
On Temporal Abstraction in Qualitative Physics

Abstract

I Introduction

Technical

Abstraction is a fundamental element of
qualitative reasoning about physical systems
and crucial for coping with complexity of real
problems. Temporal abstractions form an
important class that comprises a variety of
different transformations . We establish goals
for a formalization of abstractions, discuss
some examples of temporal abstraction, and
show how they can be formalized in a theory of
relational behavior models of physical systems.

Transforming representations of problems into new
ones is often crucial for finding solutions efficiently,
sometimes for finding them at all. An important class
of such transformations are abstractions . Abstraction
is a conceptual generalization obtained by
eliminating individual and arbitrary characteristics
while maintaining those distinctions only that are
essential in a particular context. It is frequently, and
often unconsciously, applied in human reasoning and
problem solving and promises to be good means for
coping with complexity in automated reasoning and
problem solving.

Whilst many AI researchers agree upon this, the
attempts to formalize abstraction are quite diverse,
sometimes reflecting different understanding of the
nature of abstraction. They are also not
comprehensive. In particular, we are lacking a theory
of a quite distinctive and important type of
abstraction: temporal abstraction.

In [Struss 91,921, we have presented a theory of
multiple modeling and model transformations in the
context of model-based and qualitative reasoning. It
covers abstraction to some degree, and we have
demonstrated the importance of such a rigorous
theory for practical purposes : it helped to analyze the
precise logical relations between alternative models
used for fault localization in power transmission
networks . However, the behavior models presented in
[Struss 921 do not contain time . In the example, they
only express the information which switches in the

- A Preliminary Report -
4/9/93

Peter Struss
University of Munich, Computer Science Dept.

Orleansstr . 34
W-8000 Munich 80

Germany
struss@a informatik .tu-muenchen.de

219

network were automatically opened (to isolate a short
circuit), but not when exactly this happens or in which
order. Since this may be a quite important aspect for
determining the proper diagnoses, we better try to
understand what is being lost by the use of the static
models compared to a "gold standard" model that
captures the temporal information. Thus, the
practical task created the need for including temporal
transformations in the theory . Other examples will be
mentioned in this paper.

Beyond this, a theory of temporal abstraction
contributes to a fundamental understanding of the
existing qualitative reasoning systems, because they
always include (implicitly or explicitly) some
transformation of time, for instance, by turning time
as a real number line into a mere ordering on
qualitative states ofa system.

The use of abstraction has been investigated and
formalized in other areas, such as theorem proving
and planning, and this work (in particular,
[Giunchiglia-Walsh 89,921 ) has been advocated as a
theoretical basis in the area of qualitative reasoning
([Weld 921) . In order to clarify our notion of
abstraction, we argue in the following section that
this theory, being a useful formal theory of theory
transformations, is too general to capture some of the
essential characteristics of abstraction
transformations. In particular, this is done by
discussing the question whether abstraction may
introduce new theorems and inconsistencies that are
not present in the "ground theory".

Section 3 summarizes then our theory of multiple
relational models that tries to preserve more of the
content ofabstractionand whose form is more adapted
to specific representations in qualitative reasoning
about physical systems. Different kinds of temporal
abstraction are discussed in section 4, and finally, we
demonstrate that the theory presented provides a
foundation for formalizing at least some of them.

Although we are aware of the fact that results
presented in this paper are still preliminary, we
believe they may stimulate the discussion of this
important area in the qualitative reasoning
community.



2 Can an Abstraction Prove More
Theorems and Provide False
Proofs?

Based on work in theorem proving and planning,
[Giunchiglia-Walsh 89,92] propose a comprehensive
theory of abstraction. In their work, an abstraction is
considered to be any mapping

f: E1 - E2
between two formal systems Ei=(Ai, Qi, Di), given by
a triple f=(fn, fn, fa ) of total functions

fN:

	

A1 - A2 ,
fly:

	

01 -+ 02 ,
fo :

	

A1
-., p2 ,

where Ai denotes the respective language, Qi the set
ofaxioms, and Di the deductive machinery.

They analyze, as special cases, mappings that are
theorem increasing ("TI-abstractions"), i.e . for any
well-formed formula (~ holds

if t-El ( , then

	

f(4)) ,
and theorem decreasing ("TD-abstractions") :

if

	

., f((~)

	

, then

	

E-E1 (P .

They have to cope with the "false proof problem": for a
consistent El, a "TI-abstraction" may be inconsistent .
Assume, for instance, that two different constants cl,
c2 in E 1 which are positive real numbers are mapped
onto the same constant in E2, e.g.

f(c1)=f(c2)= + .
If fmaps E 1's axiom -(c1= c2) onto

f(-(cl =c2))= -(f(cl)=f(c2)) = -(+
(because f is assumed to be "negation preserving":
f(-,(P)= -f(d?) ), E2 is inconsistent .

At this point, we would like to pay some tribute to the
terminology debate . In our opinion, the false proof
problem, the existence of "theorem increasing
abstractions", and even the fundamental definition of
abstraction offered by [Giunchiglia-Walsh 921
contradicts a generally agreed meaning of the term.
In their theory, abstraction can be an arbitrary
mapping between formal systems (based on total
functions for the elements), and indeed in
[Giunchiglia-Walsh 92], the authors characterize
their intuition of abstraction as being any mapping
from one representation to another one, "throwing
away details", but "preserving certain desirable
properties" . While these are necessary properties of
an abstraction transformation, they are not sufficient
for capturing its full meaning (and its practical
importance!) .

Abstraction is a process of generalization . It steps
from individual objects to concepts ofthese objects
that capture their essence but eliminate their
individual and incidental properties. More
technically speaking, it creates equivalence classes of
objects (or of existing concepts to build more abstract
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concepts) . Of course, what is considered essential can
depend on the context, task, or perspective.

The commonality of the behaviors of all individual
resistors (w.r .t . some electrical phenomena, under
certain contextual restrictions, etc.) is condensed to
the concept of "the resistor". It does not contain more ;
it does not contain anything that does not hold for
each single resistor (otherwise this would be no
resistor) . It might even not contain some aspects that
are common to all resistors, but not essential under
the given perspective (e.g . that they are material
objects) . How could this concept, this abstraction be
used to derive any theorem about resistors that is not
a theorem for each individual resistor?* How could it
be inconsistent with anything that was not already
inconsistent with the individual resistors? So, in our
view, abstraction cannot be TI and must exclude the
false proof problem. It may lose some theorems about
individual objects, even though

they may be true for all instances of a concept (if it
treats the respective properties as irrelevant) .
Abstraction will have to be a subset of "TD-
abstractions" .

Let us emphasize that this standpoint is not an
absolute criticism of [Giunchiglia-Walsh 89,921 . It is a
very useful formal theory of theory transformations .
But it is far too "abstract" to capture the essentials of
abstraction that make it a powerful means for coping
with complexity and still produce correct results.
Preservation of truth is a property of abstraction we
propose to maintain as a crucial property (as does
[Weld-Addanki 92]), if one wants to construct a theory
of abstraction (in our strict sense) within the
framework of [Giunchiglia-Walsh 89,92] . We believe
that this is possible . It requires a careful analysis of
the types and interesting properties ofthe mapping f.

For instance, since abstraction by its very nature
eliminates distinctions between some individuals
(and also, perhaps, predicates), preservation of
negation is probably not a general feature: things that
are not the same can be mapped onto the same
abstract concept.

It seems to us that the theory of granularity [Hobbs
87], in constructing equivalence classes of objects that
cannot be distinguished by any predicate that is
considered to be relevant, is closer to what we would
like to consider as abstraction (we are not sure
whether the reconstruction of this work in
[Giunchiglia-Walsh 89,92] , which is TI, is a faithful
one) .

------------
* There may be statements about the concept as a
concept (e.g . that it is a concept useful for X) that are
not true for the individuals represented, but they are
"meta", i.e . not in the image of f.



In this paper, we do not attempt this specialization of
[Giunchiglia-Walsh 89,921 . This would be more
general than required by our goals in the area of
qualitative physics. Furthermore, we believe that
there is a different way better suited to describe the
particular transformations that are commonly applied
to models of physical systems. In the following section,
we summarize the formalism for relational models we
developed in [Struss 91,92] for structuring sets of
multiple models and, in particular, for using this
structure in model-based diagnosis.

3 Relational Models and their
Transformations

Our approach is dual w.r .t . the one discussed in the
previous section in the sense that, rather than
viewing the problemfrom the perspective of theories
and proofs, it analyzes different transformations
applied to the set of models (in the logical sense)*

Different representional spaces for the behavior of
a physical system, which may be an atomic
constituent (component) or some aggregate, are given
by different vectors of local variables vi :

1=(v1, v2, . . ., vk). ,
and one or more domains of v_:

DOM(v) : =DOM(v1 ) XDOM(v2) X . . . XDOM(vk) .
(In contrast to (Struss 91,921, we omit the indexing of
variables, models etc. with the respective component,
because it is not relevant to our discussion) .

A behavior ofthe system is described by specifying the
set of possible values of v, i.e . by a relation
RCDOM(v). As a logical formula, the respective
behavior model can be regarded as the statement that
Rcontains (exactly) the values that can be observed in
real situations :

Definition 3.1 (Strong Behavior Model, Complete
Behavior Model)
A relation RCDOM(_v) specifies a strong behavior
model by
B(R) e~
VyO EDOM(v)

	

((3sESIT Val(s, v, yo)) a _vOER ) ,
and a complete behavior model ofC by
M(R)
tlvoEDOM(v)

	

( (3sESIT Val(s, v, yo))

	

yoER ) .

(In [Struss 921, we focus on complete models, because
they suffice for consistency-based diagnosis; in [Struss
92a], we introduce its obvious dual concept, sound
models). Here, Val(s, v, yo) means that v has the value
vo in the situation s, and ifv0 =(v01, v02, . . . . vOk) , then

Val(s, v, yo)

	

e* AVal(s, vi, voi)
i

holds. Note that we do not postulate that the value be
unique ; from

3sESIT ( Val(s, v, yo) n Val(s, v, v_1) )
we cannot infer yo=w1 . This does not only allow us to
handle multiple domains for v_. Even if yo and w1 are
from the same domain, they may be different. For

instance, in the domain ofintervals ofreal numbers
Val(s, x, (1, 3)) n Val(s, x, (2,5))

is perfectly consistent, if Val(s, x, (a, b)) means
3rE(a, b)CR Val(s, x, r) .

(In this case, we may want to infer a relation weaker
than equality, namely that the two values have a non-
empty intersection).

-New behavior models can be obtained from an
existing one in two ways :
- by transforming the relation RCDOM(v_) to some

relation R' in the same representation . Of course, if
this transformation is not the identity, the property
of a strong behavior model is lost, while a complete
model property may survive,

by transforming the representation space:
t: DOM(_v) - DOM'(_v')

and, thus, obtaining a relation R'= -c(R)9DOM,(v')
from RCDOM(v) . In contrast to [Giunchiglia-
Walsh 89,92] , here a set of (logical) models is
transformed under a mapping of the spaces of
interpretations .

The former allows us to directly express a variety of
common modifications of descriptions of system
behaviors, such as linear approximation (replacing R
by the graph of a piecewise linear function) and
introducing tolerances (by expanding R) . The latter
provides the basis for exploiting other, equally
frequently applied, mappings between different
representations, for instance switching from
Cartesian to polar coordinates. In [Struss 92], we
illustrated such mappings also by structural
aggregation (by dropping internal variables) and
mapping domains into equivalence classes (e.g.'real
numbers to intervals between landmarks) using a real
world example (These transformations are closely
related to those in the independent work on
hierarchical diagnosis reported in [Mozetic 921 which
is more in the spirit of [Giunchigiia-Walsh 89,921).

Again, the question is raised what preconditions
ensure the preservation of behavior model properties .
A quite obvious and basic conditions turns out to
suffice, namely that the Val-predicate is preserved in
both directions :

Definition 3.2 (Representational Transformation)
A mapping

ti : DOM(_v) -" DOM'(_v')
is a representational transformation, iff
Val(s, v, vp) nv0 EDOM(v)

	

Val(s, v', ti(v0))
and
Val(s, v, v'0) n v0 EDOM'(v7

3v0Ez-L(v'o) Val(s, v, vo) .

* Because the term "model" is used in different ways
in logic and qualitative physics, what has sometimes
lead to confusion, we will try to use "behavior model"
or "component model" for descriptions (theories) ofthe
behaviors of aphysical system.
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Intuitively speaking, the second condition states that
the target domain does not introduce values that are
not grounded in the original one (Actually, this
definition becomes slightly more complicated for
domains that allow for multiple values, such as
intervals, see (Struss 931) .
Theorem 3.1

If

	

-u :

	

DOM(v) -" DOM'(v')
is a representational transformation, then the
image of a strong model is a strong model:
B(R) I- B(i(R)) .

(For the preservation of complete behavior models the
second condition of Def. 3.2 is sufficient) . Obviously,
we are getting closer to our concept of an abstraction
transformation .

Definition 3.3 (Abstraction)
An abstraction is a representational
transformation that is
- surjective

(i.e . each element of DOM'(y') is the image of an
element of DOM(_v )) and is
- not injective

(i .e . some elements of DOM'(v') are the image of
more than one element of DOM(v)) .

Although we feel these properties still to be too weak
to capture all aspects (more like a necessary condition
rather than a definition), the definition expresses that
- behavior model abstraction is induced by a

transformation of representations (in
accordance with the intentions of [Giunchiglia-
Walsh 89,921), as opposed to "surgery" applied to a
particular behavior model in one representation
(e .g. by approximations),

- this transformation preserves and grounds valid
values,

-

	

it eliminates certain distinctions between tuples of
values,

-

	

it preserves the truth of the strong behavior model
property .

(As a side remark, we mention that Def. 3.2 makes the
concept insensitive to what the mapping does to
portions of the domain that do not occur in real
situations . This seems to be a nice feature, because it
makes the abstraction "pragmatic", or grounded in
reality . This can be exploited by reasoning based on
working hypotheses as illustrated for diagnosis in
[Struss 921) .

So far, in previous presentations of our theory and in
this paper, we used static views on physical systems to
illustrate the concepts . It is now time to ask whether
modeling dynamic systems and formalizing temporal
abstraction can be handled within this framework .

4 Types of Temporal Abstraction
Unfortunately, there seem to be quite different
methods to be subsumed under the heading of

temporal abstraction . Describing behaviors as
sequences (as done in qualitative simulation), viewing
a slow process as providing constant conditions from
the perspective of a faster one ([Kuipers 871, [Iwasaki
921), identifying a behavior as cyclic ([Weld 861), and
characterizing a signal as changing at least once in an
interval ([Hamscher 911) appear to be quite different
operations, but still share that some aspect of time has
been "abstracted away" .

If abstraction preserves some properties while
treating others as unessential, we may start by asking
what the properties of time are that might be kept,
weakened, or thrown away by abstraction. We can
describe a particular temporal ontology by a triple

(T, (A, d), < )
of a universe oftime instances T, a metric

d:

	

TX T - Ro',
an algebraic structure A=(+, -, . . .) containing, at
least, addition and subtraction :

+,- : TXT -T,
and an ordering relation
<ETXT .

Often, we consider the ground representation of time
to be given by T='R, with the usual arithmetic, metric
and order . We combine A and d, because, usually, they
are tighly related . e.g . by defining

d,.,(a, b):=ja-bj
onT=1?. .

Also d and < are related, e.g . by
0<a A O<b A d(O,a)<d(O,b) =* a<b .

It should be possible to characterize different types of
temporal abstractions by the changes they apply to
one or more ofthe three elements .

Changing the set of time instances T:

Enforced by principled limitations of our technical
equipment, one frequently applied treatment of time
is ignorance of all time instances except for some set of
measure zero, more explicitly : sampling at a finite set
of time points SCR while preserving the metric and
order :

(R, (AR, dR), < R) - (S, (AR, dR), < R) .

(Note, however, that S is not necessarily closed under
AR , e.g. if it is not an equidistant sample of time
points) . Another nice example is given in (Hobbs 851,
where continuous time is mapped onto a set of time
instances determined by the end of events in the
blocks world .

Dropping metric properties:
The transformation of continuous functions into
sequences of qualitative states is quite fundamental
for qualitative simulation and envisioning. This step
saves something of the ordering, but eliminates
metric information, and can be described by a
mapping

(R, (AR , dR), < R) - (Z'> <z)
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of temporal representations, where Z'CZ is a
(contiguous) subset of the integers . Thus, for instance,
oscillations with different frequencies are collapsed
into a sequence ( . . ., 0, +, 0, -, 0, +, . . .) of qualitative
values (signs) .

Switching metrics:
Combining changes that take place with speed (and,
hence, temporal granularity) of different orders of
magnitude has been investigated and used e.g . in
[Weld 86], [Kuipers 871, [Iwasaki 92], where the faster
process is seen as instantaneous from the viewpoint of
the slower one, which in turn appears to provide
constant conditions for the fast process . As one way for
formalizing this technique we propose to provide an
explicit link between different metrics:

dT l - dTs .

Changing everything:
In qualitative reasoning, often intervals are used
instead of real numbers representing time points . In
this case, algebraic operations, metric, and ordering
have to be defined accordingly, but are expected to
preserve the structure on IR to some degree . For
instance, if two time points P1,P2E R are mapped onto
intervals i1,i2E I(R), then

P1 < P2 =t~ il'5 i2
should hold .

Dropping (almost) everything:
Sometimes, neither metric nor ordering information
matters, and time is abstracted away entirely . For
instance, our power network diagnosis system DPNet
([Struss 92]) only exploits the information which
switches were opened (to isolate a short circuit), but
not when exactly this happens or in which order . XDE
for trouble-shooting of digital circuits ([Hamscher 911)
contains a number of temporal abstraction operators,
such as counting the number of changes in a signal in
a given interval (Because of the Boolean domain, the
ordering is implicitly determined in this case) . This
reflects, among other things, that an observer has
easy access to this abstract type ofinformation only .

The question we will be discussing in the following
section is whether and how we can formalize these
kinds of temporal abstractions in our theory of
abstraction based on relational behavior models as
outlined in section 3 .

5 Behavioral Abstraction of
Relational Models

5.1

	

A Naive(?) Approach to Temporal
Abstraction

As a matter of fact, the properties and their
transformations we considered in the previous section

are not very specific for time, but could be related at
least to any variable that is considered to have the
real numbers as the ultimate ground representation.
So, one might be tempted to simply introduce time as
another variable in the vector v :

Y = (V1, V2, . . ., vk, t)
and describe the behavior over time by a relation
RCDOM(J :=

DOM(vl )X DOM(v2) X . . . XDOM(vk) XT .
However, we have to be careful with this
representation, because it already involves a step of
abstraction : consider two functions

x=fl(t)=t3 and x=f2(t)=-t3
describing the possible behavior of a system (Fig. 5 .1) .
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Figure 5.1

	

A relation R specified by f1 and f2

Choosing
v_= (x, t) , DOMW =1R,X ll$

as the representation leaves us with a relation
R = U {t3 , -t3}X{t}.

tER

But R represents, besides {fl , f2},
continuous functions {f3, f4} with

f3(t) =It3l and f4(t) =-1t3 l ,
which are obtained by "pasting together" the pieces of
f1 and f2 at t=0 (see Fig . 5.2) . If we drop the property
of continuity, R covers even an infinite set of
functions . This means, this kind of representation,
though capturing the possible values at each time
point, does not preserve the actual changes over time.
We discuss this issue at more length than the "naive"
representation might deserve, because this kind of
abstraction, which may lose the global behavior over
time, is actually a cause for the generation of spurious
behaviors of many qualitative physics systems .
Technically, it is due to merely local transition
analysis which does not reflect the full "history" of a
behavior when determining the possible transitions
from the most recent state into the next one (see

also the set of



Figure 5.2

	

f3 and f4 are also covered by the
relation R

[Kuipers 86)) . Thus, we have identified an abstraction
that is intrinsic to many QR systems, which
sometimes leads to results more general than we
appreciate .

5.2

	

The "Oscillation" Abstraction

To do it right, we now consider the problem of an
abstraction transformation that maps different
oscillations into a general qualitative concept
represented by the sequence ( .. ., 0, +, 0, -, 0, . +, . . .),
or, as a relation,

R%={(0, t)1 t= 2n, nEIYO }
U{(+, t) I t=4n+1, nENO }
U{(-, t) I t=4n-1, nENO }
C{0, +,-}XIYO=Q3Xh10=DOM'((x,t)) .

Let us assume that two possible behaviors are
described in the ground representation

DOM((x, t))=[-1, 1] x Rat
by

RR ={(sin t, t) I tER0 ' } U {(sin 2t, t)1 tERo ` }
(Fig. 5.3).

Figure 5.3

	

(sin t, t) and (sin 2t, t)

We notice that it is impossible to find a mapping
zt: R.o' -~ N0

of the temporal spaces such that, in conjunction with
the qualitative domain abstraction

Lq: [-1, 11- Q3,
it forms arepresentational transformation

t =(Lq, zt) : [-1, 11 X Ro - - Q3 X NO .
For instance, the tuple (0, 2n)EDOM((x, t)) is shared
by both oscillations . But for sin t , it has to be mapped
onto (0, 2), whereas sin 2t reaches 0 for the fourth
time, and, hence, (0, 2n) corresponds to (0, 8) . In other
words, the temporal transformation is not a unique
one, but may be specific for each single behavior . We
see that temporal abstraction is often behavioral
abstraction, and it might seem that we have to drop
our claim that abstraction is to be considered as a
general mapping between representational spaces
rather than tied to particular behaviors.

However, for the relational models, there are no
restrictions imposed on the choice of the domains for
the variables. They need not be sets of real numbers,
integers, or qualitative values, as before . They can
also be sets of functions over time. So, if T is some
temporal universe, and DOMv(vi) denotes the set of
possible values vi can take in principle at each time
instance, let

F(T, DOMv(vi)) ={f I f: T -DOMv(vi) }
be the set of functions in DOM,(vi) over time and

F(T, DOMv(v))=
F(T, DO-'vh,(vl) X DOM,(vq) X . . . x DOMv(vk)).

If st is the "time slice" corresponding to tET in
situation sE SIT, then

dfE F(T, DOMv(v))
(Val(s, v, f)

	

a

	

`dtET Val(st, v, f(t)) ) .
Then we can describe behaviors over time in the
representational space

DOM(_v)=F(T, DOMv(_y)) ,
and an abstraction will be a transformation of the
function spaces . (Note that we assume the same
temporal representation for each variable). This
allows us to correctly handle some kinds of temporal
abstraction, such as the "oscillation abstraction" .

As a first step, we show that the "traditional" domain
abstraction
a: DOMv(v_) -" DOM'v(y)

induces a behavioral abstraction.

We can map afunction
f.. T - DOM,(y)

onto its composition with a:
tQ: DOM(v_)=F(T, DOM,(y))

-" DOM'(v)=F(T, DOM'v(v_)) ,
where

za(f) : =a-f T-" DOM'v(y)
and

a-f(t) : =a(f(t)) .
zQ collapses functions that differ only in values that
are mapped to the same image, into one function on
the abstract domain . More generally:
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Lemma 5.1
If

	

a: DOM,(v) -. DOM'v(v')
is an abstraction, then
zQ : DOM(v)=F(T, DOM,(v))

- DOM'(_v') = F(T, DOM'� (_v'))
is an abstraction.

For instance, all functions k*sin t, kE(0, 1],
mapped to the same function which has the value +
over (0, ri), 0 at n, - over (n , 2n) etc . (see first mapping
in Fig . 5.4) . So far, no property of time has been lost.

+_t

0

	

(0, rn)

	

ri

	

(n, 2n)

	

2rr

Figure 5.4

	

"The steps in constructing the
oscillation abstraction"

are
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But temporal abstraction may now be applied by
collapsing maximal time intervals in which no
changes in values occur into single time instances t' of
a new temporal space, T'f, which is still specific for
each function f. Formally, we define

T'i: = { iE I(T) I w'OE DOM'v(v') f(i) = "'p}
n

	

(i';?i =* f(i') x {v'p}) } ,
where I(T) is the set of intervals of T . Then the
function

f : T'f -y DOM'v(v')
is well-defined by

f(t') : = f(t) for some tE t' .

This is the second mapping illustrated in Fig. 5 .4 . The
spaces T'f still contain the metric information of T.
But under certain reasonable assumptions (that
exclude pathological cases such as sin 1/t ), there
exists a subset Z'f CZ of the integers and a bijective
mapping (the third one in Fig . 5.4)

-cZ:

	

Z'f - T'f
for each f Defining

i'(fl=fotz : Z' - DOM'v(v')
as a (partial) function on Z'= UZ'fCZ , we can obtain
the desired representational transformation

z' : F([-1, 11 , Ro- ) - F(Q3 , No)
that maintains the ordering, eliminates metric
properties, and performs the "oscillation abstraction" .
It is also the basis for other temporal abstractions, e.g,
used in XDE ([Hamscher 91]) . For instance, the
predicate that counts the number of changes, maps f
to IZ't{ -1 .

5.3 Multiple Temporal Granularity
and Continuity

In order to formalize the interaction of processes with
different speed and temporal granularity, we propose
to provide metrics that relate temporal universes of
adjacent levels of temporal granularity . So, let (Ti, di,
< i), iE {s, f}, be the temporal representations for a slow
and a fast process (one may keep in mind the example
from [Iwasaki 92] : a fast oscillation of a block on a
surface which is very slowly wearing out due to the
sliding block) . What we would like to express is that
at some time point, toET,, the fast process is active (at
least, "for a while") before the slow one exhibits any
change . The basic idea for formalizing this in our
framework is to include to and subsequent time points
of TS in Tf and to let the structure of Tf impose the
desired order :

VtfETf dtS ETS (to <tsn df(to,tf)<0 =* tf<ts,
i.e . regradless of how close the "next" is is under ds, at
the fine-grained level for some duration e, time steps
are squeezed in between . Hence, what is influenced by
the slow process appears to be "frozen" (constant, that
is) for the fast one, and the effects of the fast process
are received by the slow one as instantaneous changes
(i .e . happening without a time tick in Ts ) (Fig. 5.5) .

If a behavioral description at the coarse level is
constructed as a restriction of the fine-grained



Ts

t0

Figure 5 .5

	

Relating TS andTf

description to TsCTf, then it is an abstraction
according to the following straightforward lemma:

Lemma5.2
LetT'QT and
t:

	

F(T, DOM,(v_)) - F(T', DOM,(v))
defined by
VVET' z(f)(tT=f(t') .

Then z is an abstraction (provided DOMv(y)
contains more than one element) .

In our scenario, a model of the slow process omits a
detailed description of the fast changes andrepresents
a whole class of fast processes creating the same
effects.

There are a number of remarks to be made at this
point, indicating the need for further investigation.

First, we can avoid the metric and directly use the
order to achieve an extr,--me version ofthe effect:

VtfETf bits ETs	(to<tf n to <ts) =~

	

tf< is ,
i.e . the fast process runs "to completion" (that means,
in many interesting cases, to an equilibrium) .

Second, we may be unable to specify £, i.e . the
duration of the fast process, directly . Rather, it may
depend on the effects of this process or the slow one
(e.g . crossing acertain threshold).

Often, this is related to athird issue: tolerance ranges .
Up to a certain threshold, a slow change may be
considered insignificant, but beyond this, it has to be
taken into account. If we pretend we can interpolate
at the coarse level between the time points of Ts (e.g.
by treating a value constant), we obtain a
simplification (or approximation) of a model, as
opposed to an abstraction. It seems that this is what
happens in [Iwasaki 92] with the sliding block. This
can be mended if we explicitly represent the
tolerances in the model (see [Struss 93)) . Intuitively
speaking, we replace a function f(t)=const by a
tolerance strip f(t)E(const-e, const+e) .

Finally, changes over time with varying granularity
raise the problem of continuity . In fact, this problem
occurs with discrete domains, anyway, and many
qualitative reasoning systems handle it by sets of
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transition rules (or in an algorithmic way) by
allowing only changes to "adjacent values". Our
fomalism enables us to give a general definition of
continuous functions for arbitrary temporal universes
and domains:

Definition 5.1 (Continuous Functions)
Let
(T, dT, < T) and (DOM,(y), dDOM, < DOM)

be metric spaces with a total order. Furthermore,
for to ET, fE F(T, DOM,(v)), and rel E { < , >J, let
5rel(to) : =

inf{d(to,t)ItET n trelto},
Erel(to) : =

inf{ d(f(to),v_o) I yo E DOM,(v) nyo rel f(to) }.
The function f is continuous in to, iff
d (e'<, e'>)D(e<(to), e>(to))

	

3(S'<, 5'>) :)(5<(to),
5>(to))

f((to-S'< , to +S'>))C(f(to)-e'<, f(to)+e' >) .
f is continuous, if it is continuous in all to E T .

Intuitively, the 8,1(to) and crel(to) express "how close"
the "next" (smaller or greater) value is in T and
DOM,(v), respectively . Obviously, for the special case
T=DOVIv(v)=Rwith the usual metric and order, this
definition coincides with the usual one:
d e>0 3S>0 f((to-S, to+S))C(f(to)-e, f(to)+e) ,

because 5,,1(to)=e,,1(to)=0 in R. For discrete time
and discrete values, it allows either no change or a
change to an adjacent value in a step, as usual . But
the definition works also for mixed representations,
even for odd cases, such as
T=DOM,(v)=(-m, -1)U[0, 0]U(1, m) with dR, <R .

This allows us to investigate whether and how
continuity of functions is affected under different
representational transformations and temporal
abstractions, in particular .

6 Conclusions
We have tried to maintain some essential features of
abstraction as a process of conceptualization and
generalization, arguing that it should not introduce
new theorems and inconsistencies. Our theory of
relational descriptions ofsystem behavior allows us to
express common transformations of models and
representations easily . It can also be used to formalize
at least some kinds of temporal abstraction if we
introduce spaces of functions over different universes
of time as domains that can be subject to
transformations .

All this is but a first step towards a systematic
analysis of problems and techniques of temporal
abstraction. Also, while the theory of multiple
relational models has already helped to tackle
practical problems involving models of static devices,
this remains to be explored for the dynamic case . This
is true especially when the behavior description of
components is not a priori given as sets of functions
over time, but in terms of (ordinary or qualitative)



differential equations, as is the case in most
qualitative physics systems.

Temporal abstraction is too important as a means for
complexity reduction, and we cannot afford to neglect
it or treat it too generally in the ongoing discussion
about multiple modeling and automatic model
generation .
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