
Abstract

Converting complex equations into simpler,
more tractable equations usually involves
approximation . Approximation is usually
done by identifying and removing insignifi-
cant terms, while retaining significant ones.
The significance of a term can be determined
by order of magnitude reasoning . In this pa-
per we describe NAPIER, an implemented or-
der of magnitude reasoning system . NAPIER
defines the order of magnitude of a quantity
on a logarithmic scale, and uses a set of rules
to propagate orders of magnitudes through
equations . A novel feature of NAPIER is the
way it handles non-linear simultaneous equa-
tions, using linear programming in conjunc-
tion with backtracking . We show that order
of magnitude reasoning in NAPIER is, in gen-
eral, intractable and then discuss an approx-
imate reasoning technique that allows it to
run fast in practice . Some of NAPIER's in-
ference rules are heuristic, and we estimate
the error introduced by their use .

1 INTRODUCTION

Order of Magnitude Reasoning
using Logarithms*

P. Pandurang Nayak
AI Research Branch, Mail Stop 269-2

NASA Ames Research Center
Moffett Field, CA 94035 .

nayak@ptolemy .arc.nasa.gov

Mathematical models are pervasive in science and en-
gineering . Both analytical and numerical techniques
have been used to solve the equations resulting from
such models. Analytical methods are applicable only
to restricted classes of equations (e.g ., linear systems) .
To apply analytical techniques to more complex classes
of equations, scientists and engineers have had to find
ways of approximating the equations to convert them
into a simpler form.

With the advent of fast digital computers, the classes
of equations that can be solved by numerical (rather

'This paper originally appeared in the Proceedings of
the Third International Conference on Principles of Knowl-
edge Representation and Reasoning (KR92) .

than analytical) methods have grown considerably .
However, numerical methods are not a panacea ; they
have their limitations too . For example, solving sys-
tems of non-linear equations can be time consuming,
and a good initial guess is required to ensure conver-
gence to a solution . Hence, scientists and engineers
still strive to identify appropriate approximations so
that the resulting equations are as simple as possible .
In addition, numerical methods are sometimes inappli-
cable . For example, during conceptual design, exact
numerical values for exogenous quantities are usually
unavailable because most of the details of the design
are unspecified . Under such circumstances, an engi-
neer needs to fall back on analytical methods, thereby
highlighting the role of appropriate approximations .

The approximation process usually involves identify-
ing and removing insignificant terms, while retain-
ing only the significant ones . Consider the follow-
ing example, previously discussed in [Bennett, 1987 ;
Raiman, 1991, from the domain of acid-base chem-
istry. An important task in this domain is to find
the concentration of H+ ions in a solution . The con-
centration of ions in solution depends on the dynamic
equilibrium resulting from competing chemical reac-
tions . Consider dissolving an acid, AH, in water . The
two reversible reactions that occur, corresponding to
the ionization of AH and H2 O, are shown in Figure 1 .

Figure
AH in water

AH = H+ + A-
H2O ~ H+ + OH-

1: Ionization reactions that occur on dissolving

The equilibrium concentrations of the three ions
(H+, OH - , A- ) and the acid (AH) are determined
by the equations shown in Figure 2 . Square brackets
denote concentrations ; C,, is the initial concentration
of the acid ; Ku, is the ion product of water; and Ka is
the ionization constant of the acid .
As has been pointed out in [Bennett, 1987 ; Raiman,



Charge balance :
Mass balance :

Acid ionization equilibrium :
Water ionization equilibrium :

Figure 2 : Equilibrium equations for the ionization reactions .

1991], solving this set of equations analytically for
[H+] results in a cubic equation which is difficult to
solve . In fact, in problems involving polyprotic acids,
i .e ., acids that can yield more than one H+ ion, the
closed form solution for [H+] can involve equations of
degree five or higher, making the solution significantly
harder .

An alternative to the above approach is to approxi-
mate the equations, and hence simplify them . For ex-
ample, a chemist might guess that the acid is strong,
so that [A-] » [OH-] and [A- ] » [AH]. This justi-
fies reducing the first equation to [H+] = [A- ] and the
second equation to Ca = [A- ], leading to a straight-
forward solution .

The reasoning following the assumptions that [A - ] »
[OH- ] and [A-] » [AH] is very nicely formalized in
[Raiman, 1991] . But how are these assumptions jus-
tified? In [Bennett, 1987], Bennett suggests that such
assumptions are justified by domain specific inference
rules . In this paper we present a domain-independent
method for justifying such assumptions . In particular,
we define the order of magnitude of a quantity on a log-
arithmic scale . We show how the order of magnitude of
exogenous quantities like Ca , Ku� and Ka can be prop-
agated through a set of equations like Equations 1-4 to
compute orders of magnitudes of the remaining quanti-
ties like [H+], [OH-], [A-], and [AH]. The computed
orders of magnitude of [A-], [OH-], and [AH] can be
used to justify the above assumptions and simplify the
equations .

The reasoning technique described here has been im-
plemented in a program called NAPIER.' NAPIER has
been successfully tested on multiple examples in the
domain of electromechanical devices, with the number
of equations per example ranging from about 25 to a
little over 150 .

In the next section, we define the order of magnitude
of a quantity and present rules for propagating orders
of magnitude . We show that these rules can be used to
infer orders of magnitudes of quantities related by a set
of non-linear simultaneous equations . Next, we show
that, in general, order of magnitude reasoning is in-
tractable, and then present an approximate reasoning
technique that make it efficient in practice. Since some

'John Napier (1550-1617), a Scottish nobleman, is cred-
ited with the first discovery of logarithms .

15 8

2 ORDER OF MAGNITUDE
REASONING IN NAPIER

of the order of magnitude reasoning rules are heuris-
tic, we next estimate the error introduced by their use .
We conclude with a discussion of related work .

Order of magnitude reasoning in NAPIER is a form
of interval reasoning . The order of magnitude of a
quantity q (denoted om(q)) is defined as follows :

om(q) = Llogb Iq1]

2.1 INFERENCE RULES IN NAPIER

where the base, b, of the logarithm is chosen to be the
smallest number that can be considered to be "much
larger" than 1 . The choice of b is clearly domain and
task dependent . In this paper we assume that b = 10 .
Note that the order of magnitude of a quantity, q, is in-
dependent of its sign, and hence om(q) = om(-q) . In
what follows, we assume that the signs of all quantities
have been determined, to the extent possible, prior to
any reasoning about orders of magnitude using stan-
dard constraint satisfaction techniques .2

Given the orders of magnitude of ql and q2, NAPIER
computes bounds on the orders of magnitude of arith-
metic expressions involving ql and q2, using the rules
shown in Figure 3 . The rules for (ql +q2) and (q1-q2)
assume that ql and q2 have the same sign so that the
magnitudes of ql and q2 are actually being added or
subtracted, respectively. The rule for (q1 f q2) is ap-
plicable to a sum or difference of ql and q2 when the
sign of at least one of q1 and q2 is unknown.

The rules for (q 1 * q2) and (ql/q2) (rules 1 and 2) fol-
low directly from Equation 5 and the rules of interval
arithmetic [Moore, 1979] . For example, if om(g1) = n1
and om(g2) = n2, it follows that b" <_ Ig l l < bn1+1

and bn2 _< Ig2I < bn2 +' . Using interval arithmetic,
we get bnl+n2 <

Iq1
* q2 l < bnl+n2+2, and hence

n1 + n2 < om(g1 * q2) < n1 + n2 + 1 .

Like rules 1 and 2, rules 3a and 4a are also based on
Equation 5 and interval arithmetic . Note, however,

2 This assumption is unnecessarily strong . For example,
if a and b are positive, constraint satisfaction alone is un-
able to deduce the sign of a-b. However, if om(a) > om(b),
then a - b can be deduced to be positive .

[H+] = [A -] + [OH-] (1)
Ca = [A-] + [AH] (2)
Ka [AH] = [A ] [H+] (3)

Ku, = [OH-][H+] (4)



1 .
2 .

3 .

om(ql) + om(g2) < om(gi * q2) < om(ql ) + om(g2) + 1
om(ql ) - om(g2) - 1 < om(gi/q2) < om(ql) - om(g2)
a)

	

om(ql) < om(gl + q2) :5 om(ql) + 1

	

if om(ql ) =
b)

	

om(g 1 + q2) = om(gi)

	

if om(ql) >
c)

	

om(gl + q2) = om(g2)

	

if om(ql) <
a) om(gl

4 . b) om(gl
c) om(g l

- q2) < om(ql )

	

if om(ql ) = om(g2)
- q2) = om(ql)

	

if om(ql) > om(g2)
- q2) = OM(g2) if om(ql) < om(g2)

om(gi t q2) < om(gl) + 1

	

if om(ql) = orn(g2)
om(g l f q2) = om(gi)

	

if om(ql) > om(g2)
om(gi + q2) = om(g2)

	

if om(ql) < OM(q2)

that these rules predict larger intervals for (ql + q2)
and (q l - q2) than interval arithmetic predicts under
the same restrictions on ql and q2 . For example, if
om(gl) = OM(q2) = n, then interval arithmetic pre-
dicts that (ql+q2) is bounded by 2bn and 2b'+i, while
NAPIER predicts n <_ om(gl + q2) _< n -+- 1, which is
equivalent to saying that (ql + q2) lies between bn and
b"+2 . This larger interval is a consequence of NAPIER
being able to represent only intervals whose end points
are integer powers of the chosen base . Further note
that rules 3a and 4a are correct only if the base is
greater than 2 . This is reasonable given our heuristic
for selecting the base (viz ., 2 is unlikely to be consid-
ered to be "much larger" than 1) .
Unlike the rules discussed thus far, rules 3b, 3c, 4b,
and 4c are not guaranteed to be correct, but are
heuristic rules . They are all based on the intuition
that adding or subtracting a "small" quantity from a
"large" quantity does not significantly affect the larger
quantity . Since the base in Equation 5 is chosen as the
smallest number that can be considered to be "much
larger" than 1, the above intuition justifies these rule's ;
the order of magnitude of a quantity is not affected by
adding or subtracting quantities of a smaller order of
magnitude . The inclusion of these heuristic order of
magnitude rules differentiates NAPIER from standard
interval reasoners . In Section 5, we estimate the error
introduced by the use of these heuristic rules .
Finally, rule set 5 merely encompasses both rule sets 3
and 4 . It is used to infer the order of magnitude of a
sum or difference of two quantities when the signs of
at least one of the two quantities is not known . To de-
termine the order of magnitude of a sum or difference
of two quantities, NAPIER selects the appropriate rule
set from rule sets 3, 4, and 5, depending on the opera-
tion (sum or difference) and the signs of the two quan-
tities . For example, consider the equation gs = q1+q2 .
If ql and q2 have the same sign, then rule set 3 is used
to infer om(g3) ; if q l and q2 have opposite signs, then
rule set 4 is used to infer om(g3), since the magnitude
of q3 is really the difference of the magnitudes of ql

Figure 3 : Rules for order of magnitude reasoning

15 9

OM(q2)
om(g2)
om(g2)

and q2 ; and if the signs of at least one of ql and q2 is
unknown, then rule set 5 is used to infer om(g3) .

2.2 SET OF SIMULTANEOUS
EQUATIONS

Until now, we have focussed exclusively on how
NAPIER uses a single equation to propagate orders
of magnitudes, i.e ., how om(qlop q2) is computed from
om(ql) and om(g2 ) . However, the rules in Figure 3 can
also be used to compute orders of magnitudes of quan-
tities related by a set of (possibly non-linear) simulta-
neous equations . NAPIER uses these rules to convert a
set of simultaneous equations into a set of constraints,
where each constraint is a disjunction of a set of linear
inequalities . Each equation in the set of simultaneous
equations contributes a constraint as follows :

1 . Product and quotient terms contribute a single set
of linear inequalities according to rules 1 and 2,
respectively . For example, q3 = qi * q2 contributes
the following set :

om(ql) + om(g2) < om(g3),
OM(q3) < om(ql) + om(g2) + 1}

2 . Sum and difference terms contribute a disjunction
of three sets of linear inequalities, using rule sets 3,
4, or 5, as applicable . Each disjunct corresponds
to one of the rules (a, b, or c) in the applicable
rule set . For example, assuming that ql and q2
have the same sign, the equation q3 = qi - q2
contributes the following disjunction :3

{om(g3) < om(gi), om(ql ) = om(g2)}
V

{om(g3) = om(gi), om(q l ) > om(g2) + 1~
V

{om(g3) = om(g2), om(q l ) < om(g2) - 1}
corresponding to rules 4a, 4b, and 4c, respectively.

3 Since the order of magnitudes are integral, om(ql ) >
om(g2 ) is equivalent to om(gl ) > om(g2 ) + 1 .



int = Ka [AH]
int = [A-][H+]
Kv, = [OH-][H+]

[H+] = [A - ] + [OH-]

Ca = [A-] + [AH]

NAPIER uses this set of constraints to compute bounds
on the orders of magnitudes of the quantities . Since all
the inequalities in the constraints are linear inequal-
ities, NAPIER uses linear programming [Hillier and
Lieberman, 1980], in conjunction with backtracking,
to compute order of magnitude bounds . Backtracking
is necessary to handle the disjunctions . We describe
this algorithm next .

2.3 BACKTRACKING ALGORITHM

Let E denote the set of simultaneous equations being
processed . NAPIER's backtracking procedure is best
visualized as a depth-first traversal of a backtrack tree .
Each level in the tree (except the root level) corre-
sponds to one of the sum or difference terms in E . The
root level corresponds to all the product and quotient
terms in E. Each internal node has three children,
corresponding to the three disjuncts in the constraint
contributed by the sum or difference term at the level
of the node's children . Each node in the tree has an
associated set of linear inequalities defined as follows :

1 . The set of inequalities at the root node consists
of the union of the sets of inequalities contributed
by each product and quotient term in E.

2 . The set of inequalities at each non-root node con-
sists of the union of (a) the inequalities at the
node's parent ; and (b) the inequalities in the dis-
junct associated with that node.

Starting at the root node, NAPIER traverses the back-
track tree in a depth-first manner . At each node it
checks the consistency of the inequalities at that node .
If the set is inconsistent, it immediately backtracks to
the node's parent . If the set is consistent and it is a
non-leaf node, it continues its depth-first traversal . If
the set is consistent and it is a leaf node, it uses the
inequalities to find the maximum and minimum val-
ues of the order of magnitude of each quantity . The
bounds computed at each of the consistent leaf nodes
are combined so that the lower bound of each quantity

Figure 4 : A backtrack tree .

160

is the least lower bound and the upper bound is the
greatest upper bound .

Since the inequalities at each node are linear, NAPIER
uses the Simplex linear programming algorithm [Hillier
and Lieberman, 1980 ; Press el al ., 1989 to check their
consistency, and to compute the order of magnitude
bounds at leaf nodes . However, from Equation 5 it
follows that the order of magnitude of a quantity is
integral . Hence, instead of using linear programming,
NAPIER should use integer programming [Hillier and
Lieberman, 1980] . Unfortunately, integer program-
ming is known to be intractable [Karp, 1972], which
leads to severe restrictions on the number of equations
and the size of the backtrack tree that can be handled .
Hence, to avoid such restrictions, NAPIER uses linear
programming .

It is important to note that, while bounds computed
by linear programming are not guaranteed to be tight',
they are guaranteed to be correct : upper bounds will
be greater than or equal to integer programming upper
bounds, and lower bounds will be less than or equal in-
teger programming lower bounds . In addition, we have
found that, in practice, linear programming bounds
are usually integral, in which case there is no loss of
solution quality.

2 .4 EXAMPLE

We now illustrate the above procedure using Equa-
tions 1-4 . Let us assume that the exogenous orders of
magnitude are as follows : om(K�,) = -14, om(K,,) =
-2, om(Ca ) = -5. This corresponds to a moderately
strong solution of a strong acid. The backtrack tree re-
sulting from these equations is shown in Figure 4 . The
equations associated with each level are shown on the
left of the tree . Note that Equation 3 had to be split
into two product expressions, with the introduction of
an intermediate variable int . The rules (and hence the

4A bound bl, interpreted as an interval, is said to be
tight with respect to a bound b2 if b l and b2 are identical.
bl is looser than b2 if b l contains b2 .



disjuncts) associated with each non-root node are dis-
played near each node. Nodes that are filled in are
the inconsistent nodes . For example, the left most leaf
node can be seen to be inconsistent using the follow-
ing line of reasoning . Applying rule 3a to Equations 1
and 2, we get

om([OH-]) = om([A-]) = om([AH])
om([A- ]) < om(C.) _< om([A-]) + 1
om([A-]) < om([H+]) < om([A- ]) + 1

Since om(Ca ) = -5, it follows that the least value of
om([A-]) is -6 . Hence the least values of om([OH -])
and om([H+]) are also -6, and hence the least value of
om([OH-][H+]) is -12 . But rule 1 applied to Equa-
tion 4 requires that :

om([OH-][H+]) = om(Kw ) = -14
which leads to a contradiction .

Of course, NAPIER doesn't need the above line of rea-
soning to infer inconsistencies ; it reaches the same con-
clusion using linear programming .

The only consistent set of inequalities at the leaf nodes
is the middle most leaf node, corresponding to assum-
ing that om([A- ]) > om([OH - ]) and om([A- ]) >
om([AH]) . The quantity bounds calculated at this
node are as follows : 5

Since [A- ] is at least two orders of magnitude greater
than [AH], and at least four orders of magnitude
greater than [OH- ], a chemist is justified in mak-
ing the assumptions that [A- ] » [OH-] and [A- ] »
[AH] . These assumptions can then be used to simplify
the equations, as discussed earlier .

A slight variation of the above example illustrates
the importance of having such justifications . Sup-
pose that, instead of having om(CQ ) = -5, we had
om(C,,) = -8. This corresponds to a weak solution of
the same strong acid . Using this new value for om(Ca ),
NAPIER predicts the following bounds on the orders
of magnitude :

These values justify the assumption that [A- ] »
[AH], but the other assumption, [A- ] » [OH- 1, is
seen to be completely unjustified . This means that
only Equation 2 can be simplified . Hence, NAPIER is

5 om(q) = (1, u) represents the fact that 1 < om(q) < u

a useful tool in justifying the order of magnitude as-
sumptions that scientists and engineers make in sim-
plifying equations .

In addition to its role in justifying order of magni-
tude assumptions, NAPIER's predictions can also be
used directly. For example, if all the chemist is inter-
ested in is the approximate pH of the solutions , then
NAPIER's predictions can be used directly : in the first
case, the pH is between 5 and 4 ; in the second case, the
pH is between 7 and 6 . Note that NAPIER was able
to make these predictions using approximate values of
Ca , Ku� and Ka . This feature makes it particularly
useful during conceptual design .

3 ORDER OF MAGNITUDE
REASONING IS INTRACTABLE

The backtracking algorithm described in the previous
section, generates a tree whose worst case size is ex-
ponential in the number of sum and difference expres-
sions . In this section we show that order of magnitude
reasoning using the rules in Figure 3 is intractable,
even if orders of magnitude are not required to be in-
tegral . This means that NAPIER can do little better
than generate a backtrack tree whose worst case size
is exponential .
We start by defining the decision problem correspond-
ing to finding the maximum order of magnitude of a
quantity :

Definition 1 (ORDER OF MAGNITUDE REASON-
ING) Let E be a set of equations, and let V be the
set of quantities used in E. Let X C_ V be the set of
exogenous quantities, with known orders of magnitude.
Let q E V be a quantity and let B be an integer. Let
s : V -: {-1- , -, unknown} be a function that assigns
signs to the quantities in V . (Quantities with unknown
signs are assigned "unknown.") Assuming that the or-
der of magnitude of a quantity is not required to be
integral, is the maximum value of om(q), derived us-
ing the rules in Figure 3 on the set E, greater than or
equal to B?

We now state the following theorem without detailed
proof:

Theorem 1 The ORDER OF MAGNITUDE REASON-
ING problem is NP-complete.7

The proof of this theorem is based on a reduction from
an arbitrary instance of 3SAT. Briefly, the reduction
introduces a quantity for each literal in the instance
of 3SAT. Equations are added to ensure that quanti-
ties corresponding to complementary literals have the

6The pH of a solution is defined to be -loglo [H+] .
°See [Garey and Johnson, 1979] for a comprehensive

introduction to the theory of intractability.

om([H+]) = -5
om([OH-]) = (-10,-9)
om([AH]) = (-9,-7)
om([A-]) = -5

om([H+]) = -7
om([OH-]) = (-8,-7)
om([AH]) = (-14,-12)
om([A-1) = -8



Table 1 : NAPIER's run times with and without causal ordering .

property that the order of magnitude of one of them
must be 0 and the order of magnitude of the other one
must be 1 . The mapping between truth assignments
and orders of magnitudes is straightforward : a literal
is true if and only if the corresponding quantity's order
of magnitude is 1 . Additional equations involving the
above quantities and the special quantity q are then
introduced, and the bound B is defined to ensure that
the maximum value of om(q) is greater than or equal
to B if and only if all the clauses are satisfied . See
[Nayak, 1992] for details .

Assuming P 0 NP, Theorem 1 tells us that, in the
worst case, NAPIER will have to generate a backtrack
tree whose size is exponential in the number of sum
and difference terms . Unfortunately, the exponential
blow up does occur in practice . We have used NAPIER
in the domain of electromechanical devices, as part
of the automated model selection system described in
[Nayak et al., 1992] . Table 1 summarizes NAPIER's
performance on models of ten different devices (see
[Nayak, 1992] for a description of the devices) .

The second column in this table shows the total num-
ber of equations in each example, while the third col-
umn shows the the total number of sum and differ-
ence terms . The fourth column shows the time it took
NAPIER to run its backtracking algorithm on the com-
plete set of equations. s NAPIER was given a maximum
of one hour to solve each example ; a "-" entry in col-
umn four denotes that NAPIER could not solve the
example in an hour . As is clear from the table, only
the two smallest examples could be solved in under an
hour, each taking over 40 minutes . Hence, NAPIER
appears to be quite impractical, except for the small-
est examples . To make it practical, we now develop an
approximate reasoning scheme for NAPIER that trades
off accuracy for speed .

"The fifth column will be discussed in the next section .
16 2

4 APPROXIMATION
ALGORITHMS IN NAPIER

The backtrack tree developed by NAPIER is, in the
worst case, exponential in the number of sum and dif-
ference terms in the set of equations under considera-
tion . Hence, to make NAPIER practically useful, it is
important to decrease the number of sum and differ-
ence terms that are handled at any one time . We now
discuss a method for doing this, based on a dependency
ordering of the equations .

4.1 ORDERING THE EQUATIONS

The dependency ordering of equations that we con-
sider is the causal ordering, described in [Iwasaki and
Simon, 1986] . The causal ordering specifies the order
in which equations are to be solved, and identifies min-
imal sets of equations that must be solved simultane-
ously. The causal ordering can be viewed as a directed
acyclic graph . Each node in the graph consists of a
set of equations that must be solved simultaneously .
There is an edge from node nl to node n2 if the equa-
tions at n2 use a quantity whose value is determined
by the equations at nl .

NAPIER processes the equation sets in the order spec-
ified by the causal ordering : equation sets earlier in
the ordering are processed first . NAPIER bounds the
orders of magnitudes of the quantities used in an equa-
tion set, and uses these bounds as exogenous bounds
for equation sets later in the ordering .

The use of the above dependency ordering has a sig-
nificant computational advantage . A large set of equa-
tions, with many sum and difference terms, can often
be broken down into many small sets of equations, with
each equation set having very few sum and difference
terms . Hence, NAPIER can process each equation set
in the dependency ordering very fast . Column five in
Table 1 shows the time it took NAPIER to solve the
ten examples using causal ordering . It takes NAPIER
from a few seconds to under two minutes to solve each

Example Number of Number of Time sec on an Explorer II
number I equations I -~/- terms A equations i t causal ordering

1 28 11 2733 2.0
2 31 11 2435 1 .0
3 45 14 - 2.9
4 60 24 - 2.7
5 80 25 - 37.2
6 110 32 - 35 .9
7 111 32 - 94.6
8 119 35 - 20 .4
9 145 43 - 45 .2
10 163 50 - 21 .0



of these examples, showing that causal ordering has
made NAPIER practical for large sets of equations.

4.2 LOSS OF ACCURACY

The drawback of using the dependency ordering is that
global constraints can be lost, leading to excessively
loose bounds on the orders of magnitudes . Consider,
for example, the set {yl = x l * x2, y2 = x31y1, y3 =
Y1 *y2), and let x I, x2, and x3 be exogenous with orders
of magnitude 0 . The dependency ordering generated
from this set of equations is :

fY1 = xl*x2} --+ly3=Y1*Y21

Using this dependency ordering, NAPIER computes
the order of magnitude of y3 as follows : from the first
equation it computes om(yl) to be between 0 and 1,
from the second equation, and the calculated bound on
om(yl ), it computes om(y2) to be between -2 and 0 ;
and from the third equation and the calculated bounds
on om(yl) and om(y2), it computes om(y3) to be be-
tween -2 and 2 . However, if all three equations were
considered simultaneously, NAPIER computes om(y3)
to be between -1 and 1 .
The reason for the looser bound in the first case stems
from not enforcing some global constraints . For exam-
ple, the lower bound of om(y3) can be -2 only when
om(yl ) = 0 and OM(Y2) = -2. However, when om(yl )
is 0, the second equation dictates that the lowest that
OM(Y2) can be is -1 . This fact is lost when the third
equation is processed by itself.
More generally, the above problem occurs when a
quantity, like y3, depends on two or more quantities,
like y l and y2, whose values have been determined
by equations that are earlier in the causal ordering .
In using these previously determined values, NAPIER
disregards any additional constraints that might hold
between those values . Hence, bounds computed based
on these values may not be as tight as possible .
NAPIER can partially address this problem by com-
bining adjacent sets of equations in the dependency
ordering . This allows more equations to be handled
simultaneously, so that more global constraints can
be incorporated . However, combining adjacent sets of
equations can lead to an increase in the number of sum

Table 2 : Maximum value of A for each example .

16 3

and difference terms that must be handled simultane-
ously . Hence, adjacent sets are combined only when
the number of sum and difference terms in the result-
ing set does not increase beyond a threshold (call this
threshold A) .

Combining adjacent sets of equations, as described
above, also allows us to partially empirically evalu-
ate the effect of causal ordering on accuracy. We ran
NAPIER a number of times on each of our examples,
using increasing values of A, allowing a maximum of
15 minutes per run . Table 2 shows the maximum value
of A used for each example . We then compared the
bounds that were computed without combining adja-
cent sets with the bounds that were computed with
the maximum setting of A . Interestingly, we found
that there was no loss of accuracy-the bounds com-
puted with and without combining adjacent sets were
identical .

To understand the reason for this somewhat surpris-
ing result, we now analyze the source of the additional
constraints on previously determined values . Let us
assume that om(p3) is computed using previously com-
puted values of om(yl ) and om(p2). Additional con-
straints on the values of om(yl ) and OM(P2) stem from
one of two sources : (a) o771(p l ) and o771(p2) are deter-
mined simultaneously ; and (b) the value of om(yl is
used in computing the value of om(p2), i.e ., the val-
ues of one of these quantities depends on the value of
the other . Point (a) manifests itself as a node in the
causal ordering which contains more than one equa-
tion . Point (b) manifests itself as multiple paths be-
tween two nodes in the causal ordering .

Hence, if the causal ordering, viewed as a graph, sat-
isfies the following two properties :

1 . each node contains exactly one equation ; and
2 . there is at most one path between any two nodes ;

then we can show that there will be no additional con-
straints between previously determined values . Hence,
there is no loss of accuracy in using the causal order-
ing .

Table 3 shows how closely the causal orderings gener-
ated from our examples match the above two proper-
ties . The second and third columns of this table show
the maximum and average number of equations per
node, respectively . One can see that, in all cases, the

Example # Or,tax Example # Om,ax
1 11 6 7
2 11 7 4
3 9 8 5
4 7 9 6
5 7 10 6



average number of equations per node is very close to
1 . The fourth column shows the minimum number of
edges that must be removed from the causal ordering
to ensure that there is at most one path between any
two nodes. One can see that, in most cases these num-
bers are very small . Hence, the above analysis provides
us with some insight into the reasons underlying the
fact that, in our examples, the bounds computed with
and without combining adjacent sets are identical .

5 ERROR ESTIMATION

In this section, we estimate the error introduced by the
use of the heuristic rules introduced in Section 2.1 .
We then analyze some alternate order of magnitude
rules that seem intuitively plausible, and show that
these rules introduce unacceptably large errors . The
analysis is done using probability theory and is based
on interpreting each quantity as a random variable .9

5 .1 ESTIMATING THE ERROR OF
HEURISTIC RULES

We start by analyzing rule 3b .

	

Let Q, Q1, and Q2
be quantities such that Q = Ql + Q2 . Let fQ, and
fQ2 be the probability density functions of Ql and Q2,
respectively, and let fQ,,Q2 be their joint probability
density function .

	

(Briefly, fQ, (ql) is the probability
that Ql lies between ql and gl +dg l , and fQ,,Q2(gl,q2)
is the probability that Ql lies between ql and ql +dql,
and Q2 lies between q2 and q2 + dq2.) Since Q =
Ql + Q2, it follows that the probability that Q lies
between I and u, for any values 1 and u, is :

ProbIl<Q<u}=

r_ .
pu-ql

Table 3 : Properties of the causal ordering graph

fQ,,Q2(gl,g2)dq2dql (6)

Let us now assume that om(Ql) = n, and OM(Q2) -
n2 , with nl > n2 . Under these conditions, rule 3b

9See [Davenport, 1970] for an introduction to probabil-
ity theory and random variables .

16 4

states that om(Q) = nl, i.e ., b" <_ Q < bnl+l . To
estimate the error, c(Rule 3b), in rule 3b, we must
calculate the probability that Q lies outside the region
from b" to b"+l :

e(Rule 3b)
1 - Prob{bnl < Q < b"+l}

oo fb"+'-,l

1 -

	

r

	

,fQ~,Q2(gl,q2)dq2dql (7)
0o bni-qi

To evaluate this integral, we make the following as-
sumptions :

Assumption 1 : Ql and Q2 are independent random
variables . Hence, the joint probablity density of
Ql and Q2 is just the product of the individual
probablity densities :

fQ,,Q2(gl,q2) = fQ1 (gl)fQ2(q2)

	

(8)

Assumption 2: Ql and Q2 are uniformly distributed
on the intervals [bnl, bni+1) and [b n2, bn2+1), re-
spectively :

if bn, < ql < bn,+l1

fQ, (ql)

	

=

	

bb
0 otherwise

if bn2 < q2 < bn2+11

fQ2(g2) = "2"-b"-
0 otherwise

Usin these assumptions, we get the following result
(see Nayak, 1992] for details) :

e(Rule 3b) - 2bnl -n2(b - 1)

	

(9)

Hence, under Assumptions 1 and 2, the error in rule 3b
is maximum when (nl - n2) is minimum, i.e ., (nl -
n2) = 1, which occurs when quantities of consecutive
orders of magnitude are being added. When b = 10,
the maximum error is 6.11% . The error in rule 4b can
also be shown to be (b+ 1)/2bn3-n2(b- 1) in a similar
way.

Example Equations per node # ofextra
number Maximum Average edges

1 7 1.27 1
2 7 1 .24 0
3 7 1 .15 1
4 1 1 .00 0
5 12 1 .29 1
6 18 1 .29 2
7 17 1 .26 6
8 9 1 .25 2
9 18 1 .21 3
10 16 1 .10 0



5 .2 ALTERNATE ORDER OF
MAGNITUDE RULES

The above error estimation techniques can also be used
to analyze the alternate order of magnitude reasoning
rules shown in Figure 5 . We have selected these rules
because they seem intuitively very appealing . How-
ever, while these rules may appear intuitively appeal-
ing, they are also unacceptably error-prone .

V) om(gi * q2) = om(ql) + om(g2)

2') om(gi/q2) = om(ql ) - om(g2)
3a') om(gi + q2) = om(ql) if om(ql) = om(g2)

Figure 5 : Alternate rules for order of magnitude rea-
soning .

In particular, we can use the techniques in the previous
section to show that :

Substituting b = 10 into the above equations tells us
that the error in rule 1' is 82.68%, the error in rule 2'
is 50%, and the error in rule 3a' is 60.49% . We believe
that these errors are unacceptably large, and hence
have chosen not to include these rules in NAPIER .

6 RELATED WORK

Order of magnitude reasoning has been widely stud-
ied in AI . Murthy [Murthy, 1988] was the first to pro-
pose the use of a logarithmic scale for the order of
magnitude of a quantity . In that paper, he also pro-
vides rules of inference to infer new orders of magni-
tude from old ones . Some of these rules are similar
to ours . For example, he includes rules 3b, 3c, 4b,
and 4c . However, instead of 1, he proposes the rule
om(gl * q2) = om(q l ) + om(g2) (which is rule 1'), and
instead of rule 3a, he proposes the rule om(gl + q2) _
om(ql ) when om(ql ) = om(g2) (which is rule 3a') . As
we saw in Section 5.2, the estimated error in these rules
is too large, and hence we have chosen not to include
them in NAPIER. Unlike our work, Murthy provides
no analysis of how his inference rules can be used to
find the order of magnitudes of quantities related by
sets of simultaneous equations . In addition, we also
analyze the complexity of order of magnitude infer-
ence, and present an approximate reasoning technique
that works well in practice .
Raiman [Raiman, 1991 ; Raiman, 1986] explores the
foundations of symbolic order of magnitude reason-
ing . He defines a variety of order of magnitude scales,
such as Close and Comparable, built out of the basic
order of magnitude granularities, Small and Rough.

16 5

He introduces ESTIMATES, a system to solve order
of magnitude equations . The primary difference be-
tween NAPIER and ESTIMATES is one of emphasis :
NAPIER can be viewed as providing justifications for
making order of magnitude assumptions ; ESTIMATES
can be viewed as a formalization of the use of such
order of magnitude assumptions to symbolically ma-
nipulate and simplify equations .

Order of magnitude reasoning in the O(M) formalism
[Mavrovouniotis and Stephanopolous, 1987] uses a pa-
rameter e to represent the largest quantity that can be
considered to be "much smaller" than 1 . This is anal-
ogous to the parameter b in NAPIER (i.e ., b = 1/e) .
However, there are a number of differences between
O(M) and NAPIER. First, the O(M) formalism is
based on order of magnitude relations between quanti-
ties . Hence, it works best when equations involve only
links (links are ratios of quantities) . NAPIER, on the
other hand, is based on the order of magnitudes of the
quantities themselves, and hence works with any alge-
braic equations . This is advantageous because it is not
always possible to convert equations into equations in-
volving only links . Second, O(M) requires equations
to be converted into assignments, which allow a new
relation or range to be inferred from already known
relations . This is a serious restriction since equations
can be converted to assignments only in the absence
of simultaneous equations . As we have seen, NAPIER
does not have this restriction .

NAPIER is also related to interval reasoning dis-
cussed in [Moore, 1979 ; Simmons, 1986; Sacks, 1987] .
NAPIER can be viewed as interval reasoning in which
the end points of the interval are restricted to a par-
ticular set of points of the form b', with specified base
b, and any integer n . The drawback of this restric-
tion is that under certain conditions, compared to in-
terval reasoning, the bounds inferred by NAPIER are
unnecessarily loose (e.g ., see the discussion of rule 3a
in Section 2 .1) . The advantage of this restriction is
that, unlike traditional interval reasoners, NAPIER is
able to use sets of non-linear simultaneous equations
to infer quantity bounds . In addition, the ability to
simultaneously process all the equations in a set al-
lows NAPIER to exploit global constraints to compute
tighter bounds (see Section 4) . Another distinguish-
ing characteristic of NAPIER, which classifies it as an
order of magnitude reasoning system rather than just
an interval reasoner, is the use of heuristic rules (e .g,
rule 3b) .

7 CONCLUSIONS

In this paper we described an implemented order of
magnitude reasoning system called NAPIER. NAPIER
defines the order of magnitude of a quantity on a log-
arithmic scale and uses a set of rules to propagate or-
der of magnitudes through equations . A novel fea-

E(Rule 1') = 1 - (b In b - b + 1)/(b - 1)'- (10)
e(Rule 2') = 1/2 (11)

c(Rule 3a') = 1 - (b - 2) 2/2(6 - 1) 2 (12)



ture of NAPIER is its handling of non-linear simulta-
neous equations . Since the order of magnitude rea-
soning rules are all disjunctions of linear inequalities,
NAPIER is able to use linear programming, in conjunc-
tion with backtracking, to find bounds on the order of
magnitudes of quantities related by sets of non-linear
simultaneous equations .

We also showed that order of magnitude reasoning us-
ing NAPIER's rules is intractable . Hence, NAPIER
uses an approximate reasoning technique, based on
causal ordering, leading to a practically useful system .
This approximate reasoning technique trades off ac-
curacy for speed, though in practice there does not
appear to be any loss of accuracy.

Some of NAPIER's rules are heuristic rules, and we
have estimated the error introduced by the use of these
rules . We have also shown that intuitively appealing
alternate heuristic rules lead to large estimated errors .

NAPIER has been extensively used in an automated
model selection system described in [Nayak et al .,
1992] . We believe that NAPIER will find wide spread
applications in different aspects of engineering and sci-
entific problem solving .

Acknowledgements

I would like to thank Richard Fikes, Pat Hayes, and
Leo Joskowicz for useful discussions on order of mag-
nitude reasoning, and for comments on earlier drafts
of this paper. Thanks also to the two anonymous
reviewers, whose detailed comments helped improve
the paper. Pandurang Nayak was supported by an
IBM Graduate Technical Fellowship . Additional sup-
port for this research was provided by the Defense Ad-
vanced Research Projects Agency under NASA Grant
NAG 2-581 (under ARPA order number 6822), by
NASA under NASA Grant NCC 2-537, and by IBM
under agreement number 14780042 .

References

[Bennett, 1987] Bennett, Scott W. 1987 . Approxima-
tion in mathematical domains . In Proceedings of
the Tenth International Joint Conference on Artifi-
cial Intelligence, Los Altos, CA. International Joint
Conferences on Artificial Intelligence, Inc ., Morgan
Kaufmann Publishers, Inc . 239-241 .

[Davenport, 1970] Davenport, Wilbur B. Jr . 1970 .
Probability and Random Processes. McGraw-Hill
Book Company .

[Garey and Johnson, 1979] Garey, Michael R. and
Johnson, David S . 1979 . Computers and Intractabil-
ity. W. H. Freeman and Company.

[Hillier and Lieberman, 1980] Hillier, Fredrick S . and
Lieberman, Gerald J . 1980 . Introduction to Opera-
tions Reesearch. Holden-Day, Inc ., third edition .

16 6

[Iwasaki and Simon, 1986] Iwasaki, Yumi and Simon,
Herbert A. 1986 . Causality in device behavior . Ar-
tificial Intelligence 29:3-32 .

[Karp, 1972] Karp, Richard M. 1972 . Reducibility
among combinatorial problems . In Miller, R . E .
and Thatcher, J . W., editors 1972, Complexity of
Computer Computations. Plenum Press, New York .
85-103 .

[Mavrovouniotis and Stephanopolous, 1987]
Mavrovouniotis, M . and Stephanopolous, G. 1987 .
Reasoning with orders of magnitude and approxi-
mate relations . In Proceedings of the Sixth National
Conference on Artificial Intelligence. American As-
sociation for Artificial Intelligence .

[Moore, 1979] Moore, Ramon E. 1979 . Methods and
Applications of Interval Analysis . SIAM Studies in
Applied Mathematics . SIAM, Philadelphia .

[Murthy, 1988] Murthy, Seshashayee S . 1988 . Quali-
tative reasoning at multiple resolutions . In Proceed-
ings of the Seventh National Conference on Artifi-
cial Intelligence . American Association for Artificial
Intelligence . 296-300.

[Nayak et al ., 1992] Nayak, P. Pandurang ; Joskowicz,
Leo ; and Addanki, Sanjaya 1992 . Automated model
selection using context-dependent behaviors . In
Proceedings of the Tenth National Conference on
Artificial Intelligence. American Association for Ar-
tificial Intelligence . 710-716 .

[Nayak, 1992] Nayak, P. Pandurang 1992 . Automated
Modeling of Physical Systems. Ph.D . Dissertation,
Stanford University, Department of Computer Sci-
ence, Stanford, CA.

[Press et al ., 1989] Press,

	

William H . ;

	

Flannery,
Brian P. ; Teukolskv, Saul A . ; and Vetterling,
William T. 1989. Numerical Recipes in Pascal: The
Art of Scientific Computing. Cambridge University
Press .

[Raiman, 1986] Raiman, Olivier 1986. Order of mag-
nitude reasoning . In Proceedings of the Fifth Na-
tional Conference on Artificial Intelligence . Ameri-
can Association for Artificial Intelligence . 100-104 .

[Raiman, 1991] Raiman, Olivier 1991 . Order of mag-
nitude reasoning . Artificial Intelligence 51:11-38 .

[Sacks, 1987] Sacks, Elisha 1987 .

	

Hierarchical rea
soning about inequalities .

	

In Proceedings of the
Sixth National Conference on Artificial Intelligence.
American Association for Artificial Intelligence,
Morgan Kaufmann Publishers, Inc . 649-654 .

[Simmons, 1986] Simmons, Reid 1986 .

	

"Common-
sense" arithmetic reasoning . In Proceedings of
the Fifth National Conference on Artificial Intel-
ligence. American Association for Artificial Intelli-
gence . 118-124 .


