linearly independent) . This in turn means that Rv
has zeros in all diagonals past column q . In such cases,
the product vT Rv -1 may not have a solution . To
handle this problem, we simply reduce the size of Rv
by using only the upper left q x q corner . We must
then also reduce the size of v so that it does not con-
tain partials with respect to wi where i > q. This is
justified, since if V forms a p-dimensional basis for the
linearized expectation surface, and its rank is only q,
then the wi where i > q may be ignored since their
value is arbitrary .
The confidence band is designed to cover all possi-

ble curves that fit the data with a probability of 1-a.
With traditional regression, this confidence band is the
most precise description we can achieve given the gen-
eral form of f . Using monotonicity information, how-
ever, we can further refine our prediction to derive a
tighter envelope by ruling out portions of the curves
that could not be monotonic . Consider the confidence
band shown in Figure 3 . If we know that the underly-
ing function is monotonic we may remove the shaded
regions from the prediction since no monotonic func-
tion within the confidence band could pass through
these regions . Note that this final step could not be
performed if we used point confidence intervals .

Examples
We have applied our envelope method to noisy datasets
whose underlying functions are linear, quadratic,
square root, and exponential . In order to give a feel-
ing for the form of the envelopes generated, we present
several of these test cases . Each result is for a uni-
variate monotonically increasing model function f(x) .
Figure 4 shows the estimate and envelope for a set of
100 samples drawn from the function y = 0.5x+5 with
additive noise with variance 4 . Note that the envelope
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Figure 3 : Reducing the size of a confidence band using
monotonicity information . If we know that the un-
derlying function is monotonically increasing, we can
rule out the shaded areas of the figure as part of the
envelope .

Figure 4 : 95% envelope (solid lines) for the linear func-
tion y = 0.5x + 5 (dashed line) . The estimator has 3
hidden nodes . Sample variance is 4 .520 .

expands at the ends since there is less data there to
constrain the estimate .
The second example is that of a quadratic function

with noise of variance 4 . This dataset demonstrates the
effect of nonuniform sampling . In areas where there is
little data, the envelope bulges outward to compensate.
Note also that the upper portion of the envelope is
narrowest at the far end of the plot . This is due to
bias in the estimation function which assumes that the
curve will "heel over" just past the end of the dataset .
For this reason, the computed envelope is valid only
over the range of the given data .

In the third example, the envelope method is used
to create a semiquantitative model which is then sim-
ulated using QSIM to predict the behavior of a real
physical system . To develop this example, we took
a small plastic tank and drilled a hole in its bottom .
Our goal was to construct a semiquantitative model
that could be used to predict the level of fluid in the
tank over time . The standard approach to construct-
ing such a model in QSIM is to construct a qualitative



Figure 5: 95% envelope (solid lines) for the quadratic
function y = x2 + 5 (dashed line). The estimator has
two hidden nodes. Sample variance is 4.227 .

model and then augment it with numerical informa-
tion about the monotonic functions and parameters .
Normally, these numerical envelopes are ad hoc in that
they are hand-derived by the modeler. By applying the
envelope method to a data stream from the system, we
can construct these envelopes in a more principled way.
We require that the model prediction bound all real

behaviors of the system (i .e ., that the true behavior is
within the predicted bounds) with probability 1 - a .
Semiquantitative models are particularly good at this
because they produce a bounded solution . We begin
by asserting the qualitative part of the model - A' =
-f(A), f E M+ which asserts that the derivative of
amount (A) is a monotonic function of amount . Since
we are interested in level rather than amount, we also
assert that g(L) = A, g E M+, i .e ., that level (L)
and amount are monotonically related. The complete
qualitative model is thus

A'= -f(g(L))

	

f,g E M+

This qualitative description holds for a wide class of
tanks . While it is unquestionably true for our tank,
it is not specific enough to produce useful predictions .
To increase the precision of the prediction, we must
further define f(A) and g(L) . To determine these
functions, we performed the following experiment . We
filled the tank with water and allowed it to drain while
measuring flow (cc/sec), level (cm), and amount (cc) .
Figures 6 and 7 show the experimental data together
with the 95% confidence envelopes. With this infor-
mation, we used the QSIM semiquantitative simula-
tion techniques Q2 [Kuipers and Berleant, 1988] and
Nsim [Kay and Kuipers, 1993] to produce a prediction .
Since QSIM already reasons with monotonicenvelopes,
there are no special techniques required to handle the
composed function f(g(L)) .

Figure 8 shows the results of the simulation together
with experimental data for time vs level . Since the
width of the monotonic function envelopes are a func-

Figure 6 : 95% envelope for level vs flow data from a
tank . The estimator has two hidden nodes . Sample
variance is 0 .441 .

Figure 7: 95% envelope for the amount vs level data .
The measurement accuracy for this data was greater
than for the level vs flow data, hence the estimate is
narrower . The estimator has two hidden nodes. Sam-
ple variance is 0.003 .

tion of the datastream length, by observing the phys-
ical system for a longer time period, we would expect
the envelopes to tighten further, thus yielding tighter
predictions.

Related Work
This work is related to several approaches to function
estimation using neural networks . Cybenko [Cybenko,
1989] has shown that any continuous function can be
represented with a neural net that is similar to one
that we use. With our method, we assume a priori
that the true function is monotonic. This assumption
restricts our attention to a smaller class of functions
which means that less data is needed to compute a
reasonable estimate . Additionally, we compute a con-
fidence measure on our estimate in the form of an en-
velope .
The VI-NET method [Leonard et al., 1992] also uses

a neural network for computing estimates of general



Figure 8: Prediction envelope for the tank model us-
ing the previous monotonic envelopes for f and g. Note
that sample measurements taken from the system are
all contained within the envelope . The predictions of
this model could be strengthened with increased mea-
surements which would serve to reduce the monotonic
envelopes .

functions. It is notable in that it provides a confidence
measure on its estimate and can determine when it is
being asked to extrapolate. By using radial basis func-
tions instead of sigmoidal ones, it is able to handle dif-
ferent variances across the function . This is especially
useful in applications where there is no a priori infor-
mation about g . Because it allows non-constant vari-
ances, it would be difficult to get a VI-NET to return
simultaneous confidence bands, which are important
since we wish to bound all curves that could have gen-
erated the datastream . In contrast, our approach can
only handle fixed-variance problems, but since variance
will often track either x or y, we can make monotonic-
ity assumptions about o-2 if it should prove necessary.
Under such circumstances, variance stabilization tech-
niques [Draper and Smith, 1981] should prove useful
in fixing the variance .

This work is also related to monotonic function esti-
mation [Kruskal, 1964 ; Hellerstein, 1990], particularly
the NIMF estimator [Hellerstein, 1990] which also de-
termines envelopes for multivariate monotonic func-
tions . NIMF allows for a more general noise model
(zero mean, symmetrically distributed) and uses anon-
parametric statistical method for determining point
confidence bounds . These bounds, however, are much
weaker than those derived with methods that first com-
pute an estimate . This is not surprising, since we are
assuming more about the noise than NIMF does . Fi-
nally, NIMF produces point bounds only, and it is un-
clear how these bounds could be made into confidence
bands of reasonable width.

Discussion and Future Work
This paper has described a method for computing en-
velopes for functions described solely by monotonicity
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information and a stream of data. It improves over
existing methods for function estimation by providing
a simultaneous confidence band that encloses all func-
tions that could have generated the datastream . Using
monotonicity information provides several benefits to
function estimation

" Much less data is required to obtain a reasonably
precise model.

" When combined with simultaneous confidence
bands, portions of the band can be eliminated, thus
further improving model precision.

While the class of monotonic functions may seem
restrictive for modeling continuous systems, we can
represent many non-monotonic functions as compo-
sitions of monotonic ones . For example, in a system
of two cascaded tanks, the level of water in the lower
tank is typically a non-monotonic function of time .
The flow into the lower tank, however, is the compo-
sition of a monotonically increasing function of the
amount of water in the upper tank and a monoton-
ically decreasing function of the water in the lower
tank . By using semiquantitative simulation meth-
ods, we can represent this composition and thus sim-
ulate systems with non-monotonic behaviors.

The method is applicable for cases where sample
variance is fixed. Future work includes adding vari-
ance stabilization methods to handle cases where the
data has a non-constant variance . We also plan to add
the ability to impose further constraints such as stating
that the function must pass through zero .
Our method for deriving bounds for monotonic func-

tions plays a key role in the construction of semiquanti-
tative models, especially for monitoring and diagnosis
tasks where process data is readily available. Because
the precision of the resulting envelopes is a function of
the amount of data used to compute them, our bound-
ingmethod also provides asystematic method for shift-
ing the precision of a semiquantitative model along a
continuum from purely qualitative to exact .

Nomenclature
x

	

The domain of the function (y = g(x)).
n

	

The dimension of x.
nh

	

The number of hidden units in the network.
p

	

The number of weights in the network
(a total of (n + 2)nh + 1) .
The weight from xs to hidden unit j.
The weight from hidden unit j to the output .
A vector of all weights .
The estimate of y.
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