
Model Simplification
by Asymptotic Order of Magnitude Reasoning

Abstract

One of the hardest problems in reasoning about a
physical system is finding an approximate model
that is mathematically tractable and yet captures
the essence of the problem. Approximate models
in science are often constructed by informal rea-
soning based on consideration of limiting cases,
knowledge of relative importance of terms in the
model, and understanding of gross features of the
solution . We show how an implemented program
can combine such knowledge with a heuristic sim-
plification procedure and an inequality reasoner to
simplify difficult fluid equations.

Introduction
Many important scientific and technological problems
- from life in moving fluids, to drag on ship hulls, to
hex transfer in reentering spacecrafts, to motion of air
masses, and to evolution of galaxies - arise in connec-
tion with fluid equations . In general, these equations
form a system of coupled nonlinear partial differential
equations, which presents enormous analytical and nu-
merical difficulties .
We are interested in making computers to help scien-

tists and engineers analyze difficult fluid problems . By
this we do not mean the development of new computer
technology for more machine cycles and memory nor
clever numerical methods nor better turbulence models
nor techniques for automatic grid generation or body
definition . Advances in all these areas will no doubt en-
hance the applicability of direct numerical approaches
to fluid problems . A thorough understanding of the
physics involved, however, requires much more than
numerical solutions. The present computers generate
too much low-level output and that makes the process
of discovering interesting flow phenomena and tracking
important structures tedious and error-prone.
Our goal is to build a new generation of smart, ex-

pert machines that know how to represent - not just
present - the important features of the solutions so
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that they can talk about them, reason about them, and
use them to guide further experiments or build simpli-
fied mathematical models . Our programs are not big
number-crunchers ; nor are they symbolic calculators
like Macsyma. Rather we view them as models of what
some scientists do when they are investigating physi-
cal phenomena. We want our computer programs to
simulate how scientists analyze these phenomena; they
should be able to formulate approximate models, to
perform qualitative and heuristic analyses, to provide
a high-level executive summary of these analyses, and
to give meaningful information that helps a scientist in
understanding the phenomena.

266

One of the most important skills in developing un-
derstanding of a physical phenomenon is the ability
to construct approximate models that are mathemat-
ically tractable but yet retain the essentials of the
phenomenon. The scientist must exercise judgment
in choices of what idealizations or approximations to
make . Making such judgement often requires an un-
derstanding of the gross features ofthe solution, knowl-
edge of the relative importance of terms in the model,
and consideration of limiting cases. The purpose of
this paper is to demonstrate how this kind of knowl-
edge can be embodied in a computer program to tackle
the difficult problem of model approximation in fluid
dynamics .

Related works in AI include research in model selec-
tion and model generation. Addanki's graph of models
guides the selection of an appropriate modelfrom aset
of handcrafted models [Addanki et al., 1991] . Weld's
model sensitivity analysis provides an alternative but
more general approach to model selection [Weld, 1992] .
Falkenhainer and Forbus automate model generation
by composing suitable model fragments [Falkenhainer
and Forbus, 1991] .

Another relevant line of work concerns order of mag-
nitude reasoning. Raiman introduces order of mag-
nitude scales to extend the power of qualitative alge-
bra [Raiman, 1991] . Weld explores related ideas in a
technique called exaggeration in the context of com-
parative analysis [Weld, 1990] . Mavrovouniotis and
Stephanopoulos combines numerical and symbolic or-



der of magnitude relations in analyzing chemical pro-
cesses [Mavrovouniotis and Stephanopoulos, 1988].
Our project differs from these works in two major

aspects. First, whereas all the previous works deal
with either qualitative models or models specified by
algebraic or ordinary differential equations, we ana-
lyze systems of nonlinear partial differential equations
(PDEs) . Second, we base our programs on a theory
of asymptotic order of magnitude of functions, which
we believe is closer to what applied mathematicians or
fluid dynamicists use . 1

The Task

We are interested in the task of model simplification, a
part of alarger process of modeling-analysis-validation
the purpose of which is to establish our confidence in
the applicability of an approximate model in describ-
ing certain physical phenomenon . Model simplification
takes three inputs : (1) a detailed model, (2) a descrip-
tion of the parameters, dependent variables, and inde-
pendent variables of the model, and (3) essential phys-
ical effects to be included . Its output is one or more
simplified models with constraints on parameters to
represent the applicability of the models.

Detailed fluid models are usually available from stan-
dard textbooks and so are the physical meanings of pa-
rameters and variables. The description of variables is
problem-dependent ; it often includes their boundary
values and estimated maximum order of magnitude.
Knowledge of which physical effects are essential can
come from experimental observations concerning the
phenomenon . For instance, a model that neglects vis-
cosity will predict zero drag on a solid body in steady
flow ; results diverge from physical reality.

In general, the simplified model is valid only under
a range of parameter values . For instance, the approx-
imation may require the Reynolds number to be large
and conditions like this are represented by symbolic
constraints among the parameters .
As our model problem, we use Prandtl's boundary

layer approximation for high Reynolds number flows,
which is probably the single most important approxi-
mation made in the history of fluid mechanics. For ease
of exposition, we consider the case of two-dimensional,
steady, incompressible flow over a flat plate (Fig . 1) .
The same technique will work for three-dimensional,
unsteady flow over arbitrary bodies .
The detailed model is the 2D steady incompressible

Navier-Stokes equations (Fig. 2) . Equations (1) and
(2) we the momentum equations, while (3) is the equa-
tion of continuity (or conservation of mass) . Themodel
is a system of three coupled PDEs containing three un-
knowns u, v, and p. The objective is to simplify the
model in the limit Re -> oo.

'The asymptotic theory is also commonly used in the
analysis of algorithms .
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Figure 1: Boundary layer over a flat plate . The velocity gra-
dient near the surface is large because of the no-slip condition .
As one moves away from the surface, along the y-direction,
the local velocity increases steadily as it approaches the free
stream velocity.

u8x + v 8y

Figure 2 : Two-Dimensional steady, incompressible Navier
Stokes Equations : u and v are the horizontal and normal
components of the velocity, p is the pressure, and Re is the
Reynolds number.

Prandtl's idea is that at high Reynolds numbers vis-
cosity remains important near the body surface even
if it could be disregarded everywhere else . As long as
the "no-slip" condition holds, i.e ., that fluids do not
slip with respect to solids, there will be a thin layer
around the body where rapid changes of velocity pro-
duce notable effects, despite the small coefficient Re .
The layer in question is called boundary layer.
To get a feel of the type of reasoning involved in

the derivation of the boundary layer approximation,
we will quote a passage, slightly edited for our purpose,
from a standard fluid dynamics textbook [Yih, 1977] :

To start with we assume that 6', the width of the boundary
layer, is small compared with L, the length of the flat plate
if Re is large . That means 6 = Z < 1, and the range of
the boundary layer y is 6 . Since u and x are all of order
of unity, equation (3) states that v is of order 6 . Now the
convective terms in equation (1) are all of O(1) . A glance at
the viscous terms in equation (1) reveals that ee a gey

	

so
that the first can be neglected and the viscous terms can be
replaced by

	

g

	

. Since in the boundary layer the viscous
terms are of the same order of magnitude as the inertial terms,

2 = O(1) ; this shows that :

Re = O( 62
)

	

(4)
To see how p varies, we turn to equation (2) . Again the term

e can be neglected since it is added to a much larger term
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Then all the terms involving v are of 0(6) . Hence the
pressure variation with respect to y in the boundary layer is of
0(62 ), and can be neglected . Thus we take the pressure out-
side the boundary layer to be the pressure inside . But outside
the boundary layer, the pressure distribution p(x) is a func-
tion of x only. So we can replace the partial derivative of the
pressure term by the total derivative . Thus the flow in the
boundary layer is governed by :

8u

	

8u

	

dp
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UT. +

v
8

	

dx +W;5-;Fy
_

to which must be added the equation of continuity (3) .

Much can be learned from this explanation . First,
we notice that the simplified model consists of only two
equations (5) and (3), and two unknowns u and v; the
momentum equation (2) is discarded. The pressure p
becomes a known boundary term to be given by the
solution to the outer flow, the farfield approximation,
where viscosity can be totally ignored. Second, the ex-
planation refers to physical meanings of the terms in
the equations; we have inertia terms, convective terms,
viscous terms, and pressure terms. Third, the reason-
ing makes heavy use of order of magnitude estimate to
justify the elimination of small terms. Fourth, given a
few basic order of magnitude estimates (such as those
of 6, u, and x), estimates for more complicated quanti-
ties involving partial derivatives are automatically in-
ferred . In particular, it derives the important conclu-
sion that the dependency of the pressure on y, i.e .,
the variation across the thin boundary layer, can be
neglected at this level of approximation. Finally, by
balancing the inertia terms and the viscous terms, it
obtains a quantitative condition on the range of pa-
rameter values Re, equation (4), for which the approx-
imation is valid.

Characteristics of the Problem Domain

Some Terminology
Fluids obey Newton's laws of motion . The momentum
equations (1) and (2) are just examples of Newton's
2nd Law (F = ma) . In fluid mechanics, it is customary
to have the acceleration or the inertia terms written on
the left hand side of the equation, while the remaining
force terms on the right. See Fig. 3.
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Figure 3: Meaning of terms in the 2D steady incompressible
Navier-Stokes Equations .

Since the motion of a fluid particle can change with
both time and space, the inertia consists of two parts:
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the local acceleration (i .e ., rate of change of velocity
with respect to time), and the convective accelera-
tion (i .e ., product of velocity and the velocity gradi-
ent) .
A steady flow is one in which the local accelera-

tion is zero . The applied forces on the fluid can be
divided into two types : (1) surface forces, caused
by molecular attractions, include pressure and friction
forces due to viscosity, and (2) body forces result-
ing from external force fields like gravity or magnetic
field . It is often convenient to define the pressure term
to include gravity (i .e ., p + pgy, where p is density of
fluid, g gravitational constant, and y is the vertical co-
ordinate) . When the divergence of the fluid velocity is
zero (equation (3)), the flow is called incompressible,
which just means that the mass of fluid inside a given
volume is always conserved.
The momentum equations express a balance of op-

posing forces on the fluid: the inertia forces keep the
fluid moving steadily against the effects ofpressure gra-
dient and viscous forces . Reynolds number is simply
the ratio between the inertia and the viscous forces ; it
is an indication of the relative importance of viscos-
ity - actually the unimportance since high Reynolds
numbers are associated with slightly viscous flow .

Ontology

Description of fluid motion involves a variety of quanti-
ties : (1) the fundamental quantities : time, space, and
mass, (2) the usual dynamical quantities from particle
mechanics such as velocity, acceleration, force, pres-
sure, and momentum, (3) quantities that are less fa-
miliar but can be easily derived from the more basic
ones: velocity gradient and pressure gradient, convec-
tive acceleration, viscous shearing forces, and turbulent
stress, (4) dimensionless parameters such as Reynolds
number, and (5) scale parameters, such as 6, which de-
termine the length, time, or velocity scale of interest .

Asymptotic Order of Magnitude of
Functions

Flows often vary widely in character depending on the
relative magnitude of certain parameters or variables.
For instance, the flow near a jet may be highly irreg-
ular, but at a large distance the mean velocity profile
may become quite regular; this is the so-called farfield
approximation. Another example is the Reynolds num-
ber. Small Reynolds number are often associated with
laminar (smooth) flow, whereas large Reynolds num-
bers flow are quite erratic. So it should not be sur-
prising that most useful approximations in fluid me-
chanics (and in many other branches of physics) are
dependent on a limit process, the approximation be-
coming increasingly accurate as a parameter tends to
some critical value. In our model problem, for exam-
ple, we would be interested in how the boundary layer
velocities u and v behave as Re becomes large.



More generally, we will consider the asymptotic
behavior of a function f(e) as e approaches some criti-
cal value co . Without loss of generality, we can assume
co = 0, since translation (e - co) and inversion (E )
can be used to handle any non-zero finite and infinite
limiting values .
There are several ways to describe the asymptotic

behavior of a function with varying degrees of preci-
sion . For instance, we could describe the limiting value
f(e) as e , 0 qualitatively, i.e ., whether it is bounded,
vanishing, or infinite . Or, we could describe the limit-
ing value quantitatively by giving a numerical value for
the bound . But it is most useful to describe the shape
of the function qualitatively as a limit is approached.
The description uses the order symbols O ("big oh"),
o ("little oh"), and - ("asymptotically equal") to ex-
press the relative magnitudes of two functions .
Definition 1

	

f(e) = O(g(e)), e -. 0 if

	

lim,_0 r '

	

= K
where K is a finite number .
Definition 2

	

f(f) = o(g(e)), e

	

0 if

	

lim_0 s(<

	

= 0

Definition 3

	

f(c) - g(E), e -+ 0 if

	

lim_0

	

= i9

Typically, we will use a convenient set of simple func-
tions inside an order symbol ; they are called the gauge
functions because they are used to describe the shape
of an arbitrary function in the neighborhood of a criti-
cal point . Common gauge functions include the powers
and inverse powers of e . For example, sin(c) = O(e) as
e -+ 0 . For more complicated problems, logarithms
and exponentials of powers of e may also be used .
The asymptotic order of magnitude must be distin-

guished from the numerical order of magnitude. If
f = 106g, then f and g differ by 6 numerical orders of
magnitude, but they are still of the same asymptotic
order. However, in a physical problem the variables are
normally scaled in such as way that the proportionality
constant K will be close to 1.
Below we list some useful rules of operation on order

symbols:

1 . 0(fg) = o(f)o(g)
2 . O(f +9) =max(O(f), O(9))
3 . o(f) +o(j) = o(f)
4 . o(f9) = O(f)o(9) = o(f)o(9)
5 .

	

?f f = 0(g), then fo f(t)dt = O(fo 1 g(t) I dt) as
f

Order relations cannot in general be differentiated .
That is, if f = O(g), then it is not generally true that
f' = O(g'). However, using the definition of the to-
tal differential of a function f(x, y), df= ofdx+ ofdya ay

df-x df-y
where df-x and df-y are the partial differentials, we
can derive some useful rules involving partial deriva-
tives:

1 . O(e)O(dx) = O(df--x)
2 . O( ey)O(dy) = O(df--y)
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3 . O(df) = max(O(df-x), O(df--y))

Theory of Simplification

The basic idea in simplification is to identify small
terms in an equation, drop these terms, solve the sim-
plified equation, and check for consistency. But this
does not always work . Consider the following simple
polynomial :

3e 2x3 +x2- ex-4=0
in the limit e -+ 0. We might naively drop the cu-
bic and the linear terms because their coefficients are
small. But ifwe do that, we only get two roots x = f2,
losing the third root . Thus, the process of simplifica-
tion leads to a loss of important information.
What went wrong? The problem is that terms that

appear small are not really small. The missing root
depends inversely on e in such a way that the cubic
term is not negligible even its coefficient becomes small.
To fix this problem, we introduce three concepts : an
undetermined gauge, a significant gauge, and a
maximal set. To begin, we will assume x = O(en)
where n is still undetermined - hence the name unde-
termined gauge . The order of each term is then :

3eti3 + X
2

-

	

cx

	

- 4 = 0
0(e3°+2) O(es° ) O(en+1 ) O(i)

To determine the relative importance of terms, we use
the heuristic that we only retain the smallest number
of terms that will balance the equation . Since we must
allow the situation where two or more terms may have
the same asymptotic order, we group terms into equiv-
alence classes by the relation -� . A maximal set is any
such class that is not smaller than any other classes .
As an example, the cubic polynomial above has four
maximal sets each containing one term . The heuristic
can then be stated as follows :
Heuristic of minimal complication (or Method of
Dominant Balance) :
If the equation has two or more maximal sets, bal-
ance two of them ; these two maximal sets are called
dominant . Assume the remaining sets are negligible .
Self-consistent choices of dominant maximal sets cor-
respond to significant simplified equations .
Applying this heuristic to the polynomial, we get six

cases to consider . For instance, one possibility is that
the first two terms are dominant, i.e ., e2 x3 _ x2 »
ex, 4. Equating the two undetermined gauges, we get
3n -I- 2 = 2n and this implies n = -2 . The remaining
terms are O(e-1) and O(1), which is consistent with
the assumption that the first two terms are dominant .
So this possibility is included . On the other hand, if
we assume e2x3 _ ex » x2 , 4, we get n = -1 .

	

But
then x2 = O(t-1 ) » O(0), violating the assumption
that it should be much smaller than the first term .
This possibility must be excluded . A similar analysis



shows that only one more possibility, when the second
and fourth terms are dominant, i.e ., n = 0, is self-
consistent . So the heuristic concludes that we should
consider two simplified polynomials:

and

3e2x3 + x2 = 0 =>. x ^'
3e2

x2 -4=0=* x-f2
The values of en for which we get self-consistent domi-
nant maximal sets are called significant gauges. The
balancing of the dominant maximal sets produces sim-
plified equations that correspond to qualitatively sig-
nificant asymptotic behaviors .

Implementation: The Details
Our method has two main parts: (1) a preprocessor,
which given the input specification of a model, creates
internal representations of quantities, equations, and a
constraint network connecting the quantities, and (2) a
model-simplifier, which finds all the self-consistent ap-
proximate models by the heuristic of minimal compli-
cation . The model-simplifier relies on three procedures
- a constraint propagator, a graph searcher, and an
inequality bounder - to determine the order of magni-
tude of quantities and their relationships . We describe
each of these five pieces in turn .

The Preprocessor

The problem specification is defined by the macro
defmodel, which takes a name, a list of quantity de-
scriptions, the momentum and continuity equations in
infix form, relations defining external pressure and free
stream velocities, and a list of estimated orders of mag-
nitude .
(defmodel prandtl-boundary-layer-with- pressure-gradient

(with-independent-variables
((x :lower-bound 0 :upper-bound 1

:physical-features '(space streamwise))
(y :lower-bound 0 :physical-features '(space transverse)))

; ;similar descriptions for U, V, P, Re, etc . ; ;

(with-essential-terms
(viscous inertia)

(with-equations
((streamwise-momentum-equation
(U*(dU/dx)+V*(dU/dy)
=-(dP/dx)+(d2U/d2x)/Re+ (d2U/d2y)/Re))
(transverse-momentum-equation
(U*(d V /dx)+V *(d V /d y)
=-(dP/dy)+(d2V/d2x)/Re+ (d2V/d2y)/Re))
(continuity
((dU/dx)+(dV/dy)=o)))

(with-relations
(constant U 1)
(constant x 1)
(constant y 'delta)
(constant PO 1))))))

Quantities
Quantities are represented by CLOS objects . They
are divided into four types: (1) independent vari-
ables (space and time), (2) dependent variables (e.g .,
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pressure, velocity), (3) controllable parameters (e.g .,
Reynolds number), and (4) scale parameters (e.g .,
length scale S) . Each quantity has slots for its upper
bound, lower bound, boundary values, physical fea-
tures, and relations which other quantities . A depen-
dent variable contains additional information about its
dependency on the independent variables . For exam-
ple, the dependent variable U depends on both x and
y.
The input specifies nine quantities -

x, y, U, V U-inf, P0, P, Re, and delta. But a total of 60
quantities will be created. The reason is that for each
dependent variable, quantities corresponding to its to-
tal differential, partial differentials, and derivatives are
also automatically generated. For instance, the depen-
dent variable U generates 5 additional quantities : d U,
d U-x, d U-y, az , and ay . Quantities are also gener-
ated for each term in the equations and relations. An
example would be the dependent variable d2Udz2/RE

acorresponding to the viscous term R1 (
e ax

Input quantities have associated physical features
such as space, velocity, and pressure . These features
are used to determine the physical meaning of derived
quantities by simple rewrite rules . For instance, a ve-
locity quantity differentiated by a space quantity gives
a velocity-gradient quantity. The physical meaning of
a term in the equation is determined in a similar fash-
ion. For example, a term that is the product of a ve-
locity quantity and a velocity gradient represents the
convective inertia term .

A Constraint Language

Equations involving quantities are represented as con-
straints so that when all but one quantities are known
the value of the remaining one can be computed in
terms of the others . Our constraint language has 6
primitives :

1 . The equality constraint, (== q1 q2), asserts that
O(ql) = O(q2) . Example: the continuity equation (3)
is represented by (== dudx dvdy) .

2 . The multiplier constraint,

	

(multiplier q1 q2 q3),
specifies that the quantities q1, q2 and q3 must be re-
lated by the equation O(ql) xO(g2) = O(q3) . Example:
(multiplier u dudx ududx) .

3 . The maximum constraint, (maximum q1 q2 q3), spec-
ifies that O(q3) = max(O(gl), O(q2)) . Example:
(maximum du-x du-y du) .

4. The variation constraint, (variation f x df-x), cap-
tures the inference that when the partial differential
of a function f(x, y) with respect to x is much less
than the value of f at its outer boundary, then f is
asymptotically equal to its boundary value. Symboli-
cally, df-x = o(fo) =:~ O(f) = O(fo), where fo is the
value of f at its outer boundary in the x-direction .

5 . The total-variation constraint,

	

(total-variation f
df ),

	

specifies:

	

O(df)

	

=

	

O(upperbound (f) -
lowerbound (f) ).

6. Theconstant constraint, (constant q v), just says that
O(q) = v .



The constraint language allows simple inferences
about quantities to be made. For instance, using the
continuity equation (3) and the known order of mag-
nitudes for the quantities U, x, and y, the value for V
is automatically deduced.

Qualitative Order Relations
An important type of inference is the determination of
the ordering relationship between two quantities . For
instance, in order to drop a term A, the system has to
show that A is much smaller than another quantity B
in the equation . For models involving a few scale pa-
rameters, such as our model problem, the relationship
can be determined by relatively simple algebraic ma-
nipulations . But for quantities involving three or more
scale parameters, the algebra can be quite complicated.
A simpler inference technique is to represent the or-

der relationships explicitly in a directed graph whose
nodes are quantities and edges are labeled order rela-
tions, and to use a breadth-first search to find paths
between quantities . The idea is similar to Simmons'
graph search in a quantity lattice [Simmons, 1986],
but we generalize it to include symbolic factors in the
order relations. Let's look at an example (Fig . 4a) .
We have 4 quantities : A, B, C, and D. Assume b is
a small parameter. The following relations are also
known: (1) O(A) = O(B), (2) O(B) = b0(D), and (3)
O(A) = b0(C). To show that O(C) = O(D), we find
the shortest path between them, collecting the sym-
bolic factor of each edge of the path . The symbolic
factors are divided into two groups : the <<-factors, and
the >>-factors depending on whether the edge is labeled

or >>. In the example, the <<-factors consists of one
factor b, while the >>-factors consists of one factors .
The inference procedure can also handle partial in-

formation. For instance, in the graph shown in Fig. 4b,
it will correctly conclude that E >> H even it is not
told what the symbolic factor of edge F >> G is .

A

	

B

«S

C

	

D
(a)

Figure 4 : Graph search to determine order relations
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Inequality Bounder
The constraint propagator and the graph searcher are
fast but they cannot determine more subtle ordering
relationships . For instance, given 6' 0(-L) and
b « 1, they can't deduce that Re x s « 1 . This
problem in its general form is equivalent to the satisfi-
ability of a set of inequality constraints . To solve this
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problem, we use a version of the sup-inf bounding al-
gorithm first proposed by [Bledsoe, 1975] andextended
by [Brooks, 1981] and [Sacks, 1987] to deal with non-
linear inequalities . Our algorithm is simpler because
there is no need to deal with nonmonotonic functions
such as the trigonometric functions.

Simplification Algorithm
The purpose of the simplification algorithm is to search
for all self-consistent simplified models corresponding
to a detailed input model. A simplified model is self-
consistent if the terms neglected are consistent with
the dominant balance assumptions, and it contains the
essential terms specified by the input. The algorithm
determines the maximal sets for each momentum equa-
tion, balances all possible pairs of maximal sets, and
eliminates the inconsistent ones. It terminates when
each momentum equation has only one maximal set .
The principal steps of simplification are:

1 . If the model has no unsimplified momentum
equation, then return the model .

2 . Otherwise, pick the first unsimplified
momentum equation and consider all possible
pairwise dominant balances .

3 . Propagate the effects of the dominant balance
and record any assumptions made on parameters
due to the balance .

4 . If the resulting model is self-consistent,
call simplification recursively on it .
Otherwise, return nil .
The algorithm will terminate because during each

call of simplification, the number of maximal sets is
reduced by at least one. So each recursive call will
return either a simplified model or nil if the partially
simplified model is not self-consistent .

Performance Trace

The following script shows how the program produces
the boundary layer approximation for our model prob-
lem. The problem generates 60 quantities and 65 con-
straints ; it takes about 60 secs real time on a Sparc
330.
The program builds model-1 according to the in-

put description . Each momentum equation has three
maximal sets . The program simplifies the transverse
momentum equation by balancing its maximal sets ;
there are three possible balances. The first choice -
balancing viscous stress and pressure gradient - is not
consistent .

> (search-simplifications *model*)

Making <MODEL-2 : PRANDTL-BOUNDARY-LAYER> from
<MODEL-1 : PRANDTL-BOUNDARY-LAYER> . . .
Balancing two terms :
D2VDY2/RE (VISCOUS STRESS TRANSVERSE)
DPDY (PRESSURE-GRADIENT)
in TRANSVERSE-MOMENTUM-EQUATION
with 1 parameter assumption :



(<< RE (- DELTA -2))
The model is not self-consistent because the simplified
equations do not contain the essential INERTIA term .

The second choice - balancing viscous stress and in-
ertia - generates a consistent model model-3. Since
model-3 is not completely simplified, the program goes
on to simplify its streamwise equation, which now
has two maximal sets . So there is only one balanc-
ing choice ; the result is a consistent model model-4 .
The program also finds the correct condition on the
Reynolds number.
Making <MODEL-4 : PRANDTL-BOUNDARY-LAYER> from
<MODEL-3 : PRANDTL-BOUNDARY-LAYER> . . .
Balancing tvo terms :
D2UDY2/RE (VISCOUS STRESS TRANSVERSE)
DPDX (PRESSURE-GRADIENT)
in STREAMWISE-MOMENTUM-EQUATION
vith 1 parameter assumption :
(= RE (- DELTA -2))
<MODEL-4 ; PRANDTL-BOUNDARY-LAYER> is self-consistent .

The final choice of balance for the transverse equa-
tion is inconsistent . Let's check that model-4 has the
correct boundary layer equations (equations (5) and
(3)) :
> (model-simplified-equations model-4)

((U* (DU/DX))+ (V* (DU/DY))=
- (DP/DX)+((D2U/D2Y) /RE))

((DU/DX)+ (DV/DY)=0)

Evaluation
The program has been tested on several problems in-
cluding ODES and PDEs representing flows in turbu-
lent wake and turbulent jet. The turbulent wake prob-
lem, for instance, has 89 quantities and 112 constraints ;
it takes the program about 90 secs real time to find two
simplified models .
When does the simplification heuristic fail?
There are equations for which balancing two maxi-

mal sets does not give any self-consistent approxima-
tions . For instance, the ODE d - Y =~ requires a
3-term balance because all the pairwise balances are
inconsistent . Our algorithm incorporates a system-
atic search starting from 2-term balance until a self-
consistent model is found.
How good are the approximate models?
There is no simple answer to this question . It is

known that solutions to a self-consistent approximate
model derived by dominant balances can be grossly in-
accurate . A simple example is an ill-conditioned set of
linear algebraic equations, in which a small change in
the coefficients can lead to a large change in the solu-
tion vector . The situation for PDEs is much worse be-
cause, except in rare cases, it is not known whether the
approximate model has a solution at all or whether the
solution if exists will be unique . The strongest claim
one can made seems to be this : An approximate model
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that is not self-consistent is certainly a poor approxi-
mation . In practice, an approximate model is validated
by subjecting its predictions to experimental and nu-
merical checks . In fact, there still exists no theorem
which speaks to the validity and accuracy of Prandtl's
boundary layer approximation, but ninety years of ex-
perimental results leave little doubt of its validity and
its value .

Conclusion
We have demonstrated how a heuristic simplification
procedure can be combined with knowledge of asymp-
totic order of functions, relative importance of terms,
and gross physical features of the solution to capture
certain aspects of the informal reasoning that applied
mathematicians and fluid dynamicists use in finding
approximate models - informal because the approxi-
mation is done without firm error estimates . The key
to the simplification method is to examine limiting
cases where the model becomes singular (i .e ., when the
naively simplified model has a different qualitative be-
havior from the original model) . This idea of simplifi-
cation by studying the most singular behaviors is very
general: it comprises the core of many powerful ap-
proximation and analysis techniques that have proven
to be extremely useful in reasoning about behaviors of
complicated physical systems.
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