
Kinematic Synthesis with Configuration Spaces*

Devika Subramanian
Department of Computer Science

Cornell University
Ithaca, NY 14853

devika@cs.cornell .edu

Abstract
This paper presents two algorithms for kine-
matic synthesis of mechanisms . A mechanism
is specified by its input and output motions .
The algorithms determine a three dimensional
structure of rigid parts that implements the
given specification . Both algorithms are based
on a new composition operation on configu-
ration spaces . Both algorithms are efficient,
constraint-satisfaction schemes that operate on
abstract motion descriptions . The class of syn-
thesis problems for which the methods apply is
identified . Experimental results with both al-
gorithms are obtained with a prototype system
implemented in CLP(7L) [5] .

1 Introduction
The broad goal of our research is to derive computa-
tional theories of conceptual or pre-parametric design .
As manufacturing technologies change, as new materials
are developed, as new design constraints emerge (designs
with recyclable parts, and designs that assemble and dis-
assemble easily), as products become more complex, as
the need to build in continuous improvement into design
processes emerges, basic conceptual design procedures
for electro-mechanical systems require broadening with
effective use of computer tools in the early stages of de-
sign . Our specific aim is to use methods from qualitative
physics and constraint programming to build new com-
putational prototyping tools for conceptual design .

This paper presents a design system in the area of
mechanism synthesis . Mechanisms are an important
part of most electro-mechanical systems - they form
the basic geometric elements of such systems . Mecha-
nisms transmit motion from one rigid body to another .
An example is the mechanism in a quartz watch that uses
the oscillating crystal to drive the minute hand at sixty
times the rotational speed of the hour hand. Another is
a rack and pinion steering of an automobile that converts
rotation about one axis (the steering action) to recipro-
cating motion along another axis . Our design system
takes as input constraints on the motion of a mechanism

*This work is supported by NSF-IRI-8902721, the Xerox
Design Research Institute, and the Moore Fund .

228

Cheuk-San (Edward) Wang
Department of Computer Science

Cornell University
Ithaca, NY 14853

wang@cs .cornell.edu

in qualitative mathematical form . As output, it pro-
duces a systematic enumeration of mechanism topologies
and geometries that satisfy the given constraints . It also
performs high-level simulation to demonstrate the feasi-
bility of the design . The conceptual designs produced by
our system can be refined and optimized by specialized
expert systems or constraint-solvers to select candidate
designs based on cost, material, manufacturing and as-
sembly constraints .
We illustrate how our design system is used with a

simple example . Consider the synthesis of a windshield
wiper whose input power is provided by a motor rapidly
rotating around the z axis and whose output is an oscil-
lation in the yz plane with low frequency . Note that this
a partial description of the input and output motions
of this device . We can describe these as a set of con-
straints in our predicate motion vocabulary as follows .
Rotations are specified by their centers and directions of
axes : rotation(Center,Axis) . As we shall see later in the
paper, our motion predicates are a shorthand notation
for describing sets of configuration spaces .

Input Motion :

	

rotation((0,0,0),(0,0,1)),
speed(20)

Output Motion :

	

rotation((O,Y,Z),(1,0,0)),
frequency(F), range(R) ,
0 .5<F<2,7r/2<R<7r

The first structure enumerated by the system is shown
in Figure 1 . This design solves the problem with F =
0.833333, Y = 2, Z = -6. It employs a worm-spur pair
(with scaling factor 1/24) which converts the uniform in-
put rotation around the z axis to one about the x axis .
The output of the spur gear drives a crank rocker of
length 6 . The overall output is tapped from the rocker .
Our program also calculates the position and orienta-
tions of the gears and the crank rocker . Note that both
the type and number synthesis problem as well as the
dimensional synthesis problem are solved . The design. i s
physically implemented in TechnicsTM Lego (see Fig-
ure 3) . Another design, shown in Figure 2, that satisfies
the same motion specifications realizes the oscillatory
motion using a rack and gear pair, where the rack is
driven by a slider crank with the crank being rotated
uniformly by a worm spur pair . This design is found in
[l4] .

There are several unique aspects of our method . We

w«~. .p.or

w«mG..

Figure 1 : Design of a windshield wiper

Figure 2 : Another design of a windshield wiper

22 9

Figure 3 : A Technics Lego implementation of a wind-
shield wiper

have a uniform representation for a variety of constraints
and can take them all into account during the synthesis
process . In this example, motion constraints as well as
dimensional constraints are handled simultaneously . The
synthesis process is very efficient . Relevant constraints
are enforced as soon as they become applicable . This is
what makes the generation process efficient : we elabo-
rate this point in Section 7 . The two windshield wiper
designs were generated and rendered in about a second
on a Sparcstation 1-1- .
The synthesis process is grounded in a mathematical

theory of motion composition that is based on configura-
tion spaces . We compile the algebraic theory of motion
synthesis into a qualitative form that preserves essential
distinctions for the specification and solution of a large
class of Knematic synthesis problems . We introduce a
property called N-preservation which is a constraint on a
qualitative motion language that is needed to guarantee
the generation of. correct designs .
Our synthesis algorithms are actually implemented

and are currently being field tested at the Xerox Web-
ster Design Research Center . All the examples pre-
sented in this paper are designed by our system . Our
design system enumerates designs ordered by increasing
complexity' . Our system has produced innovative de-
signs for a number of common devices described in [14] .

1.1

	

The Problem: Motion Synthesis
We now describe the synthesis problem addressed in this
paper in detail . Kinematic synthesis is the problem of
determining a three dimensional structure of rigid parts
that implements a given motion specification . Kinemat-
ics only considers motions and not the forces that cause
the motions . Kinematic synthesis is typically the first

'We use a simple metric for complexity : the number of
primitive mechanisms in the design

step in the design of a complete device . The solution
to the kinematic synthesis problem is structured in two
phases : type and number synthesis and dimensional syn-
thesis [13] . In type and number synthesis, the overall
shapes of the kinematic links in the mechanism, their
topological arrangement, and the nature of the kine-
matic connections between links, are determined . The
link lengths are derived during dimensional synthesis .
Sophisticated numerical packages are available for de-
tailed design or dimensional synthesis [13, pg . 618], and
research is now active [2, 3, 7, 9, 11, 17, 18, 19, 20] in the
area of conceptual design or type and number synthesis .

Conceptual synthesis is generally acknowledged to be
a very difficult problem . A modern textbook in the area
[13] states that

The designer generally relies on intuition and
experience as a guide to type and number syn-
thesis . Very little supporting theory is available
in these areas .

The conceptual synthesis problem is difficult because
designs are typically specified in incomplete terms and by
their intended use (e.g ., a fruit-picker or a fuel-hose con-
nector) . There is no general theory that relates function
and structure in mechanical devices . That is, the space
of mechanisms that achieves a given functional specifica-
tion is not exhaustively and systematically enumerable .
Compendia such as Artobolevsky's catalog [1] provide
a library of known mechanisms indexed by type (lever
mechanisms, e .g .) and function (e.g ., indexing) . They
are a useful starting point for a designer who can then use
systematic adaptation of these designs to create devices
which meet the specified functionality. The derivation
of the motions that accomplish a given function is an
open problem that is not addressed in this paper . Given
the motions, we call the problem of designing a struc-
ture that generates them, the motion synthesis problem .
This is also difficult to solve as it involves deriving ge-
ometry from motion . Most of the current work on con-
ceptual design of mechanisms focuses on this problem
[3, 7, 9, 10, 11, 20] . Our paper extends the work in
this area by providing a foundation for building com-
positional motion synthesis algorithms, and by design-
ing and implementing a new, practical, constraint-based
motion synthesis method .
One of the chief issues in the area of mechanism syn-

thesis from specification of motion is the choice of motion
description language . The choice of language is critical,
because it determines the space of specifiable as well as
constructible designs . A very fine-grained, quantitative
description language allows us to make fine distinctions
among motions . A very coarse qualitative language, on
the other hand, limits expressiveness but allows for the
construction of very efficient design algorithms . Our ap-
proach allows us to exploit the best features of quanti-
tative and qualitative motion description languages . At
the finest level of detail, motion is formalized in terms
of configuration spaces [12] . The motion of an object is
viewed as a mapping from time to its configuration space .
We also develop a predicate vocabulary [8, 9, 10] that is
an effective shorthand for some commonly occurring mo-
tions . Essentially, we define a type hierarchy of motion

230

descriptions whose semantics are grounded in configura-
tion spaces. The predicate language permits high-level
reasoning with certain classes of motions and the design
of efficient synthesis procedures . We specify the class of
synthesis problems for which the abstraction sanctioned
by the predicate descriptions yields correct designs in a
computationally effective manner .

Our solution to the motion synthesis problem follows
the standard breakdown into the conceptual and detailed
phases . Conceptual synthesis is a compositional [11] pro-
cess grounded in primitive motion relations . Each prim-
itive motion relation has associated with it a set of con-
crete implementations . We first construct a schematic
called an abstract mechanism that is a decomposition of
the overall input-output motion specification in terms of
the known primitive motion relations . Alternate decom-
positions yield alternate conceptual designs . Abstract
mechanisms are refined by choosing implementations of
the component primitive motion relations . Multiple re-
finements of a given abstract mechanism can be explored
in this phase .

A concrete mechanism specification includes the topo-
logical arrangement of links and kinematic pairs that re-
alize the input-output relation, as well as dimensional
constraints on the links . To generate a concrete mech-
anism for a given specification, we compose the imple-
mentations of the primitive relations . This process accu-
mulates constraints on link dimensions that are solved to
obtain a fully instantiated design . One of the strengths
of our approach is the clean integration between the
phases of conceptual and detailed design : dimensional
constraints generated during the conceptual phase are
solved during the synthesis of concrete mechanisms .

1.2

	

Guide to Paper

This paper is organized as follows . In Section 2, we for-
mally define motion specifications in terms of configura-
tion spaces, and introduce abstract and concrete mech-
anisms . The operators which compose abstract mecha-
nisms and their concrete counterparts are presented in
Section 3 . The composition operators form the basis for
a rigorous specification and solution of the motion syn-
thesis problem . The common types of kinematic syn-
thesis problems are recast in our framework in Section
4 . The general algebraic synthesis technique is presented
in that section . In Section 5, we discuss tractable repre-
sentations of the configuration space descriptions manip-
ulated by our synthesis method . The algebraic compo-
sition computation can be abstracted as operations on
symbolic predicates denoting qualitative motions . We
then present constraint-based algorithms that employ
qualitative motion descriptions . These algorithms have
been implemented in CLP(R) [5] and we present exam-
ples of interesting syntheses in Section 6 . In Section
7, we conclude by reiterating the main contributions of
our paper and provide a discussion of future work on the
specific problem of automating motion synthesis and the
general problem of conceptual design .

2

	

Configuration Spaces, Motions, and
Mechanisms

We briefly review the concept of a configuration space
before formally defining the motion of an object . The
configuration of an object [12, pg . 8] is a specification
of the position of every point on it relative to a fixed
frame of reference . The objects we consider are compact
subsets of the N-dimensional Euclidean space RN . Let
FA be a Cartesian frame embedded in the object A, and
let Fw be the fixed frame . The origin OA of FA is the
reference point on A .
Definition 1 A configuration ofA is a specification of
the position and orientation of FA with respect to FW .
The configuration space of A is the space C of all possible
configurations of A.

The configuration space C is intrinsically independent
of the choice of FA and Fey . However, the representation
of C depends on these two choices . The configuration
of a rigid body constrained to move on a plane can be
represented by the triple (x, y, 0), where (x, y) E R2 is
the location of origin of FA, and 0 E [0, 27r) is the an-
gle between the x axes of FA and Ftv . The dimension
of the configuration space in this case is three, because
any representation of this configuration space requires
the specification of three independent parameters . The
dimension of the configuration space of an object is its
number of degrees of freedom . A rigid body constrained
to move on a plane has three degrees of freedom : two
translational, and one rotational . Note that the config-
uration space is atemporal - that is, it is an unordered
set of configurations of an object .

The motion M of an object is a description of how its
configuration changes with time . The configuration of a
planar rigid body undergoing pure rotation at time t, is
(XA, YA, B(t)) where xA and yA are fixed . (XA, YA), the
center of rotation is also the origin of FA, and B(t) is the
angular orientation of FA with respect to FW, at time t .
For uniform rotation with angular velocity w, B(t) = wt .

Definition 2 The motion of an object is a continuous
function from time to its configuration space .

Now we are ready to formally define a mechanism .
Reuleaux [16] defines a mechanism as "a combination of
rigid bodies so formed and connected that they move
upon each other with definite relative motion ." We dis-
tinguish between an abstract mechanism which is a rela-
tion on the configuration spaces of the input and output
links, from a concrete mechanism which is a 3D arrange-
ment of rigid bodies that implements this relation . The
difference between an abstract and concrete mechanism
is that while an abstract mechanism describes what a
mechanism does, the concrete mechanism is a specifica-
tion of how it does it .
Definition 3 An abstract mechanism is a relation 1Z
which is a subset of I x O where I and O are config-
uration spaces of its input and output links respectively.

Consider a meshed gear pair A and B on the xy plane
with fixed centers at (XA,YA) and (XB,YB) . a > 0 is
the gear ratio, and 0 is the initial difference in angular

23 1

position between the local reference frames attached to
the centers of the two gears . It implements the relation
G C_ I x O, I = {(XA, YA, B) JOE [0, 2a)} and O =
{(XB, YB, V) I 0 E [0, 27r)},

{(XA, YA, 0, XB, YB,

	

-a9 + ~,
(XA,YA,0) E I,(XB,YB,VI) E O}

This description 2 has abstracted structure and could
well be implemented by any mechanism that transforms
uniform unconstrained rotation around the z axis at
(XA, YA), to uniform unconstrained rotation of the op-
posite sense, with angular velocity scaled by a, around
the z axis at (XB,YB) . Note that G has only one de-
gree of freedom, namely 0 . All other components of this
relation are either constants or can be calculated from 0 .
Definition 4 The degree of freedom (DOF) of the ab-
stract mechanism 1Z is the dimension of R .

This definition is equivalent to the standard definition
of the DOF of a mechanism as those motion variables
that are independent after kinematic and structural con-
straints are satisfied .

Defining an abstract mechanism as a relation between
two configuration spaces is precise, but sometimes unin-
tuitive . This motivates us to define an abstract mecha-
nism as a set of pairs of input and output motions .
Definition 5 Let R be an abstract mechanism satisfy-
ing Definition 3, and let Mi and Mo be motions of the
input and output links respectively . Then this abstract
mechanism can be defined alternatively as R', where

RI = {A, Ma) I dt Wi(t), Mo(t)) E R}

Note that R is a relation on configuration spaces which
relates the instantaneous positions of the input links with
those of the output links . However, R' is a relation be-
tween two motions . Definition 5 describes all possible
motion transformations of the mechanism and is usually
more intuitive than Definition 3 .
The implementation of an abstract mechanism-acon-

crete mechanism, is a geometric description of links, and
joints between links that implements a relation between
configuration spaces . This description is stored as a kine-
matic diagram annotated with a set of constraints .
Definition 6 A concrete mechanism is a pair (K, C)
where K is the kinematic diagram of the mechanism and
C is a set of geometric and dimensional constraints on
K . There are two distinguished classes of links in K -
input links I, and output links O . The relation between
the configuration spaces of the input and output links of
(K, C) is its corresponding abstract mechanism .

Following Freudenstein [4], we use graph theory to for-
mally specify a kinematic diagram . The kinematic graph
K of a concrete mechanism is an undirected graph (V,E),
where V is the set of vertices that denote the links, and
the edge set E represents the kinematic pairs . The edges
are labelled according to joint type [16] . There are one
or more nodes in V standing for the input and output

2 We have omitted the relation between center distance
and pitch diameter of the gears for simplicity .

92

D4

Figure 4 : Composing two gear pairs

3

	

Composition of Mechanisms

links of the mechanism . An annotated kinematic graph
has algebraic constraints on elements of V and E repre-
sented as a constraint set C.

Complex mechanisms are composed out of simpler
ones . Composition constructs the relation (h, 02) from
(h, 01) and (12, 02) by imposing the equality constraint
01 = 12 . In other words, we require that the configura-
tion space of the output link of one mechanism be the
same as the configuration space of the input link of the
other . Two configuration spaces are equal if and only
if they denote the same set of configurations . To en-
force the equality constraint between two configuration
spaces, we intersect them to obtain the configurations
common to both sets .3
Definition 7 The composition N of two abstract mech-
anisms Rl C Il x 01 and R2 C 12 x 02 is

Rl N R2 = 7(il, 02) 101 = i2n(il, 01) E Rln(i2, 02) E R2}

The composition of two abstract mechanisms is illus-
trated with the construction of GT that can be imple-
mented by a gear train, from two relations Gl and 92 that

'This composition operation is to be distinguished from
that introduced in [6] . Joskowicz treats the composition
of two configuration spaces as an intersection, whereas our
notion of composition is defined on relations on configura-
tion spaces . His composition scheme is suited for kinematic
simulation .

23 2

can be implemented by gear pairs . We use the relation
in Equation 1 to define 91 and 92-

91

~J2
GT

t(XA, 1JA, 0, XB)M0) 1 0 = -ale + 0}
I(XM,YM,0

,
,XN,1JN,0)

	

-0120 -}- 0 }
91 N 92

I(XA , 1JA, 0, XN, 1JN, 0)
(XA,YA, 0,XB,YB,10) E 91,

(XM,YM,0 ' ,XN,YN,0) E 92,

(XB, YB,1G) = (XM, YM, 0/)}

The gear ratios al and 012 are both positive . From GT,
we can derive the fact that 0' = -012(-0110 + ¢) + 0' .
When two concrete mechanisms, (K1, C1) and

(K2, C2), that implement relations R1 and R2 respec-
tively are composed, a rigid connection is formed be-
tween the output links of Kl and the input links in K2.
The constraints, C1 and C2, are merged . For example,
in figure 4, we show the composition of the implementa-
tions of 9, and 92 to yield an implementation of GT .
Definition 8 Let the concrete mechanisms (K1, C1)
with K1 = (V1, E1) and (K2, C2) with K2 = (V2, E2)
implement R1 C_ Il x 01 and R2 C_ 12 x 02 respec-
tively . The new concrete mechanism (K, C) that im-
plements R., N R2 can be formed from (K1, Cl) and
(K2, C2), (denoted (K,C) = (K1, Cl) 0 (K2, C2)) by hav-
ing C = C1 UC2, V = V,UV2 , E = ElUE2 and by adding
edges denoted rigid connections between output links in
Vl and corresponding input links in V2 .

4

	

The Synthesis Problem
We now cast the synthesis problem in the formal frame-
work for motions and mechanisms that we have just
introduced . Synthesis problems are rarely posed with
complete specifications of the desired input and output
motions . Typically, we are given constraints on the mo-
tions which define a class of abstract mechanisms, and
not a particular one .
Definition 9 The general synthesis problem is to find
a concrete mechanism (K, C), given constraints on an
abstract mechanism R C I x O.

The construction of K from the partial specification
of the relation R solves the type and number synthesis
problem . The solution of C solves the dimensional syn-
thesis problem.
We view mechanisms as motion transformers [10] . Our

compositional approach to solving the general synthesis
problem grounds the syntheses in a set of primitive mo-
tion relations (abstract mechanisms) Rp and associates
with each a set of concrete implementations (Kp , Cp) . In
the first phase of synthesis, we find a composition of ab-
stract mechanisms which satisfies the given constraints
on R. In the second phase, we choose concrete imple-
mentations of the primitive relations . We will show that
this method is sound: that is, it produces concrete mech-
anisms which implement the given motion specifications .
Definition 10 The abstract synthesis problem is to find
a sequence of abstract mechanisms, R1,R2, . . . , Rn, with

known concrete counterparts, where 7Z1 D4 7Z2 D4 . . . D4
7Z� satisfies the given constraints on 7Z .

A simple incremental, generate-and-test algorithm for
solving this problem starts with the identity abstract
mechanism Z (I = O) and computes compositions of
primitive relations 7Zp until the composition satisfies the
specification . Concrete designs are produced by finding
implementations for the compositions of primitive rela-
tions found by the previous procedure . For each primi-
tive motion relation we non-deterministically pick an im-
plementation . We use Definition 8 to compose two con-
crete mechanisms . This process involves simultaneously
solving dimensional and geometric constraints from each
of the chosen primitive implementations .

Definition 11 The concrete synthesis problem is to find
a set of concrete implementations (Ki, C), 1 _< i <_ n for
each element in the composition 7Z1,7Z2, . . . I 7Z� , which
solves the abstract synthesis problem for the given con-
straints on 7Z, such that Un-1C is saiisfiable .

Theorem 1 The synthesis process consisting of solving
the abstract synthesis problem followed by the concrete
synthesis problem, is sound . That is, if it produces a
solution, it will satisfy the specified motion constraints .

Currently, we have abstract mechanisms that can con-
vert uniform rotations and translations into uniform as
well as non-uniform rotations and translations . The set
of concrete implementations we have include gear pairs,
racks and pinions, simple linkages, worm spurs, skotch
yokes, etc . Additional abstract mechanisms correspond-
ing to motion relations with concrete implementations
can be added very easily to our design system .
We now discuss the computational complexity of the

abstract and the concrete synthesis procedures . Let the
cardinality of the set of primitive abstract mechanisms
be n. Suppose we consider only composite mechanisms
with at most p primitives . In the abstract synthesis
phase, the generation component can explore EP-1 n'
alternatives . We have to compute compositions during
the process, which involves intersection of algebraic sets :
the worst case time complexity is doubly exponential in
the number of variables in the constraint set, when a
closed form solution is possible .
In the concrete synthesis phase, the number of possi-

ble candidates are d" where d is the maximum number
of concrete instantiations for a primitive abstract mecha-
nism . Each step in the concrete synthesis phase involves
checking that a given non-deterministic choice of prim-
itive implementations yields a consistent constraint set .
The complexity of solving these geometric and dimen-
sional constraints is the same as that of solving con-
straints generated in the abstract synthesis phase . Alge-
braic descriptions are extremely general, but suffer from
two disadvantages . They require detailed knowledge of
the configuration spaces and the computation of M is
very expensive in this representation . This motivates
a qualitative approach to representing motions and the
construction of the qualitative counterpart of the M op-
erator on configuration spaces . This is the subject of the
next section .

23 3

5

	

Tractable Representations for
Compositions

Qualitative descriptions partition the space of possible
motions into equivalence classes . They have two chief
advantages : they permit partial specification of motions
which is useful in the formulation of motion synthesis
problems when the entire description of the motion is
not available . Second, they allow for potential efficiency
gains in performing the composition computations by
eliminating the need to solve complex non-linear equa-
tions .
Our qualitative language is a predicate language that

abstracts algebraic motion descriptions . It is similar to
other motion languages in the literature [7, 9, 11, 18]
in its use of predicate calculus . However, unlike these
approaches, but in common with [6], our aim is to pro-
vide an analysis of tradeoffs between expressive power
and computational efficiency for qualitative motion lan-
guages . We develop a soundness criterion called the M-
preservation property that a qualitative motion language
must satisfy to generate correct syntheses .
A qualitative motion language can be characterized by

a homomorphic mapping A which picks out specific prop-
erties of a motion, and necessarily omits other properties .
That is, there is a mapping A from a motion relation to
its qualitative description . For instance, our symbolic
language represents rotations by their centers (xyz loca-
tion), their axes (a unit vector), a speed (a constant for
a uniform rotation), an angular range (for constrained
rotations), and a frequency (for rotations that change
sense) . Rectilinear translations are represented by an
axis (a unit vector), a speed, a range (for constrained
translations), and a frequency (for reciprocations) . How
can we determine the representational adequacy of such
a language for a given class of design tasks? For our syn-
thesis task, we require the computation of compositions .
If we can compute A(1Z1 D4 7Z2) accurately and efficiently
from A(7Z1) and A(IZ2), for motion relations IZ 1 and 7Z2 ,
we have an adequate language . In other words, we need a
language for computing the description of 7Z 1 D4 7Z2 from
the descriptions of 7Z 1 and 7Z2 . The formal property is
called M-preservation and requires the specification of
D4-the composition operation in the abstract language
defined by A.
Definition 12 The mapping A is D4-preserving if

A(TZi M lZj) = A(7Zi)C~4A(7Zj)
Note that this constraint places restrictions on the def-

inition of D4 . We illustrate the D4 computation using the
gear train example of Section 3 . y1 and 992 transform a
rotary motion to another rotary motion with a different
speed and sense . The predicates below reformulate the
algebraic descriptions of rotation provided earlier . The
implementation of the M relation is denoted D4 .

Input : rotation Output : rotation
71 = center : (XA, YA) center : (XB, YB)

speed : S1 speed : -a1S1
Input : rotation Output : rotation

92 -- center : (xm,yM) center : (XN,YN)
speed : S2 speed : -o:2S2

Figure 5 : An example that shows D4-preservation viola-
tion

Input : rotation

	

Output : rotation
9C1k992

	

-

	

center : (XA, YA)

	

center : (XF, YF)
speed : Sl

	

speed: -a2(-a1S1)

To implement D4 by C~3, we equate the description of
the output motion of 991 with that of the input motion
of 92, where 992 is rigidly transformed . The composition
results in the following constraints .

1 . Ttrans(XM,YM) _ (XB,YB)

2 . Ttrans(XN,YN) _ (XF,YF)

We calculate the rigid transformation Ttrans (in this case
a pure translation) which moves the rotation about the
z axis from (xm, ym) to (XB, YB) . We then apply that
transformation to the output of 92. In this example, no
computational advantage is obtained over the algebraic
descriptions by the use of our qualitative reformulation .
This is because, forthe purposes of the composition com-
putation, the information captured by the qualitative vo-
cabulary is contained exactly in the equations manipu-
lated earlier .

For the simple language of rotations and rectilinear
translations introduced above, D4 "unifies" motions Mi
and Mj by calculating the generalized rigid transforma-
tion T such that T(Mi) = Mj . Two rotations can be
unified if they have the same axes of rotation, their an-
gular speeds and range are equal, and they are have the
same frequency (if they are oscillations) . This unifica-
tion captures the composition calculation in C-space and
the abstract description filters exactly the properties of
interest .
We will call a mechanism linear if its output motion

is a linear function of its input motion . For example,
a spur-gear pair and a worm-spur pair are implementa-
tions of linear rotary motion converters . The interval
over which the output of a linear mechanism ranges is
aX+b where a, b E R and X is the interval over which its
input motion ranges . The frequency of the input motion
is preserved by a linear mechanism . In general, if the
configuration space relations R1 and R2 are linear (rep-
resentable by linear constraints), the D4 defined above,
permits A to be W-preserving . To better understand the
M-preservation property, it is useful to consider the ex-
ample in Figure 5 where D4-preservation is violated .
The output of the crank rocker in Figure 5 is a rec-

tilinear translation (reciprocation) which is the input to
the skotch-yoke mechanism . Our D4 construction unifies

23 4

the two motions as long as their ranges, speed, and axes
coincide . Unfortunately, an analysis of the underlying
C-space relations reveals that there is at most one pos-
sible position where the two motions intersect, thus the
mechanism jams (becomes rigid) . Both the crank-rocker
and skotch-yoke mechanisms are non-linear .
The specific D4 that we developed above is inadequate

for handling non-linear mechanisms in a general way . To
guarantee D4-preservation for the specific M and A com-
bination introduced here, we ensure that non-uniform
motions are not composed . This can be done with the
restriction that nonlinear mechanisms only take uniform
motions as input . Since no non-uniform motion can be
transformed to a uniform motion within the primitive
abstract mechanisms that our system possesses, com-
posite mechanisms can contain at most one nonlinear
mechanism . Most mechanisms used in practice satisfy
these restrictions . An important exception occurs when
a nonuniform mechanism is composed with a copy of
itself, then the resulting mechanism may be linear . For
example, automotive transmissions have compositions of
two Hooke joints with the same angles .

Unlike other efforts [8, 9, 11] to design qualitative mo-
tion vocabulary in the context of synthesis, our quali-
tative descriptions are derived as abstractions of under-
lying relations on configuration spaces . This allows us
to understand what the qualitative descriptions mean,
what loss of expressive power is entailed by their use, and
whether we obtain computational efficiency from them .
In particular, the D4-preservation property permits the
assessment of the correctness of a given qualitative mo-
tion vocabulary with respect to a class ofsynthesis tasks .

In the next section, we show how qualitative motion
languages can be used to generate efficient constraint-
solving schemes for kinematic synthesis .

6

	

Efficient Synthesis Algorithms

We reformulate the algebraic description of the abstract
synthesis problem in terms of qualitative motion descrip-
tions .

Given i, a qualitative specification of the input motion ;
o, a qualitative specification of the output motion,
and constraints on i and o .

Find a sequence of abstract mechanisms A1, . . .,A.

which when composed will transform any motion
described by i to some motion described by o . To
be exact, we want

dmi E i3mo E o.(mi, mo) E A1 m . . . N An

where mi E i means that the motion mi is in the
class of motions described by the qualitative speci-
fication i .

We adapt the synthesis procedure developed in Sec-
tion 4 to handle constraints on qualitative motion de-
scriptions . To make it efficient, we transform the naive
generate-and-test scheme to a goal-directed procedure
that chains backward from the desired output o to
i . We distinguish between single-input, single-output

(SISO) mechanism synthesis from single-input, multi-
output mechanism (SIMO) synthesis because of the op-
portunity for optimization by function sharing in the lat-
ter case . We begin with the algorithm for the SISO case .
The algorithms below are not committed to any partic-

ular abstraction language . For each language, we require
procedures that test equality of motion descriptions, and
compute input motion of a primitive abstract mechanism
from its output motion . We will illustrate these in the
context of the simple motion description system intro-
duced in Section 5 .

6.1

	

Synthesizing single input, single output
mechanisms

SISO-Synthesize(i,o)
1 . If i = o, then return the null machine .
2 . Else select an abstract mechanism M and find a

rigid transformation T such that

q = {m I (m, mo) E T(M), mo E o} 0 0
Thus q describes the (largest) set of motions that
can be transformed by T(M) to motions in o . q
is the most general qualitative description in the
motion language which meets the previous require-
ment . It is the regression or backprojection of o
with respect to T(M) .

3 . Return [T(M), SISO-Synthesize(i,q)] .

Table 1 : Algorithm for synthesizing single input, single
output mechanisms

The recursive algorithm for synthesizing single input,
single output mechanisms is shown in Table 1 . We imple-
ment the synthesis method for our language as a depth-
bounded, goal-directed, depth-first backward chainer in
CLP(1Z) . The operational model of CLP(R) is similar to
Prolog (so the reader familiar with Prolog can read the
code below quite easily), however unification is replaced
by a more general mechanism : solving constraints in the
domain of functors over real arithmetic terms .

In our program, we differentiate between linear and
nonlinear primitive abstract mechanisms. For a linear
primitive mechanism, we store its name, a scaling factor
for the input and output motions, and the types of input
and output motion . For example, the abstract mecha-
nism corresponding to a gear pair with gears of sizes 3
and 5 is represented as
mechanism (gear-pair(3, 5) ,

linear(-3/5),
[rotation ((0,0,0), (0,0,1))],
[rotation(((3+5)/2,0,0),(0,0,1))]) .

For a nonlinear primitive mechanism, we store its
name, its input motion, which must be uniform (rotation
or translation with constant velocity), and its output
motion . For instance, the abstract nonlinear mechanism
corresponding to a crank rocker is represented as
mechanism(crank-rocker(L),

nonlinear,
[rotation ((0,0,0), (0,0, 1)), speed(F)]

23 5

[rotation ((L,0,0),(0,0,1)),
frequency(F), range(R)])
:-R>0,R<a .

The top-level invocation of the synthesis function is :
synthesize(input motion, . output motion, null design,
depth bound). The base case of the synthesis occurs
when the input motion i is equal to the output motion
o : this is established by solving arithmetic constraints
that are generated when the motions are unified .
synthesize(In-motion, Out-motion, Design, Depth) :-

motion-equal(In-motion, Out-motion) .
motion-equal is a predicate testing whether two motion
descriptions are equivalent . Its actual implementation
depends on the specific motion language . For our lan-
guage, one of the rules for checking motion equivalence
is
motion-equal([rectilinear-translation (X,Y,Z), speed(S)],

[rectilinear-translation(-X,-Y,-Z), speed(-S)]) .
This rule says that two rectilinear translations are the
same if they have opposite directions and opposite
speeds . For each type of motion, we have correspond-
ing rules for deciding equivalence .
The recursive step of synthesis first involves non-

deterministic choice of a primitive mechanism . Suppose
a linear primitive mechanism with output motion op is
chosen . The output op is made equal to the output of
the overall mechanism via a rigid transformation T com-
puted by solving the constraint T(op) = o . We need to
find T(ip), the input motion of the primitive after rigid
transformation . T(i p) can be calculated very easily from
the type of input motion and the scaling factor that re-
lates the input and output motions of the mechanism .
Then, the new synthesis problem i,T(ip) needs to be
solved .
synthesize(In-motion, Out-motion,

[(N,R-transform)I Design], Depth) :-
Depth > 0,
mechanism(N, linear(F), P.in-motion, P-outsnotion),
transform(P-outsnotion, Out-notion, R-transform),
linear-apply(R-transform, F, P-in-motion, NewGoal),
synthesize(In-motion, NewGoal, Design, Depth-1) .

If, however, the primitive mechanism chosen is not lin-
ear, the complete input and output motion description,
ip and op , will be given . We solve for the rigid transfor-
mation T directly . T(ip) is computed simply by applying
T to the given input motion .
synthesize(In-motion, Out-motion,

[(N,R-transform)I Design], Depth) :-
Depth > 0,
mechanism(N, nl, Pin-motion, Pout-notion),
transform(P-out-motion, Out-motion, R-transform),
nl-apply(R-transform, P-in-motion, NewGoal),
synthesize(In-motion, NewGoal, Design, Depth-1) .
Consider the design of the windshield wiper intro-

duced in Section 1 . The problem was specified as follows :
Input Motion i

	

Output Motion o
rotation rotation
center : (0,0,0)

	

center : (O,Y,Z)
axis : (0,0, 1)

	

axis: (1,0,0)
speed : 20

	

frequency : F, range : X
Constraints

	

: 0.5 < F < 2, 7r/2 < R < 7r
For the synthesis of the wiper, the first primitive ab-

stract mechanism chosen is a crank rocker .

Input motion ip
rotation
center : (0,0,0)
axis : (0,0,1)
speed : F
Constraints : 0 < R < 7r

To have the output of this primitive mechanism be
a rotation at (0, Y, Z), we will need to move the crank
rocker . We have to solve two systems of equations to
find the rigid transformation . The first system arises
from the requirement that the axes of rotations have to
be parallel . We need to find the angles of rotation that
aligns the axes . We have to solve

where R is a 3x3 rotational matrix . The second system
of equations arises because we require the centers of ro-
tations to be coincident after the rigid transformation .
Let T be the 4x4 transformation matrix and 0 be
rotational angles about the z, x, and y axis respectively.

L
0
0
1

Output motion op
rotation
center : (L,0,0)
axis : (0,0,1)
frequency : F, range : R

From these equations, we solve for x, y, z, 0, 0, 0 .

	

One
solution to this problem computed by our system is

x=0, y=Y-L, z=0, 0=a/2, 0=0,V)=0.

The rigid transformation computed in this case is a ro-
tation of 7r/2 about the y axis and a translation of Y - L
along the y axis . We apply the transformation to the
input motion of the primitive mechanism . The interme-
diate motion generated is :

Intermediate motion q
rotation
center : (0, Y - L, Z)
axis : (1,0,0)
speed : F

Input motion

	

Output motion
rotation rotation
center : (0,0,0)

	

center : (0,W,0)
axis : (0,0,1)

	

axis: (1,0,0)
speed : F1

	

speed : F1/a
Constraints : none

All that remains is to find a primitive mechanism to
transform the specified input motion i to the intermedi-
ate motion generated . This is accomplished with another
abstract mechanism that meets the constraint on F and
changes the axis of rotation, in this case, a worm-spur
pair .

The unification of the intermediate motion generated
above with the output of this primitive abstract mecha-
nism generates the constraints : F = Fl/a, Y - L = W,
Z = 0 . The rigid transformation is the identity transfor-
mation. Now the input motion of this primitive mecha-
nism can be matched with the input description i yield-
ing Fl = 20 . This generates the derived constraint

236

F = 20/a . Note that dimensional constraints have been
generated during the synthesis . Alternate abstract de-
signs and the corresponding refinements of a windshield
wiper found by our system include the composition of a
worm-spur pair, a slider crank, and a rack and pinion
mechanism ; as well as a worm-spur, scotch-yoke and a
rack-and-pinion mechanism . This example shows how
the backward chaining process accumulates simple al-
gebraic constraints which are solved incrementally dur-
ing the synthesis . The constraint programming language
CLP(7Z) [5] is used to implement the algorithm . CLP(7Z)
has mechanisms for solving and managing algebraic con-
straints . Graphical outputs are produced via an interface
to Mathematica4 .
Theorem 2 Algorithm SIS0-Synthesize (Q;, Qo)) is
sound: i .e, it designs concrete mechanisms that satisfy
the qualitative motion specifications (Q=, Qo) .

This theorem can be proven by induction on the length
of the generated solution . The worst case complexity of
this algorithm is exponential in the length of the solution
produced . The worst case branching factor for the search
is around 20, corresponding to the number of primitive
motion relations . In practice, the average branching fac-
tor is much smaller (around 4 for the examples in this
paper) because the constraint accumulation process is
a least-commitment strategy that minimizes backtrack-
ing in the space of compositions of primitive abstract
mechanisms . In other words, we incrementally solve for
the rigid transformation and dimensions of primitives
during synthesis . We do not search for them discretely,
which may be very time consuming . Put another way,
our constraint-based representation allow us to perform
delayed instantiation of parameters . Each search path
encodes a whole class of solutions . Pruning or accepting
a path involves pruning or accepting a whole class of so-
lutions . The algorithm synthesizes many of the designs
for conversion of uniform rotation to reciprocation in [1]
in a few seconds . The synthesis of the wiper shown in
Figure 1 and its variants were also completed in about
one second each on a Sparcstation 1+ . A design for a
clock produced by our system is in Figure 6 .

6.2

	

Synthesizing single input, multiple output
mechanisms

Many useful mechanisms produce multiple outputs from
a single source . e .g ., eggbeaters, cars . To design these
single input multiple output (SIMO) mechanisms, we
need to specify a sequence of output motions .
Given i, a qualitative specification of the input ;

Q Qo , a sequence of output motions, and con-
straints on i and o's .

Find A

	

tree

	

of

	

abstract

	

mechanisms,

	

Ai, . . . , Ak, ,
Ai, . . . , Akn,

	

which when composed satisfies the
input-output specification, i .e .,

t/1 < j < n.ygi E Qi .3go E Qo . (qi, qo) E Ai D4 . . . D4 Akj
The SIMO synthesis problem can be solved by a series

of calls to SISOSynthesize as in (Table 2) . Calls to
a Mathematica is a trademark of Wolfram Research, Inc .

Figure 6 : Clock design

SIMOSynthesize(i, oi l . . . 1 0")
for j from 1 to n do

A' . . . , A' .
t.- SISOSynthesize(i, ai)

/*
I

	

k,
optimization */

for j from 1 to n do
for each Ak in A,,...,M. do

for 1 from j+1 to n do
for each A;� in M i , . . . , Ak, do

if InMotion(.A;�) = InMotion(Ak) then
delete (A', . . .,MM_1)
merge the inputs of Am and Mki

Table 2 : Algorithm for Synthesizing single input, multi-
ple output mechanisms

237

SISOSynthesize produce a tree with isolated paths
from i to each of . However, this introduces a lot of
redundancy in the form of common intermediate mo-
tions along these paths . The optimization algorithm
in Table 2 merges common motions in the paths : if
the inputs h and 12 to two abstract mechanisms in
two different branches of the initial tree are equivalent,
we eliminate the path to 12 and connect h in place
of 12 . This eliminates repeated transformation of i to
12 . In the algorithm, we denote primitive A's input
motion by InMotion(A) . When we merge the inputs
of AM and Ak in the last step of SIM0Synthesize,
the input links of Am and Ak, as well as the out-
put links of Ak_1 are rigidly connected together .

	

The
optimization step merges identical motions, and there-
fore the final mechanism produced by the synthesis is
behaviorally equivalent to the original tree . By the
correctness of SISOSynthesize we can conclude that
SIMOSynthesize is also sound. The optimization re-
duces the number of nodes in the tree and thus produces
more compact refinements . The complexity of the opti-
mization stage is p2 where p is the number of primitives
in the unoptimized design.' We have the following the-
orem .

Theorem 3 Algorithm
(SIM0-Synthesize (Qt, (Q

	

Qo)) is sound: i .e, it.
designs concrete mechanisms that satisfies the motion
specifications (Qc, (Q', . . ., Q 11)) .0 , . . ., o

We now present the class of mechanisms that are syn-
thesizable by these algorithms . Clearly the class is de-
termined by the qualitative motion description language
used, and the set of primitive abstract mechanisms and
their associated implementations . For the specific mo-
tion language used in our current implementation, the
class of mechanisms synthesizable are fixed-topology,
single-degree of freedom mechanisms with at most one
non-linear mechanism on each path from the input to
the outputs . The mechanisms we consider thus far are
composed of rigid parts . The single-degree-of-freedom
restriction applies in our case, because all of our prim-
itive motion relations have only one degree of freedom .
The composition of two or more mechanisms with single
degree of freedom can only produce mechanisms with at
most one degree of freedom . Multi-degree of freedom
mechanisms can be synthesized by an algebraic tech-
nique . The restriction on rigid parts obtains because
our definitions of motions and mechanisms are grounded
in configuration spaces of rigid bodies . By allowing defi-
nitions based on generalized configuration spaces, we can
allow for some limited forms of non-rigidity . The restric-
tion on the number of non-linear mechanisms in a design
is needed for the correctness of the abstraction A that
generates the qualitative motion language . The fixed-
topology restriction can be eliminated by having a richer
set of primitive relations as well as a richer motion spec-
ification language which allows for expression of when

'This is because we are basically matching the input mo-
tion of every primitive in the design against that of other
primitives .

and how part contacts are made and broken . A limita-
tion of our current approach is the lack of a component
for shape design . If there is no sequence of primitive re-
lations that satisfies the given specification, our method
will fail to produce a design . We can integrate the meth-
ods of [7] for synthesizing novel shapes into our design
system to automatically extend our library of primitive
abstract mechanisms .

7 Conclusions
This paper presented a case study of the integration
of methods in qualitative physics and constraint pro-
gramming with general algebraic reasoning on config-
uration spaces . The design domain studied is that of
kinematic synthesis of mechanisms from specifications
of input and output motions . Two algorithms were pre-
sented that rapidly generate alternate behavioral decom-
positions and concrete refinements of a mechanism . We
also identified the class of mechanisms which can be cor-
rectly synthesized within the qualitative framework . We
have implemented our method in CLP(R) and all ex-
amples discussed in this paper are drawn-from our im-
plementation . Our base set of examples are drawn from
mechanisms in [14] and [1] . We are presently enriching
the language of qualitative motion specifications to han-
dle richer classes of non-linear -motions . This will allow
us to obtain better coverage over the examples in the
compendia listed above . Future work involves extend-
ing the set of primitive relations, proving completeness
properties for these relations, and integrating mecha-
nism synthesis with multi-domain (including dynamics
and optics) designs.
There are other approaches to mechanism synthesis

that can be profitably combined with the first-principles
approaches discussed above . Expert system techniques
[20] for synthesizing special classes of mechanisms e.g .,
cam-follower mechanisms, occupy an interesting middle
ground between pre-parametric design schemes which re-
quires high-level qualitative specifications and the nu-
merical optimization packages which require very de-
tailed kinematic specifications . Case-based methods
[15, 17] for synthesis of mechanical systems begin with
a known library of designs and use the goal specifica-
tion to index relevant designs. The retrieved designs are
modified to meet the given specifications . The algorithm
developed here can be used to design indices for the li-
brary of designs. This works by running the synthesis
algorithm "in reverse" to parse or understand a design
in terms of given primitive motion relations .
The class of conceptual design tasks that can profit

from the integration we have effected are tasks with a
significant geometric component. We have developed
fast simulation methods for the class of mechanisms that
can be synthesized by the algorithms presented here .
All the physical prototyping of the designs presented
in this paper were performed using Technics Lego . We
can integrate conceptual design through to detailed de-
sign and physical prototyping in a standard medium.
This work may have implications for mechanical nano-
technology designs because low-dimensional configura-
tion spaces can be used to reason about shapes and mo-

23 8

Figure 7 : Eggbeater designs

tions in that domain . Computational scale issues will be
studied with field work at the Xerox Webster Research
Center .

References

[2] J . Cagan and A . Agogino . Innovative design of me-
chanical structures from first principles . Journal
of Artificial Intelligence in Engineering Design and
Manufacturing, 1(3) :169-189, 1987.

[4] F . Freudenstein and L .S . Woo . Kinematic struc-
ture of mechanisms. In W.R . Spillers, editor, Basic
Questions of Design Theory . North Holland, 1974 .

[6] L . Joskowicz . Reasoning about Shape and Kinematic
Function in Mechanical Devices . PhD thesis, New
York University, September 1988 .

[8]

[9]

1 . Artobolevsky. Mechanisms in Modern Engineer-
ing Design, vols . 1-/, . MIR Publishers, Moscow,
1979 . English translation .

F . Freudenstein and L . Dobrjanskyj . On a theory of
type synthesis of mechanisms . ASME Transactions
on Machines and Mechanisms.

N . Heintze, S . Michaylov, P . Stuckey, and R. Yap .
The CLP(7Z) programmer's manual, version 1 .1 .
Technical report, Carnegie-Mellon University and
IBM Research, 1991 .

L . Joskowicz and S . Addanki . From kinematics to
shape: An approach to innovative design . In Pro-
ceedings of AAAI-88, pages 347-352 . Morgan Kauf-
mann, 1988 .
L . Joskowicz and E . Sacks . Computational kinemat-
ics . Artificial Intelligence, 51:381-416, 1991 .
S . Kannapan and K. Marshek . Design synthetic rea-
soning . Technical Report 216, Mechanical Systems
and Design, University of Texas at Austin, Septem-
ber 1989 .

[10] S . Kota . A qualitative matrix repreentation scheme
for the conceptual design of mechanisms . In Pro-
ceedings of the ASME Design Automation Confer-
ence . ASME, 1990 .

[11] S . Kota . Qualitative motion synthesis : Toward au-
tomating mechanical systems configuration . In Pro-
ceedings of the NSF Design and Manufacturing Sys-
tems Conference, pages 77-91, 1990 .

[12] J .C . Latombe . Robot Motion Planning . Kluwer Aca-
demic Publishers, 1991 .

[13] H . M. Mabie and C. F . Reinholtz . Mechanisms and
Dynamics of Machinery, 4th edition . John Wiley
and Sons, 1987 .

[14] D . Macaulay. How Things Work. Houghton Mifflin
Co ., 1990 .

[15] D . Navinchandra, K.P . Sycara, and S . Narasimhan .
A transformational approach to case-based synthe-
sis . Journal of Artificial Intelligence in Engineering
Design and Manufacturing, 5(2), 1991 .

239

[16] M.M. Rueleaux .

	

The Kinematics of Machinery .
MacMillan & Co., 1876 . Translated by Alex B.W.
Kennedy .

[17] K.P . Sycara, R. Guttal, J . Koning, S . Narasimhan,
and D . Navinchandra . Cadet : A case-based synthe-
sis tool for engineering design . International Jour-
nal of Expert Systems, 1991 .

(18] K . Ulrich . Computation and pre-parametric design .
Technical Report 1043, MIT Artificial Intelligence
Laboratory, July 1988 .

[19] K . Ulrich and W . Seering . Conceptual design :
Synthesis of systems of components . In S . Chan-
drasekar C.R . Liu, A . Requicha, editor, Intelligent
and Integrated Manufacturing Analysis and Synthe-
sis . ASME, PED-Vol 25, 1988.

[20] B . Yang, U . Datta, P. Datseris, and Y . Wu . An in-
tegrated system for design of mechanisms by an ex-
pert system : Domes. A1 EDAM, 3(1) :53-70, 1989 .

