Kinematic Synthesis with Configuration Spaces®

Devika Subramanian
Department of Computer Science
Cornell University -
Ithaca, NY 14853
devika@cs.cornell.edu

Abstract

This paper presents two algorithms for kine-
matic synthesis of mechanisms. A mechanism
is specified by its input and output motions.
The algorithms determine a three dimensional
structure of rigid parts that implements the
given specification. Both algorithms are based
on a new composition operation on configu-
ration spaces. Both algorithms are efficient,
constraint-satisfaction schemes that operate on
abstract motion descriptions. The class of syn-
thesis problems for which the methods apply is
identified. Experimental results with both al-
gorithms are obtained with a prototype system
implemented in CLP(R) [5].

1 Introduction

The broad goal of our research is to derive computa-
tional theories of conceptual or pre-parametric design.
As manufacturing technologies change, as new materials
are developed, as new design constraints emerge (designs
with recyclable parts, and designs that assemble and dis-
assemble easily), as products become more complex, as
the need to build in continuous improvement into design
processes emerges, basic conceptual design procedures
for electro-mechanical systems require broadening with
effective use of computer tools in the early stages of de-
sign. Our specific aim is to use methods from qualitative
physics and constraint programming to build new com-
putational prototyping tools for conceptual design.
This paper presents a design system in the area of
mechanism synthesis. Mechanisms are an important
part of most electro-mechanical systems — they form
the basic geometric elements of such systems. Mecha-
nisms transmit motion from one rigid body to another.
An example is the mechanism in a quartz watch that uses
the oscillating crystal to drive the minute hand at sixty
times the rotational speed of the hour hand. Another is
a rack and pinion steering of an automobile that converts
rotation about one axis (the steering action) to recipro-
cating motion along another axis. Our design system
takes as input constraints on the motion of a mechanism

*This work is supported by NSF-IRI-8902721, the Xerox
Design Research Institute, and the Moore Fund.

228

Cheuk-San (Edward) Wang
Department of Computer Science
Cornell University
Ithaca, NY 14853
wang@cs.cornell.edu

in qualitative mathematical form. As output, it pro-
duces a systematic enumeration of mechanism topologies
and geometries that satisfy the given constraints. It also
performs high-level simulation to demonstrate the feasi-
bility of the design. The conceptual designs produced by
our system can be refined and optimized by specialized
expert systems or constraint-solvers to select candidate
designs based on cost, material, manufacturing and as-
sembly constraints.

We illustrate how our design system is used with a
simple example. Consider the synthesis of a windshield
wiper whose input power is provided by a motor rapidly
rotating around the z axis and whose output is an oscil-
lation in the yz plane with low frequency. Note that this
a partial description of the input and output motions
of this device. We can describe these as a set of con-
straints in our predicate motion vocabulary as follows.
Rotations are specified by their centers and directions of
axes: rotation(Center,Axis). As we shall see later in the
paper, our motion predicates are a shorthand notation
for describing sets of configuration spaces.

Input Motion: rotation((0,0,0),(0,0,1)),
speed(20)
rotation((0,Y,Z),(1,0,0)),
frequency(F), range(R),
05<F<2,7/2<R<m

The first structure enumerated by the system is shown
in Figure 1. This design solves the problem with F =
0.833333.Y = 2,Z = —6. It employs a worm-spur pair
(with scaling factor 1/24) which converts the uniform in-
put rotation around the z axis to one about the z axis.
The output of the spur gear drives a crank rocker of
length 6. The overall output is tapped from the rocker.
Our program also calculates the position and orienta-
tions of the gears and the crank rocker. Note that both
the type and number synthesis problem as well as the
dimensional synthesis problem are solved. The design is
physically implemented in Technics™ Lego (see Fig-
ure 3). Another design, shown in Figure 2, that satisfies
the same motion specifications realizes the oscillatory
motion using a rack and gear pair, where the rack is
driven by a slider crank with the crank being rotated
Emiformly by a worm spur pair. This design is found in
14].

There are several unique aspects of our method. We

Output Motion:

Figure 1: Design of a windshield wiper

Figure 2: Another design of a windshield wiper

229

Figure 3: A Technics Lego implementation of a wind-
shield wiper

have a uniform representation for a variety of constraints
and can take them all into account during the synthesis
process. In this example, motion constraints as well as
dimensional constraints are handled simultaneously. The
synthesis process is very efficient. Relevant constraints
are enforced as soon as they become applicable. This is
what makes the generation process efficient: we elabo-
rate this point in Section 7. The two windshield wiper
designs were generated and rendered in about a second
on a Sparcstation 1+.

The synthesis process is grounded in a mathematical
theory of motion composition that is based on configura-
tion spaces. We compile the algebraic theory of motion
synthesis into a qualitative form that preserves essential
distinctions for the specification and solution of a large
class of kinematic synthesis problems. We introduce a
property called M-preservation which is a constraint on a
qualitative motion language that is needed to guarantee
the generation of. correct designs.

Our synthesis algorithms are actually implemented
and are currently being field tested at the Xerox Web-
ster Design Research Center. All the examples pre-
sented in this paper are designed by our system. Our
design system enumerates designs ordered by increasing
complexity!. Our system has produced innovative de-
signs for a number of common devices described in [14].

1.1 The Problem: Motion Synthesis

We now describe the synthesis problem addressed in this
paper in detail. Kinematic synthesis is the problem of
determining a three dimensional structure of rigid parts
that implements a given motion specification. Kinemat-
ics only considers motions and not the forces that cause
the motions. Kinematic synthesis is typically the first

!We use a simple metric for complexity: the number of
primitive mechanisms in the design

step in the design of a complete device. The solution
to the kinematic synthesis problem is structured in two
phases: type and number synthesis and dimensional syn-
thesis [13]. In type and number synthesis, the overall
shapes of the kinematic links in the mechanism, their
topological arrangement, and the nature of the kine-
matic connections between links, are determined. The
link lengths are derived during dimensional synthesis.
Sophisticated numerical packages are available for de-
tailed design or dimensional synthesis [13, pg. 618], and
research is now active [2, 3, 7, 9, 11, 17, 18, 19, 20] in the
area of conceptual design or type and number synthesis.

Conceptual synthesis is generally acknowledged to be
a very difficult problem. A modern textbook in the area
[13] states that

The designer generally relies on intuition and
experience as a guide to type and number syn-
thesis. Very little supporting theory is available
in these areas.

The conceptual synthesis problem is difficult because

designs are typically specified in incomplete terms and by-

their intended use (e.g., a fruit-picker or a fuel-hose con-
nector). There is no general theory that relates function
and structure in mechanical devices. That is, the space
of mechanisms that achieves a given functional specifica-
tion is not exhaustively and systematically enumerable.
Compendia such as Artobolevsky’s catalog [1] provide
a library of known mechanisms indexed by type (lever
mechanisms, e.g.) and function (e.g., indexing). They
are a useful starting point for a designer who can then use
systematic adaptation of these designs to create devices
which meet the specified functionality. The derivation
of the motions that accomplish a given function is an
open problem that is not addressed in this paper. Given
the motions, we call the problem of designing a struc-
ture that generates them, the motion synthesis problem.
This is also difficult to solve as it involves deriving ge-
ometry from motion. Most of the current work on con-
ceptual design of mechanisms focuses on this problem
[3, 7, 9, 10, 11, 20]. Our paper extends the work in
this area by providing a foundation for building com-
positional motion synthesis algorithms, and by design-
ing and implementing a new, practical, constraint-based
motion synthesis method.

One of the chief issues in the area of mechanism syn-
thesis from specification of motion is the choice of motion
description language. The choice of language is critical,
because it determines the space of specifiable as well as
constructible designs. A very fine-grained, quantitative
description language allows us to make fine distinctions
among motions. A very coarse qualitative language, on
the other hand, limits expressiveness but allows for the
construction of very efficient design algorithms. Our ap-
proach allows us to exploit the best features of quanti-
tative and qualitative motion description languages. At
the finest level of detail, motion is formalized in terms
of configuration spaces [12]. The motion of an object is
viewed as a mapping from time to its configuration space.
We also develop a predicate vocabulary [8, 9, 10] that is
an effective shorthand for some commonly occurring mo-
tions. Essentially, we define a type hierarchy of motion

230

descriptions whose semantics are grounded in configura-
tion spaces. The predicate language permits high-level
reasoning with certain classes of motions and the design
of efficient synthesis procedures. We specify the class of
synthesis problems for which the abstraction sanctioned
by the predicate descriptions yields correct designs in a
computationally effective manner.

Our solution to the motion synthesis problem follows
the standard breakdown into the conceptual and detailed
phases. Conceptual synthesis is a compositional [11] pro-
cess grounded in primitive motion relations. Each prim-
itive motion relation has associated with it a set of con-
crete implementations. We first construct a schematic
called an absiract mechanism that is a decomposition of
the overall input-output motion specification in terms of
the known primitive motion relations. Alternate decom-
positions yield alternate conceptual designs. Abstract
mechanisms are refined by choosing implementations of
the component primitive motion relations. Multiple re-
finements of a given abstract mechanism can be explored
in this phase.

A concrete mechanism specification includes the topo-
logical arrangement of links and kinematic pairs that re-
alize the input-output relation, as well as dimensional
constraints on the links. To generate a concrete mech-
anism for a given specification, we compose the imple-
mentations of the primitive relations. This process accu-
mulates constraints on link dimensions that are solved to
obtain a fully instantiated design. One of the strengths
of our approach is the clean integration between the
phases of conceptual and detailed design: dimensional
constraints generated during the conceptual phase are
solved during the synthesis of concrete mechanisms.

1.2 Guide to Paper

This paper is organized as follows. In Section 2, we for-
mally define motion specifications in terms of configura-
tion spaces, and introduce abstract and concrete mech-
anisms. The operators which compose abstract mecha-
nisms and their concrete counterparts are presented in
Section 3. The composition operators form the basis for
a rigorous specification and solution of the motion syn-
thesis problem. The common types of kinematic syn-
thesis problems are recast in our framework in Section
4. The general algebraic synthesis technique is presented
in that section. In Section 5, we discuss tractable repre-
sentations of the configuration space descriptions manip-
ulated by our synthesis method. The algebraic compo-
sition computation can be abstracted as operations on
symbolic predicates denoting qualitative motions. We
then present constraint-based algorithms that employ
qualitative motion descriptions. These algorithms have
been implemented in CLP(R) [5] and we present exam-
ples of interesting syntheses in Section 6. In Section
7, we conclude by reiterating the main contributions of
our paper and provide a discussion of future work on the
specific problem of automating motion synthesis and the
general problem of conceptual design.

2 Configuration Spaces, Motions, and
Mechanisms

We briefly review the concept of a configuration space
before formally defining the motion of an object. The
configuration of an object [12, pg. 8] is a specification
of the position of every point on it relative to a fixed
frame of reference. The objects we consider are compact
subsets of the N-dimensional Euclidean space RV. Let
F4 be a Cartesian frame embedded in the object A, and
let F be the fixed frame. The origin O4 of F4 is the
reference point on A.

Definition 1 A configuration of A is a specification of
the position and orientation of F, with respect to Fw .
The configuration space of A is the space C of all possible
configurations of A.

The configuration space C is intrinsically independent
of the choice of F4 and Fy . However, the representation
of C depends on these two choices. The configuration
of a rigid body constrained to move on a plane can be
represented by the triple (z,y,6), where (z,y) € R? is
the location of origin of F4, and 6 € [0,27) is the an-
gle between the z axes of F4 and Fyw. The dimension
of the configuration space in this case is three, because
any representation of this configuration space requires
the specification of three independent parameters. The
dimension of the configuration space of an object is its
number of degrees of freedom. A rigid body constrained
to move on a plane has three degrees of freedom: two
translational, and one rotational. Note that the config-
uration space is atemporal — that is, it is an unordered
set of configurations of an object. -

The motion M of an object is a description of how its
configuration changes with time. The configuration of a
planar rigid body undergoing pure rotation at time 1, is
(z4,ya,0(t)) where x4 and ya are fixed. (z4,y4), the
center of rotation is also the origin of F4, and (1) is the
angular orientation of F4 with respect to Fw , at time t.
For uniform rotation with angular velocity w, #(1) = wt.

Definition 2 The motion of an object is a continuous
function from time to its configuration space.

Now we are ready to formally define a mechanism.
Reuleaux [16] defines a mechanism as “a combination of
rigid bodies so formed and connected that they move
upon each other with definite relative motion.” We dis-
tinguish between an abstract mechanism which is a rela-
tion on the configuration spaces of the input and output
links, from a concrete mechanism which is a 3D arrange-
ment of rigid bodies that implements this relation. The
difference between an abstract and concrete mechanism
is that while an abstract mechanism describes what a
mechanism does, the concrete mechanism is a specifica-
tion of how it does it.

Definition 3 An abstract mechanism is a relation R
which is a subset of I x O where I and O are config-
uration spaces of its input and output links respectively.

Consider a meshed gear pair A and B on the zy plane
with fixed centers at (z4,y4) and (zp,yB). @ > 0 is
the gear ratio, and ¢ is the initial difference in angular

231

position between the local reference frames attached to
the centers of the two gears. It implements the relation
GCIxO0,I={(za,ya,0) |8 € [0,27)} and O =
{(zz,v8,¥) | ¥ € [0,2m)),

g = {(zA!yA:e»‘—'B:yBllb)|¢'="ae+¢:
(:Aly}he) € I)(IB!yB)¢] = O}

This description? has abstracted structure and could
well be implemented by any mechanism that transforms
uniform unconstrained rotation around the z axis at
(z4,y4), to uniform unconstrained rotation of the op-
posite sense, with angular velocity scaled by a, around
the z axis at (zp,yg). Note that G has only one de-
gree of freedom, namely 6. All other components of this
relation are either constants or can be calculated from 4.

Definition 4 The degree of freedom (DOF) of the ab-
stract mechanism R is the dimension of R.

This definition is equivalent to the standard definition
of the DOF of a mechanism as those motion variables
that are independent after kinematic and structural con-
straints are satisfied.

Defining an abstract mechanism as a relation between
two configuration spaces 1s precise, but sometimes unin-
tuitive. This motivates us to define an abstract mecha-
nism as a set of pairs of input and output motions.

Definition 5 Lel R be an abstract mechanism salisfy-
ing Definition 3, and let M; and M, be motions of the
input and output links respectively. Then this abstract

mechanism can be defined alternatively as 'R', where
R = {(M;, Mo) | ¥t (Mi(t), Mo(t)) € R}

Note that R is a relation on configuration spaces which
relates the instantaneous positions of the input links with
those of the output links. However, R’ is a relation be-
tween two motions. Definition 5 describes all possible
motion transformations of the mechanism and is usually
more intuitive than Definition 3.

The implementation of an abstract mechanism—a con-
crete mechanism, is a geometric description of links, and
joints between links that implements a relation between
configuration spaces. This description is stored as a kine-
matic diagram annotated with a set of constraints.

Definition 6 A concrete mechanism s a pair (K,C)
where K is the kinematic diagram of the mechanism and
C 15 a set of geomelric and dimensional consiraints on
K. There are two distinguished classes of links in K -
input links I, and output links Q. The relation between
the configuration spaces of the input and outpui links of
(K,C) 1s its corresponding abstract mechanism.

Following Freudenstein [4], we use graph theory to for-
mally specify a kinematic diagram. The kinematic graph
K of a concrete mechanism is an undirected graph (V,E),
where V is the set of vertices that denote the links, and
the edge set E represents the kinematic pairs. The edges
are labelled according to joint type [16]. There are one
or more nodes in V standing for the input and output

2We have omitted the relation between center distance
and pitch diameter of the gears for simplicity.

G

(za,

{yB)

. m
- Il

et a]

Figure 4: Composing two gear pairs

links of the mechanism. An annotated kinematic graph
has algebraic constraints on elements of V and E repre-
sented as a constraint set C.

3 Composition of Mechanisms

Complex mechanisms are composed out of simpler
ones. Composition constructs the relation (I, O;) from
(I;,0;) and (I2, 02) by imposing the equality constraint
O, = I,. In other words, we require that the configura-
tion space of the output link of one mechanism be the
same as the configuration space of the input link of the
other. Two configuration spaces are equal if and only
if they denote the same set of configurations. To en-
force the equality constraint between two configuration
spaces, we intersect them to obtain the configurations
common to both sets.?

Definition 7. The composition M of two absiraci mech-
anisms Ry C I, x Oy and Ro C I, x O4 1s

Ri1 X Ra = {(41,02) | 01 = 12A(41,01) € R1A(12,02) € R2}

The composition of two abstract mechanisms is illus-
trated with the construction of G7 that can be imple-
mented by a gear train, from two relations G and G, that

3This composition operation is to be distinguished from
that introduced in [6]. Joskowicz treats the composition
of two configuration spaces as an intersection, whereas our
notion of composition is defined on relations on configura-
tion spaces. His composition scheme is suited for kinematic
simulation. :

232

can be implemented by gear pairs. We use the relation
in Equation 1 to define G, and G».

gl = {(3.4:.'}4,9»313'5»‘8,!9) | u:" = —019+¢}
g2 = {(’-M:IJ'M,'?"fN,yN;lf"]f‘l,b,=—029;+¢|‘}
GT = Gi1XG,

{(3A,HA;9,3N,ZUN, ’J:") |
(IA:yAsg‘x&.UB,'w) € glr

(3M19Mu9“3N: UN, ?f«") (S g?n
(z5,y8,¥) = (za,ym.0)}

The gear ratios a; and a, are both positive. From G7,
we can derive the fact that ¢ = —as(—a10+ @) + é.
When two concrete mechanisms, (K;,C,) and
(K5, C,), that implement relations R; and R respec-
tively are composed, a rigid connection is formed be-
tween the output links of K; and the input links in K.
The constraints, C; and C,, are merged. For example,
in figure 4, we show the composition of the implementa-
tions of G, and G, to yield an implementation of G7 .

Definition 8 Let the concrete mechanisms (K,,C,)
with Ky, = (W1, Ey) and (K., Csy) with Ky = (Va, E2)
implement Ry C I} x O; and Ry C I x Oy respec-
tively. The new concrete mechanism (K,C) that im-
plements Ry M R, can be formed from (K,,C,) and
(K4, C3), (denoted (K,C) = (K;,C;)e(K2,C2)) by hav-
ing C = C1UCs, V = ViuVs, E = Ey\UE, and by adding
edges denoled rigid connections between output links in
Vi and corresponding input links in Vs.

4 The Synthesis Problem

We now cast the synthesis problem in the formal frame-
work for motions and mechanisms that we have just
introduced. Synthesis problems are rarely posed with
complete specifications of the desired input and output
motions. Typically, we are given constraints on the mo-
tions which define a class of abstract mechanisms, and
not a particular one.

Definition 9 The general synthesis problem is to find
a concrete mechanism (K,C), given constraints on an
abstract mechanism R C I x O.

The construction of K from the partial specification
of the relation R solves the {ype and number synthesis
problem. The solution of C solves the dimensional syn-
thesis problem.

We view mechanisms as motion transformers [10]. Our
compositional approach to solving the general synthesis
problem grounds the syntheses in a set of primitive mo-
tion relations (abstract mechanisms) R, and associates
with each a set of concrete implementations (K,, Cp). In
the first phase of synthesis, we find a composition of ab-
stract mechanisms which satisfies the given constraints
on R. In the second phase, we choose concrete imple-
mentations of the primitive relations. We will show that
this method is sound: that is, it produces concrete mech-
anisms which implement the given motion specifications.

Definition 10 The abstract synthesis problem 1s to find
a sequence of absiract mechanisms, Ry, Ra, ..., R,, with

known concrete counterparts, where Ry X Ro M ... X
R, salisfies the given constraints on R.

A simple incremental, generate-and-test algorithm for
solving this problem starts with the identity abstract
mechanism Z (I = O) and computes compositions of
primitive relations R, until the composition satisfies the
specification. Concrete designs are produced by finding
implementations for the compositions of primitive rela-
tions found by the previous procedure. For each primi-
tive motion relation we non-deterministically pick an im-
plementation. We use Definition 8 to compose two con-
crete mechanisms. This process involves simultaneously
solving dimensional and geometric constraints from each
of the chosen primitive implementations.

Definition 11 The concrete synthesis problem is to find
a set of concrete implementations (K;,C;), 1 < i< n for
each element in the composilion R1,Ra,...,R,, which
solves the abstract synthésis problem for the given con-
straints on R, such that UT_,C; is satisfiable.

Theorem 1 The synthesis process consisling of solving
the absiract synthesis problem followed by the concrete
synthesis problem, is sound. That is, if it produces a
solution, it will satisfy the specified motion constraints.

Currently, we have abstract mechanisms that can con-
vert uniform rotations and translations into uniform as
well as non-uniform rotations and translations. The set
of concrete implementations we have include gear pairs,
racks and pinions, simple linkages, worm spurs, skotch
yokes, etc. Additional abstract mechanisms correspond-
ing to motion relations with concrete implementations
can be added very easily to our design system.

We now discuss the computational complexity of the
abstract and the concrete synthesis procedures. Let the
cardinality of the set of primitive abstract mechanisms
be n. Suppose we consider only composite mechanisms
with at most p primitives. In the abstract synthesis
phase, the generation component can explore 3 ?_, n
alternatives. We have to compute compositions during
the process, which involves intersection of algebraic sets:
the worst case time complexity is doubly exponential in
the number of variables in the constraint set, when a
closed form solution is possible.

In the concrete synthesis phase, the number of possi-
ble candidates are d” where d is the maximum number
of concrete instantiations for a primitive abstract mecha-
nism. Each step in the concrete synthesis phase involves
checking that a given non-deterministic choice of prim-
itive implementations yields a consistent constraint set.
The complexity of solving these geometric and dimen-
sional constraints is the same as that of solving con-
straints generated in the abstract synthesis phase. Alge-
braic descriptions are extremely general, but suffer from
two disadvantages. They require detailed knowledge of
the configuration spaces and the computation of X is
very expensive in this representation. This motivates
a qualitative approach to representing motions and the
construction of the qualitative counterpart of the X op-
erator on configuration spaces. This is the subject of the
next section.

233

5 Tractable Representations for
Compositions

Qualitative descriptions partition the space of possible
motions into equivalence classes. They have two chief
advantages: they permit partial specification of motions
which is useful in the formulation of motion synthesis
problems when the entire description of the motion is
not available. Second, they allow for potential efficiency
gains in performing the composition computations by
eliminating the need to solve complex non-linear equa-
tions.

Our qualitative language is a predicate language that
abstracts algebraic motion descriptions. It is similar to
other motion languages in the literature [7, 9, 11, 18]
in its use of predicate calculus. However, unlike these
approaches, but in common with [6], our aim is to pro-
vide an analysis of tradeoffs between expressive power
and computational efficiency for qualitative motion lan-
guages. We develop a soundness criterion called the X-
preservation property that a qualitative motion language
must satisfy to generate correct syntheses.

A qualitative motion language can be characterized by
a homomorphic mapping A which picks out specific prop-
erties of a motion, and necessarily omits other properties.
That is, there is a mapping A from a motion relation to
its qualitative description. For instance, our symbolic
language represents rotations by their centers (xyz loca-
tion), their axes (a unit vector), a speed (a constant for
a uniform rotation), an angular range (for constrained
rotations), and a frequency (for rotations that change
sense). Rectilinear translations are represented by an
axis (a unit vector), a speed, a range (for constrained
translations), and a frequency (for reciprocations). How
can we determine the representational adequacy of such
a language for a given class of design tasks? For our syn-
thesis task, we require the computation of compositions.
If we can compute A(R; M Ro) accurately and efficiently
from A(R,) and A(R.), for motion relations R; and R,
we have an adequate language. In other words, we need a
language for computing the description of R X R2 from
the descriptions of Ry and R,. The formal property is
called M-preservation and requires the specification of
K—the composition operation in the abstract language
defined by A.

Definition 12 The mapping A 1s M-preserving if
A(R; M R;) = A(R;)NA(R;)

Note that this constraint places restrictions on the def-
inition of M. We illustrate the X computation using the
gear train example of Section 3. G; and G, transform a
rotary motion to another rotary motion with a different
speed and sense. The predicates below reformulate the

algebraic descriptions of rotation provided earlier. The
implementation of the X relation is denoted .

Input: rotation Output: rotation

Gi = center: (z4,ys) center: (zB,y8B)
speed: S, speed: —a; 5
Input: rotation Output: rotation

G» = center: (zp,ym) center: (zy,yn)

speed: S, speed: —a;S,

Z
@‘i

-— — «—] —>
Figure 5: An example that shows X-preservation viola-

tion

Input: rotation
center: (z4,y4)
speed: 5

Qutput: rotation
center: (zr,yr)
speed: —aa(—a1S5))

GiWG, =

To implement ™ by X, we equate the description of
the output motion of G, with that of the input motion
of Gs, where G is rigidly transformed. The composition
results in the following constraints.

1' ’I;raﬂs(IMl yM) = (st yB)
2. ‘Tiran:(xNa yN) — (st yP}

We calculate the rigid transformation Tirans (in this case
a pure translation) which moves the rotation about the
z axis from (zp,ym) to (zp,yp). We then apply that
transformation to the output of G». In this example, no
computational advantage is obtained over the algebraic
descriptions by the use of our qualitative reformulation.
This is because, for the purposes of the composition com-
putation, the information captured by the qualitative vo-
cabulary is contained exactly in the equations manipu-
lated earlier.

For the simple language of rotations and rectilinear
translations introduced above, @ “unifies” motions M;
and M; by calculating the generalized rigid transforma-
tion 7 such that T(M;) = M;. Two rotations can be
unified if they have the same axes of rotation, their an-
gular speeds and range are equal, and they are have the
same frequency (if they are oscillations). This unifica-
tion captures the composition calculation in C-space and
the abstract description filters exactly the properties of
interest.

We will call a mechanism linear if its output motion
is a linear function of its input motion. For example,
a spur-gear pair and a worm-spur pair are implementa-
tions of linear rotary motion converters. The interval
over which the output of a linear mechanism ranges is
aX +b where a,b € R and X is the interval over which its
input motion ranges. The frequency of the input motion
is preserved by a linear mechanism. In general, if the
configuration space relations R, and R are linear (rep-
resentable by linear constraints), the X defined above,
permits A to be M-preserving. To better understand the
td-preservation property, it is useful to consider the ex-
ample in Figure 5 where X-preservation is violated.

The output of the crank rocker in Figure 5 is a rec-
tilinear translation (reciprocation) which is the input to
the skotch-yoke mechanism. Qur K construction unifies

the two motions as long as their ranges, speed, and axes
coincide. Unfortunately, an analysis of the underlying
C-space relations reveals that there is at most one pos-
sible position where the two motions intersect, thus the
mechanism jams (becomes rigid). Both the crank-rocker
and skotch-yoke mechanisms are non-linear.

The specific X that we developed above is inadequate
for handling non-linear mechanisms in a general way. To
guarantee M-preservation for the specific ® and A com-
bination introduced here, we ensure that non-uniform
motions are not composed. This can be done with the
restriction that nonlinear mechanisms only take uniform
motions as input. Since no non-uniform motion can be
transformed to a uniform motion within the primitive
abstract mechanisms that our system possesses, com-
posite mechanisms can contain at most one nonlinear
mechanism. Most mechanisms used in practice satisfy
these restrictions. An important exception occurs when
a nonuniform mechanism is composed with a copy of
itself, then the resulting mechanism may be linear. For
example, automotive transmissions have compositions of
two Hooke joints with the same angles.

Unlike other efforts [8, 9, 11] to design qualitative mo-
tion vocabulary in the context of synthesis, our quali-
tative descriptions are derived as abstractions of under-
lying relations on configuration spaces. This allows us
to understand what the qualitative descriptions mean,
what loss of expressive power is entailed by their use, and
whether we obtain computational efficiency from them.
In particular, the M-preservation property permits the
assessment of the correctness of a given qualitative mo-
tion vocabulary with respect to a class of synthesis tasks.

In the next section, we show how qualitative motion
languages can be used to generate efficient constraint-
solving schemes for kinematic synthesis.

6 Efficient Synthesis Algorithms

We reformulate the algebraic description of the abstract
synthesis problem in terms of qualitative motion descrip-
tions.

Given i, a qualitative specification of the input motion;
o, a qualitative specification of the output motion,
and constraints on ¢ and o.

Find a sequence of abstract mechanisms A,,..., A,
which when composed will transform any motion
described by i to some motion described by o. To
be exact, we want :

Ym; € i.3m, € o.(m,-,mo) EAM...MA,

where m; € ¢ means that the motion m; is in the
class of motions described by the qualitative speci-
fication 1.

We adapt the synthesis procedure developed in Sec-
tion 4 to handle constraints on qualitative motion de-
scriptions. To make it efficient, we transform the naive
generate-and-test scheme to a goal-directed procedure
that chains backward from the desired output o to
i. We distinguish between single-input, single-output

234

(SISO) mechanism synthesis from single-input, multi-
output mechanism (SIMO) synthesis because of the op-
portunity for optimization by function sharing in the lat-
ter case. We begin with the algorithm for the SISO case.

The algorithms below are not committed 1o any partic-
ular abstraction language. For each language, we require
procedures that test equality of motion descriptions, and
compute input motion of a primitive abstract mechanism
from its output motion. We will illustrate these in the
context of the simple motion description system intro-
duced in Section 5.

6.1 Synthesizing single input, single output
mechanisms

SISO Synthesize(i,0)
1. If i = o, then return the null machine.

2. Else select an abstract mechanism M and find a
rigid transformation T such that

g={m|(m,m,) € T(M),m, € o} # 0

Thus ¢ describes the (largest) set of motions that
can be transformed by T'(AM) to motions in 0. ¢
is the most general qualitative description in the
motion language which meets the previous require-
ment. It is the regression or backprojection of o
with respect to T(M).

3. Return [T(M), SISO_Synthesize(i,q)].

Table 1: Algorithm for synthesizing single input, single
output mechanisms

The recursive algorithm for synthesizing single input,
single output mechanismsis shown in Table 1. We imple-
ment the synthesis method for our language as a depth-
bounded, goal-directed, depth-first backward chainer in
CLP(R). The operational model of CLP(R) is similar to
Prolog (so the reader familiar with Prolog can read the
code below quite easily), however unification is replaced
by a more general mechanism: solving constraints in the
domain of functors over real arithmetic terms.

In our program, we differentiate between linear and
nonlinear primitive abstract mechanisms. For a linear
primitive mechanism, we store its name, a scaling factor
for the input and output motions, and the types of input
and output motion. For example, the abstract mecha-
nism corresponding to a gear pair with gears of sizes 3
and 5 is represented as
mechanism(gear_pair(3,5),

linear(-3/5),
[rotation((0,0,0),(0,0,1))],
[rotation(((3+5)/2,0,0),(0,0,1))]).

For a nonlinear primitive mechanism, we store its
name, its input motion, which must be uniform (rotation
or translation with constant velocity), and its output
motion. For instance, the abstract nonlinear mechanism
corresponding to a crank rocker is represented as

mechanism(crank.-rocker(L),
nonlinear,
[rotation((0,0,0),(0,0,1)), speed(F)]

235

[rotation((L,0,0),(0,0,1)),
frequency(F), range(R)])
~R>0,R<r.

The top-level invocation of the synthesis function is:
synthesize(input motion,. output motion, null design,
depth bound). The base case of the synthesis occurs
when the input motion i is equal to the output motion
o: this is established by solving arithmetic constraints
that are generated when the motions are unified.

synthesize(In.motion, Out_motion, Design, Depth) :-
motion_equal(In_motion, Out_motion).

motion.equal is a predicate testing whether two motion
descriptions are equivalent. Its actual implementation
depends on the specific motion language. For our lan-
guage, one of the rules for checking motion equivalence
1s

motion_equal([rectilinear_translation(X,Y,Z), speed(S)],
[rectilinear_translation(-X,-Y,-Z), speed(-S)]).

This rule says that two rectilinear translations are the
same if they have opposite directions and opposite
speeds. For each type of motion, we have correspond-
ing rules for deciding equivalence.

The recursive step of synthesis first involves non-
deterministic choice of a primitive mechanism. Suppose
a linear primitive mechanism with output motion o, is
chosen. The output o, is made equal to the output of
the overall mechanism via a rigid transformation T' com-
puted by solving the constraint T(0,) = 0. We need to
find T'(z,), the input motion of the primitive after rigid
transformation. T'(ip) can be calculated very easily from
the type of input motion and the scaling factor that re-
lates the input and output motions of the mechanism.
Then, the new synthesis problem i,7(i,) needs to be
solved.

synthesize(In.motion, Out_motion,
[(N,R_transform)|Design], Depth) :-
Depth > 0,
mechanism(N, linear(F), P_.in_motion, P_out_motion),
transform(P.out.motion, Out_motion, R_transform),
linear_apply(R_-transform, F, P.in_motion, NewGoal),
synthesize(In_motion, NewGoal, Design, Depth-1).
If, however, the primitive mechanism chosen is not lin-
ear, the complete input and output motion description,
i, and o,, will be given. We solve for the rigid transfor-
mation 7" directly. T'(,) is computed simply by applying
T to the given input motion.
synthesize(In_motion, Out_motion,
[(N,R_transform)|Design], Depth) :-
Depth > 0,
mechanism(N, nl, Pin_motion, P_out_motion),
transform(P_out.motion, Out_motion, R_transform),
nl.apply(R-transform, P_in_motion, NewGoal),
synthesize(In.motion, NewGoal, Design, Depth-1).

Consider the design of the windshield wiper intro-

duced in Section 1. The problem was specified as follows:
Input Motioni Output Motion o

rotation rotation

center: (0,0,0) center: (0,Y,Z)

axis: (0,0,1) axis: (1,0,0)

speed: 20 frequency: F, range: X
Constraints : 05<F <2, 7/2<R<7

For the synthesis of the wiper, the first primitive ab-
stract mechanism chosen is a crank rocker.

Input motion i, Output motion o,

rotation rotation

center: (0,0,0) center: (L,0,0)

axis: (0,0,1) axis: (0,0,1)

speed: F' frequency: F, range: R

Constraints: 0 < R< 7

To have the output of this primitive mechanism be
a rotation at (0,Y, Z), we will need to move the crank
rocker. We have to solve two systems of equations to
find the rigid transformation. The first system arises
from the requirement that the axes of rotations have to
be parallel. We need to find the angles of rotation that
aligns the axes. We have to solve

s(8)=(e)

where R is a 3x3 rotational matrix. The second system
of equations arises because we require the centers of ro-
tations to be coincident after the rigid transformation.
Let T be the 4x4 transformation matrix and 1, ¢,8 be
rotational angles about the z,z, and y axis respectively.

L z L 0
o) _ R y o) (v
Tl o |= - o }=1 2
1 000 1 1 1

From these equations, we solve for z,y,2,8,¢,¢%. One
solution to this problem computed by our system 1is

2=0,y=Y—L,2=0,0=7/2, =0, =0.

The rigid transformation computed in this case is a ro-
tation of /2 about the y axis and a translation of Y — L
along the y axis. We apply the transformation to the
input motion of the primitive mechanism. The interme-
diate motion generated is:

Intermediate motion ¢

rotation

center: (0,Y —L,Z)

axis: (1,0,0)

speed: F

All that remains is to find a primitive mechanism to

transform the specified input motion 7 to the intermedi-
ate motion generated. This is accomplished with another
abstract mechanism that meets the constraint on F' and
changes the axis of rotation, in this case, a worm-spur
pair.

Input motion Output motion

rotation rotation
center: (0,0,0) center: (0,W,0)
axis: (0,0,1) axis: (1,0,0)
speed: [y speed: Fi/a

Constraints: none

The unification of the intermediate motion generated
above with the output of this primitive abstract mecha-
nism generates the constraints: F = Fi/e, Y — L =W,
Z = 0. The rigid transformation is the identity transfor-
mation. Now the input motion of this primitive mecha-
nism can be matched with the input description i yield-
ing F; = 20. This generates the derived constraint

236

F = 20/a. Note that dimensional constraints have been
generated during the synthesis. Alternate abstract de-
signs and the corresponding refinements of a windshield
wiper found by our system include the composition of a
worm-spur pair, a slider crank, and a rack and pinion
mechanism; as well as a worm-spur, scotch-yoke and a
rack-and-pinion mechanism. This example shows how
the backward chaining process accumulates simple al-
gebraic constraints which are solved incrementally dur-
ing the synthesis. The constraint programming language
CLP(R) [5] is used to implement the algorithm. CLP(R)
has mechanisms for solving and managing algebraic con-
straints. Graphical outputs are produced via an interface
to Mathematica?.

Theorem 2 Algorithm SISO _Synthesize(Q;, Q,)) 1s
sound: i.e, it designs concrete mechanisms that satisfy
the qualiiative motion specifications (Q:, Q,).

This theorem can be proven by induction on the length
of the generated solution. The worst case complexity of
this algorithm is exponential in the length of the solution
produced. The worst case branching factor for the search
is around 20, corresponding to the number of primitive
motion relations. In practice, the average branching fac-
tor is much smaller (around 4 for the examples in this
paper) because the constraint accumulation process is
a least-commitment strategy that minimizes backtrack-
ing in the space of compositions of primitive abstract
mechanisms. In other words, we incrementally solve for
the rigid transformation and dimensions of primitives
during synthesis. We do not search for them discretely,
which may be very time consuming. Put another way,
our constraint-based representation allow us to perform
delayed instantiation of parameters. Each search path
encodes a whole class of solutions. Pruning or accepting
a path involves pruning or accepting a whole class of so-
lutions. The algorithm synthesizes many of the designs
for conversion of uniform rotation to reciprocation in [1]
in a few seconds. The synthesis of the wiper shown in
Figure 1 and its variants were also completed in about
one second each on a Sparcstation 14. A design for a
clock produced by our system is in Figure 6.

6.2 Synthesizing single input, multiple output
mechanisms

Many useful mechanisms produce multiple outputs from

a single source. e.g., eggbeaters, cars. To design these

single input multiple output (SIMO) mechanisms, we

need to specify a sequence of output motions.

Given i, a qualitative specification of the input;
Q},, ..., Q7. a sequence of output motions, and con-
straints on 7 and o’s.

Find A tree of abstract mechanisms, A{,...,Ail,

A},..., AL, which when composed satisfies the
input-output specification, i.e.,

V1<j<nVe€Qi3g € Qg ql) €A M. M AL

The SIMO synthesis problem can be solved by a series
of calls to SISO _Synthesize as in (Table 2). Calls to

*Mathematica is a trademark of Wolfram Research, Inc.

Figure 6: Clock design

SIMO _Synthesize(i, o', ...,0")
for j from 1 to n do
. ,Ai,_ — SISO _Synthesize(i, o)
/* optimization */
for j from 1 to n do ‘
for each A} in A},...,. Mj, do
for | from j+1 to n do
for each Al in M}, . ..,.AL do
if InMotion(A!,) = InMotion(A4]) then
delete (A},... ML _))
merge the inputs of A} and M

Table 2: Algorithm for Synthesizing single input, multi-
ple output mechanisms

237

SISO _Synthesize produce a tree with isolated paths
from i to each o/. However, this introduces a lot of
redundancy in the form of common intermediate mo-
tions along these paths. The optimization algorithm
in Table 2 merges common motions in the paths: if
the inputs I; and I; to two abstract mechanisms in
two different branches of the initial tree are equivalent,
we eliminate the path to I, and connect [; in place
of I». This eliminates repeated transformation of i to
I,. In the algorithm, we denote primitive A’s input
motion by InMotion(.A). When we merge the inputs
of A!, and A} in the last step of SIMO _Synthesize,
the input links of Al and A}, as well as the out-

put links of A}, _, are rigidly connected together. The
optimization step merges identical motions, and there-
fore the final mechanism produced by the synthesis is
behaviorally equivalent to the original tree. By the
correctness of SISO _Synthesize we can conclude that
SIMO Synthesize is also sound. The optimization re-
duces the number of nodes in the tree and thus produces
more compact refinements. The complexity of the opti-
mization stage is p* where p is the number of primitives
in the unoptimized design.> We have the following the-
orem.

Theorem 3 Algorithm
(SIMO Synthesize (Q;,(Q),..., Q")) is sound: i.e, it
designs concreie mechanisms that satisfies the motion

specifications (Q:,(Q}, ..., Q3)).

We now present the class of mechanisms that are syn-
thesizable by these algorithms. Clearly the class is de-
termined by the qualitative motion description language
used, and the set of primitive abstract mechanisms and
their associated implementations. For the specific mo-
tion language used in our current implementation, the
class of mechanisms synthesizable are fixed-topology,
single-degree of freedom mechanisms with at most one
non-linear mechanism on each path from the input to
the outputs. The mechanisms we consider thus far are
composed of rigid parts. The single-degree-of-freedom
restriction applies in our case, because all of our prim-
itive motion relations have only one degree of freedom.
The composition of two or more mechanisms with single
degree of freedom can only produce mechanisms with at
most one degree of freedom. Multi-degree of freedom
mechanisms can be synthesized by an algebraic tech-
nique. The restriction on rigid parts obtains because
our definitions of motions and mechanisms are grounded
in configuration spaces of rigid bodies. By allowing defi-
nitions based on generalized configuration spaces, we can
allow for some limited forms of non-rigidity. The restric-
tion on the number of non-linear mechanisms in a design
is needed for the correctness of the abstraction A that
generates the qualitative motion language. The fixed-
topology restriction can be eliminated by having a richer
set of primitive relations as well as a richer motion spec-
ification language which allows for expression of when

*This is because we are basically matching the input mo-
tion of every primitive in the design against that of other
primitives.

and how part contacts are made and broken. A limita-
tion of our current approach is the lack of a component
for shape design. If there is no sequence of primitive re-
lations that satisfies the given specification, our method
will fail to produce a design. We can integrate the meth-
ods of [7] for synthesizing novel shapes into our design
system to automatically extend our library of primitive
abstract mechanisms.

7 Conclusions

This paper presented a case study of the integration
of methods in qualitative physics and constraint pro-
gramming with general algebraic reasoning on config-
uration spaces. The design domain studied is that of
kinematic synthesis of mechanisms from specifications
of input and output motions. Two algorithms were pre-
sented that rapidly generate alternate behavioral decom-
positions and concrete refinements of a mechanism. We
also identified the class of mechanisms which can be cor-
rectly synthesized within the qualitative framework. We
have implemented our method in CLP(R) and all ex-
amples discussed in this paper are drawn-from our im-
plementation. Qur base set of examples are drawn from
mechanisms in [14] and [1]. We are presently enriching
the language of qualitative motion specifications to han-
dle richer classes of non-linear ‘motions. This will allow
us to obtain better coverage over the examples in the
compendia listed above. Future work involves extend-
ing the set of primitive relations, proving completeness
properties for these relations, and integrating mecha-
nism synthesis with multi-domain (including dynamics
and optics) designs.

There are other approaches to mechanism synthesis
that can be profitably combined with the first-principles
approaches discussed above. Expert system techniques
[20] for synthesizing special classes of mechanisms e.g.,
cam-follower mechanisms, occupy an interesting middle
ground between pre-parametric design schemes which re-
quires high-level qualitative specifications and the nu-
merical optimization packages which require very de-
tailed kinematic specifications. Case-based methods
[15, 17] for synthesis of mechanical systems begin with
a known library of designs and use the goal specifica-
tion to index relevant designs. The retrieved designs are
modified to meet the given specifications. The algorithm
developed here can be used to design indices for the li-
brary of designs. This works by running the synthesis
algorithm “in reverse” to parse or understand a design
in terms of given primitive motion relations.

The class of conceptual design tasks that can profit
from the integration we have effected are tasks with a
significant geometric component. We have developed
fast simulation methods for the class of mechanisms that
can be synthesized by the algorithms presented here.
All the physical prototyping of the designs presented
in this paper were performed using Technics Lego. We
can integrate conceptual design through to detailed de-
sign and physical prototyping in a standard medium.
This work may have implications for mechanical nano-
technology designs because low-dimensional configura-
tion spaces can be used to reason about shapes and mo-

238

Figure 7: Eggbeater designs

tions in that domain. Computational scale issues will be
studied with field work at the Xerox Webster Research
Center.

References

[1] I. Artobolevsky. Mechanisms in Modern Engineer-
ing Design, vols. 1-4. MIR Publishers, Moscow,
1979. English translation.

[2] J. Cagan and A. Agogino. Innovative design of me-
chanical structures from first principles. Journal
of Artificial Intelligence in Engineering Design and
Manufacturing, 1(3):169-189, 1987.

[3] F. Freudenstein and L. Dobrjanskyj. On a theory of
type synthesis of mechanisms. ASME Transactions
on Machines and Mechanisms.

[4] F. Freudenstein and L.S. Woo. Kinematic struc-
ture of mechanisms. In W.R. Spillers, editor, Basic
Questions of Design Theory. North Holland, 1974.

[5] N. Heintze, S. Michaylov, P. Stuckey, and R. Yap.
The CLP(R) programmer’s manual, version 1.1.
Technical report, Carnegie-Mellon University and
IBM Research, 1991.

[6] L. Joskowicz. Reasoning about Shape and Kinematic
Function in Mechanical Devices. PhD thesis, New
York University, September 1988.

[7] L. Joskowicz and S. Addanki. From kinematics to
shape: An approach to innovative design. In Pro-
ceedings of AAAI-88, pages 347-352. Morgan Kauf-
mann, 1988.

[8] L. Joskowicz and E. Sacks. Computational kinemat-
ics. Artificial Intelligence, 51:381-416, 1991.

[9] S. Kannapan and K. Marshek. Design synthetic rea-
soning. Technical Report 216, Mechanical Systems
and Design, University of Texas at Austin, Septem-
ber 1989.

[10] S. Kota. A qualitative matrix repreentation scheme
for the conceptual design of mechanisms. In Pro-
ceedings of the ASME Design Automation Confer-
ence. ASME, 1990.

[11] S. Kota. Qualitative motion synthesis: Toward au-
tomating mechanical systems configuration. In Pro-
ceedings of the NSF Design and Manufacturing Sys-
tems Conference, pages 77-91, 1990.

[12] J.C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, 1991.

[13] H. M. Mabie and C. F. Reinholtz. Mechanisms and
Dynamics of Machinery, 4th edition. John Wiley
and Sons, 1987.

(14] D. Macaulay. How Things Work. Houghton Mifflin
Co., 1990.

[15] D. Navinchandra, K.P. Sycara, and S. Narasimhan.
A transformational approach to case-based synthe-
sis. Journal of Artificial Intelligence in Engineering
Design and Manufacturing, 5(2), 1991.

239

[16] M.M. Rueleaux.

(17]

(18]

[19]

(20]

The Kinematics of Machinery.
MacMillan & Co., 1876. Translated by Alex B.W.
Kennedy.

K.P. Sycara, R. Guttal, J. Koning, S. Narasimhan,
and D. Navinchandra. Cadet: A case-based synthe-
sis tool for engineering design. International Jour-
nal of Ezpert Systems, 1991.

K. Ulrich. Computation and pre-parametric design.
Technical Report 1043, MIT Artificial Intelligence
Laboratory, July 1988.

K. Ulrich and W. Seering. Conceptual design:
Synthesis of systems of components. In S. Chan-
drasekar C.R. Liu, A. Requicha, editor, Intelligent
and Integrated Manufacturing Analysis and Synthe-
sis. ASME, PED-Vol 25, 1988.

B. Yang, U. Datta, P. Datseris, and Y. Wu. An in-
tegrated system for design of mechanisms by an ex-
pert system: Domes. Al EDAM, 3(1):53-70, 1989.

