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Abstract

This paper presents a technique that supports a knowledge engineer in constructing a

qualitative model of a physical device . The technique is specifically aimed at achieving a
parsimonious model of device behaviour. First we explain why a model that is composed of
general model fragments may still contain irrelevant particles . Then we present a technique
that removes these irrelevant model particles from the model fragments . The technique as-

sumes that, based on a set of applicable model fragments, the behaviour of the device can

be modelled although the description may contain irrelevant model particles . It takes this
behaviour description as input and for manipulations of specific parameters identifies the
irrelevant particles . Both knowledge concerning the relevance as well as the irrelevance of

model particles is used for this purpose . We further employ the distinction between overly

detailed and superfluous model particles. Finally, modification of the model fragments yields

a behaviour simulation with better computational properties and more clarity .

'The research presented in this paper was partially supported by the Foundation for Computer Science in the
Netherlands (SION) with financial support from the Netherlands Organisation for Scientific Research (NWO),
project number 612-322-307 . We would like to thank Jaap Kamps for the stimulating discussions on the research
presented in this paper.
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1 Introduction

Modelling system behaviour for simulation purposes is generally conceptualised as proceeding
from a complex base model to a simplified "lumped model", tuned appropriately to the require-
ments of the task for which it is constructed [11] . When constructing a qualitative model that
adequately predicts the behaviour of a physical system [10] this tuning process entails both a
modelling and a simulation activity, which are repeatedly performed in an alternating cycle.
Typically, it is the selection of a set of applicable pieces of general domain knowledge, ususally
represented in a library as canonical model fragments [3 ; 6], that initiates model construction .
Subsequently, this general model is refined in a cyclical process of model simulation and adap-
tation of the applicable model fragments. Adaptations are based on differences between the
required or expected output of the simulation and the actual output . The aim of our research is
to support this refinement process by providing a modeller with tools that automate basic steps
in this refinement process.

An important reason why a set of general prototypical modelfragments may not satisfactorily
model device behaviour is that they describe more domain knowledge than is strictly necessary
for predicting the behaviour of the device . This paper presents a technique that automatically
removes irrelevant detail from a behaviour prediction . In particular, we formulate principles
that generate parsimonious model fragments by modifying canonical ones . The technique uses
three types of input: (i) an input system (or scenario) that describes the device at hand with its
starting conditions, (ii) a set of general model fragments that apply to it, and (iii) a simulation
of its qualitative behaviour. Provided with these inputs, the technique identifies superfluous
and overly detailed model particles by imposing three criteria on the model : (i) the desired
behaviour prediction should be attainable, (ii) it should be physically appropriate, and (iii) it
should be cognitively comprehensive.
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Automatic Model Construction

The technique described in this paper is part of a set of tools that is being developed to support a
knowledge engineer in the construction of qualitative models of device behaviour. This modelling
process can be viewed as consisting of a number of tasks (see figure 1) . An important step

Figure 1 : Tasks in Constructing Qualitative Models of Device Behaviour

in model construction is the representation of general domain knowledge in model fragments,



possibly stored in some kind of library to ensure that they are reusable in different model
building enterprises. Examples of model fragments that may result from this domain modelling
effort are "individual views" and "processes", as defined by the process-centred approach [6] and
"qualitative states of component behaviour", as defined by the component centred approach [3].
A second important step is the construction of the scenario that specifies the important

aspects of the device for which the qualitative behaviour model is being developed . The scenario
that results from this case modelling typically provides information about the physical structure
of the device . It may also specify some initial values for parameters that are relevant for the
simulation .

Case and domain modelling are not independent. The output of case modelling may influence
the domain modelling and vice versa. The identification of certain physical objects may require
the construction of model fragments that represent their behaviour(s) . Or, the other way around,
the presence of certain model fragments may lead to the identification of specific physical objects.
In general, it is important that the outputs of the two modeling steps relate to each other, that
is, the behaviours modelled by the model fragments must map onto the device specifications
given by the scenario.

When a significant amount of domain and case modelling has been carried out, a qualitative
simulator can be used to derive the expected behaviour of the device . Next, the knowledge
engineer compares the output of the qualitative reasoner to the behaviour of the device in the real
world. Often there are discrepancies between the predicted and the expected device behaviour,
in particular in the initial phase of the model building process. Therefore a diagnose/repair step
is required that (i) determines the faults that cause these discrepancies and (ii) modifies the
model fragments and/or the scenario in such a way that the discrepancies between the predicted
and expected behaviour disappear.

Usually the modelling process is cyclic, which means that the different tasks will be carried
out more then once, possibly in (slightly) different orders . Support can be provided for various
aspects of this modelling process. The technique presented in this paper is concerned with the
diagnose/repair step .

There are a number of causes that can explain possible discrepancies between predicted and
expected behaviour. In the case of model fragments, for example, refinement may typically be
required for the following reasons (this list is not complete) . Firstly, due to idiosyncrasies of
devices canonical model fragments may be too general and therefore need augmentation or they
may be too detailed which demands omission of detail . Secondly, specific global configurations
cannot be captured by locally defined model fragments and thus may require additional con-
straints or relaxations. Examples are the conservation of a quantity in a circuit or a known
dominance of a particular variable over another. Thirdly, the purpose of the model determines
the relevance of particular behaviours represented by model fragments. Usually only certain
aspects of device behaviour are of interest . For instance, if particular variables of a device are
manipulated (their initial values are set in the scenario), the model should predict the effects
of these manipulations . Although the model fragments may refer to other unrelated variables,
these are of no importance .

Discrepancies between predicted and expected behaviour that result from these causes man-
ifest themselves in terms of. (i) an incorrect number of states being predicted (either too many
or too few) and (ii) an inappropriate amount of detail present within each state of behaviour
(either too much or too little) . Both these symptoms can be further specified in terms of the
knowledge representation that is being used (see section 3) . Unfortunately, the discrepancies
(or symptoms) that result from different causes are not independent . For example, too many
states of behaviour may result from too detailed model fragments, but may also be caused by
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ambiguity that results from lacking knowledge about global behaviours . In addition, multiple
faults may cause discrepancies, which makes the problem even worse.

Although our aim is to automate the diagnose/repair process as a whole, this is currently not
feasible . We therefore have to take some pragmatic choices in order to get started. Our strategy
is to develop individual techniques for each cause. These techniques should be able to modify
the model fragments and/or scenario in such a way that the discrepancies that result from the
underlying cause are removed. The techniques operate under the single fault assumption [4].
The knowledge engineer is supposed to point out the fault that has to be tackled. The knowledge
engineer also has the ability to overrule the modifications proposed by a technique if required .

In [2] we have described a technique for removing spurious behaviour caused by missing
knowledge about global behaviour properties of a device . The technique presented in this paper
deals with "enhancement of model parsimony" . It assumes that the right set of applicable model
fragments has been selected and that a correct, i.e . desired, simulation of device behaviour
has been achieved . Although this simulation is correct it may still contain irrelevant aspects:
parameters that never cause transitions between states, details in the physical structure of the
device that are unnecessarily distinguished, quantity spaces that are too detailed, etc. The
technique identifies and removes such irrelevant detail from the qualitative model.
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Representational Context
This section briefly describes the important aspects of the framework for qualitative prediction
of behaviour that we use. This framework is implemented as a domain independent qualitative
reasoning shell, called GARP, which can be used by a knowledge engineer for developing pre-
diction models [1]. Similar to the component [3] and the process [6] oriented approach, GARP
uses the notion of model fragments for determining the behaviour of some real-world system.
All model fragments have associated with them a set of conditions under which they are ap-
plicable and a set of consequences that are given once their conditions hold. Conditions and
consequences are stated in terms of model particles : system elements: abstractions of entities
in the physical world, such as containers, substances, components, etc. ; parameters: quantities
describing properties of system elements, such as pressure, temperature, voltage, etc. ; param-
eter values: the values (intervals and derivatives) of quantities, such as {-, 0, -}-}, and others ;
parameter relations: relations (or constraints) between quantities, such as inequalities, propor-
tionalities, influences, etc. ; model fragments: other model fragments, such as views, processes,
component models, etc., that hold or must be true . For example, a heat-flow process that must
be present in order for a boiling process to be applicable .

The behaviour of a system during a particular time period is described by the set of applicable
model fragments . The behaviour over different time periods is determined by the application of
transformation rules between states of behaviour (further details can be found in [1]) .
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Enhancement of Model Parsimony
The two main benefits of omitting irrelevant model particles are the increased efficiency of the
simulation (computation of irrelevant parameter values is no longer needed) and the increased
clarity in the description of device behaviour (irrelevant model particles no longer need to be
interpreted) .

This can be illustrated by a problem involving a balance with each armsupporting a container
filled with water (see figure 2) . The watergradually flows out of the containers through an outlet
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Figure 2 : A General Model for the Balance Problems

at the bottom of the containers. The containers have equal masses but their shapes and the
amounts of water they contain are different .

The balance problem can be modelled with prototypical model fragments, such as a con-
tained-liquid, liquid-flow and a balance. This gives rise to the model depicted in figure 2 . This
model predicts the behaviour of the balance correctly. However, it contains many parameters
that are not strictly necessary for deriving the correct behaviour description . In fact, the same
behaviour description can be generated with parsimonious model fragments yielding a model as
visualised in figure 3 .
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Figure 3 : A Parsimonious Model for the Balance Problems

Our goal is to automate the process of generating a set of parsimonious model fragments
from a set of general prototypical ones . To do so we must first identify the requirements for
such a parsimonious model. We postulate three requirements :

Qualitative attainability A parsimonious model must generate the desired behaviour predic-
tion and therefore needs a minimum set of labels . This minimum set of labels reflects
the requirements of the qualitative machinery : i .e . the labels should allow the qualitative
inference machinery to derive all states of behaviour .

Physical correctness In order to make sense from a physics viewpoint the labels should be
instantiated with physically sensible names. Moreover, the physics viewpoint may require
the introduction of additional model particles to render the model physical correctness .
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For the qualitative reasoner it may, for example, at some point be sufficient to use a
variable that influences itself and thereby generates the required states . Thus the behaviour
description is qualitatively attainable, but from a physics viewpoint the model is too
abstract and conceptually wrong.

Cognitive comprehensibility On top of the required physical correctness there are require-
ments with respect to the "cognitive comprehensibility" . Particular modelling goals that
have a cognitive origin may require further introduction or preservation of model particles .
For instance, a modeller may explicitly want the balance model to include the pressure
parameter for explanation purposes.
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Identification of Irrelevant Model Particles

The parsimonious model fragments that are generated by the procedure are applicable to (i)
the device as specified in the original scenario, and (ii) manipulations of parameters that were
manipulated in the original scenario (for which the correct behaviour description was generated) .
For a different device structure or if other parameters are manipulated a different set of model
fragments might apply, possibly making other model particles relevant or irrelevant .

Irrelevance can exist in two forms: superfluous model particles and particles that are overly
detailed . Superfluous model particles refer to instances of modelling primitives that are not
used in deriving the behaviour prediction : the behaviour prediction is not influenced by their
presence or absence. Overly detailed particles, on the other hand, are irrelevant even though
they are used in the prediction . Their irrelevance is caused by the fact that their functionality
can be subsumed under the functionality of other particles .

Basically, the procedure for achieving parsimonious model fragments consists of determining
which particles are irrelevant and modifying the set of applicable model fragments. Determing
the irrelevant model particles is done by an iteration of applying a set of rules specific for each
type of model particle . These rules specify the conditions under which a particle of a particular
type, say a parameter, is either relevant, overly detailed or superfluous .

There are two complementary directions for determining which particles are irrelevant : iden-
tifying particles that are definitely relevant, and thus are not irrelevant, and identifying particles
that are irrelevant . The information that can be used for this purpose is threefold : (i) the sce
nario for which a behaviour simulation is generated, (ii) the model fragments that were used
to derive the desired behaviour description, and (iii) the desired behaviour description itself.
For instance, the desired behaviour description can be used to detect relevant particles without
which the prediction could not be generated .

The order of detecting irrelevant particles is important because irrelevance has the property
of non-monotonicity (cf. [9]) . Parameters are the key notion in a behaviour description because
values and relations depend on them. Therefore, the identification of irrelevant values and rela
tions depends on the identification of irrelevant parameters . In fact, after irrelevant parameters
have been removed, their values and relations become superfluous.

System elements and model fragments are conditional for the applicability of model frag-
ments. These fragments introduce parameters, and constraints on their behaviour, to the overall
model. Amodel fragment becomes irrelevant when it does not introduce anything that is relevant
for the behaviour description . However, this can only be established after the model particles
within the model fragment have been identified as irrelevant . This is why the identification of
irrelevant model fragments and system elements should take place after identifying irrelevant
parameters, relations, and values .
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5 .1

	

Surplus Parametrical Detail

Surplus parametrical detail occurs if the effects of several parameters can be summarised by
one parameter. The global procedure in identifying these parameters starts with identifying
definitely relevant parameters, then identifies the overly detailed parameters and finally identifies
the superfluous parameters . The remaining ones are all assumed relevant to be on the safe side .

5.1 .1

	

Relevant Parameters

There are two sources for determining the definite relevance of parameters : the desired behaviour
prediction and the scenario. According to the requirement of qualitative attainability a require-
ment of the new parsimonious model is that the same states of behaviour are predicted as well
as the same state transitions. Therefore, if a state transition in the old model is induced by one
parameter taking on a new qualitative value or by one inequality change of two parameters then
it can be concluded that the involved parameter(s) are relevant : leaving out parameters with
these properties would inevitably lead to another set of states, which violates the requirement.
In other words, these parameters are relevant in order to guarantee qualitative attainability.

The second source for determining the relevance of a parameter is the scenario . In GARP
parameters may be specified in the scenario for three reasons: (i) for specifying a parameter of
interest that represents a query about the device, (ii) for specifying parameters that are manipu
lated externally (representing an enforced disturbance from equilibrium), and (iii) for specifying
values of parameters that represent particular conditions under which a device operates . The
first two render a parameter definitely relevant whereas the third type is not conclusive . The
reason for this is as follows. In the case of a queried parameter, it is fair to conclude that this
parameter is relevant on cognitive grounds: apparently the knowledge engineer is interested in
the behaviour of these parameters . In the second case a parameter is relevant from a physical
viewpoint . The parameter is assigned an initial value that triggers the device behaviour. To as-
certain that an equilibrium disturbance is enforced it must be verified from the model fragments
in the library that the parameter depends on other parameters . If the latter condition is not
satisfied the parameter is used to specify an operating condition, which reflects the third case .
In this case the parameter might be irrelevant if one of the rules described below applies to it .

5 .1 .2

	

Overly detailed Parameters

Once the relevant parameters have been selected the overly detailed parameters are identified .
Overly detailed parameters can occur as intermediating variables that merely pass on values or
as non-changing parameters that reflect constant conditions under which behaviour takes place.
These cases are signaled by two phenomena in the behaviour description: if two or more param-
eters show identical state transitions or if a parameter is never involved in a state transition . In
the first case transitions between states involve sets of parameter value changes that always go
together whereas changes concerning individual parameters never occur. In cases like these it
is reasonable to assume that the parameters involved are functionally equivalent and thus that
the set of parameters can be replaced by a single parameter. However, parameter equivalence
cannot be derived from covariance alone, due to lack of knowledge of system behaviour had
the manipulated parameters been assigned different values in the scenario . Hence, the model
fragments are inspected in order to find evidence for the irrelevance conjecture . For parameters
to be equivalent their quantity spaces must correspond since transitions of one parameter have
to be mirrored in the other(s) . In the balance problem the parameters height, pressure and
flow-rate among others show identical state transitions.



After identifying sets of equivalent parameters, the next step is to find/choose the parameter
that subsumes the others . Here the set of already identified relevant parameters can provide
guidance . If among the set of equivalent parameters there is at least one relevant parameter then
the whole set is irrelevant because the relevant parameter already models the behaviour of the
equivalent ones . If there is no relevant parameter in the set of equivalent ones then a random
choice suffices . However, physical and/or cognitive grounds may be used by the knowledge
engineer to choose the subsuming parameter .

The second situation in which aparameter is overly detailed is when it never occurs in a state
transition and can never occur in one (it represents an operating condition for device behaviour) .
If a parameter is not involved in qualitative changes, it does not contribute to the behaviour
prediction process. To establish this it should be verified from the model fragments that the
parameter does not depend on any other parameter and that at least one other parameter
depends on it (if not it would be superfluous) . For instance in the balance problem, the width
of the liquid column is equal to the width of the container . The latter is constant and does
not depend on any other parameter, so the width of the container can be subsumed . Another
example is the mass of the container, which remains constant, and can be subsumed under the
total mass of the contained liquid, which is the sum of the masses of the container and the liquid .

5.1 .3

	

Superfluous Parameters

With the above rules all relevant parameters and all overly detailed parameters can be identified .
At this point the superfluous parameters, the ones not used in the prediction, should be identified .
Parameters are superfluous if they do not show changing behaviour, i.e . do not appear in any of
the causes that induce a state transition, and do not appear in the set of relevant parameters .
In other words, they should not have any relations with other parameters . An example of this
is the height of the container.

5 .2

	

Other Irrelevant Model Particles

Relations and Values

	

Relations involving superfluous parameters become irrelevant because
they have no reference any longer . In relations between a relevant parameter and an overly
detailed parameter, the latter can be replaced by the parameter that subsumes its functionality .
Values referring to irrelevant parameters also become irrelevant .

System Elements

	

To achieve parsimony in a model it should only address elements in the
device that need necessarily be distinguished . For instance, in the balance problem it is not
necessary to reason explicitly about the containers on the balance arms that contain the water.
None of their properties changes so one can as well forget about them and only reason about
the changes in the liquid .

Too much detail in system elements can only occur if they are used for attaching parameters
that turn out to be irrelevant . Since all irrelevant parameters have already been identified the
problem is reduced to determining which elements are superfluous . Again, as in the case of pa
rameters, the definite relevance of elements can be established by checking all state descriptions :
elements not appearing in all states are definitely relevant : leaving out such an element would
inevitably lead to another set of states . Elements that have associated relevant parameters are
also relevant .

Irrelevant elements, on the other hand, can be identified from the set of applicable model
fragments as follows . For system elements to be superfluous two conditions should hold : (i)
they should not have any associated relevant parameters, (ii) their removal should not make the
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conditions of a model fragment empty. An exception to the last condition is the case where the
model fragment specifies no consequences and it is not conditional for any other model fragment .

Model Fragments

	

The detection of irrelevant model fragments is a very complex matter .
Until now we have not worked this out satisfactorily . The complexity is due to the many possible
interdependencies between model fragments, some having conditional other model fragments and
so on . However, in some situations we can decide to take some model fragments together or to
render them superfluous. For instance, if in all states two or more model fragments are applicable
to one or a group of elements they might be joined to form one composite model fragment . This
can be done if another condition holds : none of these model fragments is seperately applicable
to another element or seperately conditional to another model fragment . A model fragment is
superfluous if all its givens are denoted irrelevant (it adds nothing to the behaviour description)
and it is not conditional for any other model fragment . These are two cases for which the
irrelevance of model fragments can be established relatively easy . We are still analysing how to
deal with more complex cases where, for instance, conditions may be moved from two model
fragments to another model fragment .

5 .3

	

Updating the Model Fragments

When all irrelevant particles have been identified control is switched to the knowledge engineer
who makes the final decision concerning the actual removal of the particles . Based on these
decisions the model fragments are modified . Currently we are in the process of defining general
procedures for executing model fragment modifications. These procedures are riot specific for
achieving model parsimony but are developed for model refinement in general (see section 2)
and are therefore not further elaborated upon.
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Related Work and Conclusions
In Subramanian & Genesereth [9] a formal treatment of irrelevance is presented. They distin-
guish three types of irrelevance : weak, strong and computational. Our notion of overly detailed
model particles corresponds to computational irrelevance: the model without the irrelevant par-
ticles has better computational characteristics than the model containing those model particles .
Our notion of superfluousness corresponds to strong irrelevance: a superfluous particle is not
necessary for deriving the state sequence and the state sequence is not necessary for the truth of
the particle . Although Subramanian and Genesereth put irrelevance reasoning on firmer ground,
they observe that the acquisition of irrelevance facts in a specific domain remains an open ques-
tion . In this paper we have identified under which conditions model particles are irrelevant for
the task of qualitative prediction of behaviour. In addition, we combine irrelevance reasoning
with reasoning about definitely relevant facts.

The concept of (ir)relevance has been applied in qualitative reasoning research before, mainly
in the compositional modelling approach [5] . In this approach relevance heuristics in the form of
different types of assumptions are used in selecting the right set of applicable model fragments.
In a similar vein Nayak et al . [8] describe a procedure for generating a minimal device model.
They use context dependent behaviours to describe different ways of component functioning.
Structural and behavioural context as well as expected behaviour (the function of the device)
are subsequently employed to select the applicable model fragments . Then this model is refined
by applying simplification operators that substitute model fragments or remove them altogether.
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The paper by Levy et al . [7] is another example: they describe heuristics for model fragment
selection that are explicitly stated as irrelevance claims .

Compared with these approaches to (ir)relevance reasoning in building qualitative models
we take the construction of an adequate model one step further since we do not focus on the
(ir)relevance of entire model fragments but aim at removing irrelevant particles from applicable
model fragments. We showed in which situations irrelevant model particles can still occur in
applicable model fragments and described how these particles can be identified . The applicable
model fragments, the generated behaviour description and the scenario are used to modify the
model fragments . This approach allows us to refrain from defining large libraries of minimally
differing model fragments . Therefore, we believe that our approach constitutes an important
complement to the problem of constructing adequate qualitative models .

Further work needs to be done in the identification of parsimonious parameter relations in
a model. Here the problem of interacting effects of different relations complicates matters sub-
stantially. Currently we continue to formulate guidelines for determining when model fragments
can be subsumed and we are in the process of implementing the technique . Finally, we are
defining general procedures for updating model fragments.
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