
Qualitative Asymptotic Analysis
of Complex Functions

Abstract

Professional scientists and engineers frequently
analyze problems with heuristic techniques to get
crude solutions quickly without worrying about
the details of mathematical justification and firm
error estimates. The method of steepest descent is
one such technique that is widely used to evaluate
functions represented by complex integrals. Rou-
tine application of the method however requires
the selection of an appropriate integration contour
in the complex plane. The selection task, which is
difficult to do analytically, is often accomplished
by geometric reasoning about the singular points
of the integrand. This paper presents an imple-
mented program that captures this style of reason-
ing. The program is based on a contour selection
heuristic that reformulates the task as a simple
graph search. Combined with symbolic algebraic
techniques, the contour selection heuristic allows
the program to quickly find the leading term ap-
proximation to the integral when a parameter in
the integral becomes large.

Introduction
Finding out which qualitative reasoning style is good
for which application is an important research topic
in Qualitative Reasoning. Much of the previous qual-
itative reasoning work deals with mathematical func-
tions specified by qualitative, algebraic, difference, or
differential equations. However, an extremely impor-
tant class of useful functions, including but not lim-
ited to the so-called special functions of mathemati-
cal physics, has integral representations. These func-
tions are often solutions of certain frequently occurring
linear second order differential equations with variable
coefficients which cannot be solved in closed forms in
terms of the elementary functions. Nevertheless it is
sometimes possible to find a representation of the solu-
tion in terms of an integral with the independent vari-
able appearing as a parameter. Except in rare cases,
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these integrals cannot be integrated in close form . For-
tunately simplification of the integral is often possible
when a parameter in the integral becomes large.

273

Asymptotic analysis of integrals is the branch of
mathematics which is concerned with techniques to
obtain approximate analytical representations of the
behavior of integrals in the limit of a large parameter.
The objective of asymptotic analysis is to find simple
approximate representations of complex mathematical
objects . For example, saying that the solutions to a dif-
ferential equation are expressible in terms of modified
Bessel functions of order s does not convey much qual-
itative information to someone who is not already an
expert in special functions. However, a simpler repre-
sentation of the solutions in terms of x e~3 as x --+ o0
is much more useful for deducing qualitative behav-
iors and for comparison with experimental or numeri-
cal data.
We study integrals not only because they arise in

diverse areas of application, but also because the anal-
ysis of integrals and analysis of differential equations
are both necessary parts in the study of mathematical
models . There are important mathematical functions,
such as the Mathieu functions, which cannot be repre-
sented by integrals. On the other hand, the factorial
function, which has an integral representation, satisfies
no differential equations of finite order [Jeffreys, 1962] .
Neither integrals nor differential equations can replace
each other.
To motivate integral representations, we use four ex-

amples to illustrate how these integrals arise in the
study of physical problems .

Example 1. The solution to a linear differential equa-
tion, ODE or PDE, can often by written as an integral
via the inverse Laplace or Fourier Transforms [Zwill-
inger, 1992]. For example, consider the initial value
problem

ay' + by + cy = f(t)

with y(0) = yo and y(0) = y'o . The solution can be ex-
pressed as the inverse Laplace transform of some func-
tion Y(s) involving the Laplace transforms of f(t), the



coefficients, and the initial values :
1 o+ioo

y(t) = L-V(s)) = -f

	

Y(s)e3tds
29ri o-ioo

where v > 0 lies to the right of all the singularities of
the integrand Y(s) in the complex plane . Asymptotic
analysis can often give a simple formula describing the
large-t behavior of the solution .
Example 2. Solutions to linearized problems in

wave propagation (such as radio or water or quantum-
mechanical waves) are typically represented by su-
perposition of simple progressive waves of the form
e:(ka-wt) where k is the wave number and w is the fre-
quency . A formal solution could be obtained by sum-
ming over all wavenumbers:

00

0(x, t) = f

	

A(k)e= ( kx--t)dk
00

where A(k) is related to initial conditions . Such formal
solution is in general difficult to analyze analytically or
numerically. Simplification of the integral can often be
obtained if we are interested in the long time or farfield
behaviors of the integral .
Example 3. The Gamma Function, denoted byF(z),

is a complex-valued generalization of the factorial func-
tion ; it finds applications in number theory and ap-
proximation theory.

00

I'(z + 1) _ ~

	

Ce-tdt
0

which is valid for Re(z) > -1 with the property that
I'(n+1) = n! for any non-negative integer n. For large
n, the Stirling formula n! - vr2-7rnn +I e-n describes
the essential behavior of the factorial function .

Example 4 . The probability distribution function
of the sum of identically distributed random vari-
ables Xl, X2, . . ., Xn can be expressed via the inverse
Fourier transform as :

00

fn (t) = 2a

	

~(w)ne
=wtdw

f00

where O(w) is the Fourier transform of the probability
density function of each Xi . Determining the behavior
of the integral as n -. oc is essentially the content of
the fundamental central limit theorem in probability .
The purpose of this paper is to demonstrate how a

particular asymptotic technique, the method of steep-
est descent [Bender and Orszag, 1978], can be auto-
mated to produce approximate analytical representa-
tions for a wide class of integrals. The technique is se-
lected for three reasons: (1) it is widely used in many
branches of physics, (2) it shares the same basic idea
with a family of asymptotic techniques (such as the
Method of stationary phase, and Laplace's Method),
and (3) it gives higher order approximations . The
method however is extremely tedious to apply even
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with the help of a conventional computer algebra sys-
tem because it involves geometric reasoning about 1o-
cations of the singularities and topography of the in-
tegrand in the complex plane. This paper shows how
this problem can be solved by combining well-known
geometric, symbolic, and numerical techniques .
Our work is rooted in the tradition of focusing on the

problem-solving behavior of articulate professionals in
well-structured domains and formalizing their meth-
ods so that a computer can exhibit similar behavior on
similar problems . Previous works with a similar intent
include [Abelson et al., 1989 ; Sacks, 1990 ; Sacks, 1991;
Yip, 1991 ; Zhao, 1991] . These authors dealt with prob-
lems specified by low-dimensional ordinary differential
equations . Our project differs from these works in two
major aspects. First, it is the first attempt to au-
tomate asymptotic analysis techniques for integrals.
Second, whereas previous analysis employs represen-
tations based on signs of quantities or phase space de-
scriptions, we use analytical representations in terms of
elementary functions, which are harder to obtain but
are much more informative.

The Task

We are interested in the task of analyzing the asymp-
totic behavior of functions defined by complex inte-
grals. The analysis is part of a much more involved
process of modeling-analysis-verification typical in the
study of physical phenomena. The analysis program
takes three inputs: (1) a complex integral with a pa-
rameter, (2) the contour for integration, and (3) a de-
scription of the parameter . Its output is a simple for-
mula (in terms of elementary functions) and its qual-
itative interpretation representing the asymptotic be-
havior of the function.
The integral may come from solving linear differen-

tial equations say by methods like Fourier Transform,
Laplace Transform, or contour integration [Zwillinger,
1992]. The results of the asymptotic analysis are typ-
ically used to make predictions about the behavior of
the system in question ; such predictions are further
compared with detailed numerical simulation or exper-
imental data .
The analysis program works for a class of integrals

of the following form:

I(A) =J g(z)eah(Z)dz
c

where C is a contour in the complex plane, and g(z),
and h(z) are analytic functions independent of A . The
parameter A is assumed to be real, but there is no loss
of generality because we can always include the phase
factor of a complex parameter into the function h(z) .

As our model problem, we use the Airy function (or
the rainbow integral), in its complex form:

Ai(A) =

	

1

	

eaz-3 z3dz
tai ,lc



which has found applications in many branches of
physics - ray diffraction in optics, tunneling of quan-
tum particles, and evolution of wavefront of tsunamis,
just to name a few . The integral can also be expressed
as a solution to the linear differential equation :

d2w(a)
dal_

aw(,1) = 0

The Airy equation has the same form as the time-
independent Schrodinger equation in the neighborhood
of a classical turning point.
The most difficult part of the analysis problem is

the deformation of the given contour C to a new con-
tour C' to which one can easily apply the method of
steepest descent (see section 3) . Suppose the original
contour C is from ooe i3 to ooe i3 (see Fig. 4a) . For
positive A, the program chooses a new contour passing
through the point sl in the complexplane; for negative
A, it chooses anew contour consisting of two segments :
one passing through sl, and the other through s2 (see
Fig. 4c).

It is interesting to quote how an author of a textbook
on the subject describes this difficulty .

Any special application of the steepest descent method
consists of two stages .
(i) The stage of exploring, conjecturing, and schem-
ing, which is usually the most difficult one. It results
in choosing a new integration path, made ready for
application of (ii) .
(ii) The stage of carrying out the method . Once the
path has been suitably chosen, this second stage is, as
a rule, rather a matter of routine. . . (From [de Bruijn,
1981, page 771 .)

From the Airy equation (2), for A > 0, heuristically
we would expect the solutions to display some kind of
exponential behavior ; on the other hand, for A < 0,
we expect oscillatory behaviors. The output of the
analysis program in Fig. 1 confirms this expectation .

Characteristics of the Problem Domain
Some Terminology
A complex variable z may be written as z = x + iy
where x and y are real . A complex function h(z) can
similarly be expressed in terms of its real and imag-
inary parts : h(z) = u(x, y) + iv(x, y) where u and v
are real-valued functions . A complex function h(z) is
analytic in a region R of the complex plane if it is
differentiable at every point zo E R. Given a point
zo, a directed curve from zo along which u(x, y) is de-
creasing is called a path of descent. The tangent
of path of descent at zo is called the direction of
descent. In an analogous way, we define a path of
ascent and direction of ascent for a directed curve
from zo along which u(x, y) is increasing . Emanating
from zo there are many paths of descent and ascent . A
path of steepest descent is a path of descent whose
rate of descent is maximal ; its direction is a direction
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1

	

2 a4Ai(a) -

	

e-3

The function decays exponentially with an exponent propor-
tional to a4 .
For a -+ -oo :

Ai(a) ... 1

	

1 1

	

sin(

	

I a I I +f)
7rlala

The function oscillates with its amplitude decaying alge-
braically with a factor proportional to a-T .

Figure 1 : Theprogram summarizes its findings in stylized
English description . It has no natural language capability;
the description is for us to read.

of steepest descent. Completely analogous defini-
tions can be given for a steepest ascent path and its
direction.
A point zl is said to lie in the valley of h(z) with

respect to zo if u(xl, yl) < u(xo, yo) and on the hill of
h(z) if u(xl, yl) > u(xo, yo).
The lines for which u(x, y) is constant is called

the level lines for the function eh (z) ; on these level
lines, eh(z) has constant magnitude because ( eh(Z) 1=1
eu+' ° 1=1 eu I x I e i° 1= eu . Since an analytic func-
tion satisfies the Cauchy-Riemann conditions, the level
lines are orthogonal to the lines for which v(x, y) is con-
stant. Hence, the paths of steepest descent (ascents)
coincide with the constant v-lines.
At point zo where d

dZ °

	

= 0 the magnitude and
phase of eh(=) is stationary. However, by the Maximum
Modulus Theorem, u and v cannot have a maximum
(or a minimum) inside the domain of analyticity of
h(z) unless h(z) is identically constant [Carrier et al.,
1966) . The point zo is thus a saddle point of h(z) .
A saddle point is simple if h'(z o) = 0 but h"(zo) 54 0.
(See Fig. 2.) A point is regular if it is not stationary.

Finally, two functions f(z) and g(z) are asymptoti-
cally equivalent, denoted by f - g, if limx_o, 9 z =
1 .

Basic Idea of Approximation

The basic idea (usually attributed to Laplace) for eval-
uating integrals of the form I(A) is easy to understand
if the integrand consists of real functions. The exten-
sion to complex functions will be dealt with in next
section. Suppose the integrand is the product of two
functions indicated in Fig. 3 . The function f(x) is
narrow in the sense that it is sharply peaked within an
interval on the x-axis which is small compared to the
distances over which g(x) changes significantly . Then
it is plausible that the integral can be well approxi-



Figure 2 : The surface of u(x,y) near a simple saddle point (xo, yo)
The steepest descent paths are marked D, and the steepest ascent
paths marked A. Note the alternating hills and valleys around the
saddle point .

mated by:

Figure 3 : Laplace's idea of approximation . The function
f(x) is sharply peaked, and g(x) can be well approximated
by its value at the maximum of f(x) .

f~ g(x)f(x)dx ,: g(xo )A
_,o

where A is the area under f(x), and xo is where f(x)
attains its maximum . To calculate A we only need
to integrate in a small neighborhood around xo since
f(x) is close to zero outside the interval . Furthermore,
the approximation will improve as f(x) becomes more
sharply peaked .

Laplace's method was developed for functions of the
form f(x) = e-ah(r) . The hat function e-as', for in-
stance, has this "sharply-peaked" character . Since any
analytic function h(x) can be expanded in a Taylor
series :

h(x) = h(xo) + h'(xo)(x - xo) + z h"(xo)(x - xo)2 + . . .

we expect, at a stationary point xo, h(x) would locally
look like the hat function . With this observation, we
can think of the purpose of deformation of the inte-
gration contour is to get to a stationary point where
Laplace's method can be applied .
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Method of Steepest Descent
A naive application of Laplace's idea to a complex in-
tegrand won't work . Suppose C is the original contour
which starts and ends at a valley. Let the maximum
of the real part of h(z) on C be attained at a regular
point zo . A first guess of the order of estimate (big
"oh") for the integral might be :

I(.1) = C(g(zo)eAU(Z°)Ozo)
where u(zo) is short for u(xo, yo) and Ozo is the range
over which h(z) substains its maximum . But the guess
is completely inaccurate because we have not consid-
ered the influence of the imaginary part v(zo) . For
large A, e'a°(zo) oscillates rapidly and could cause com-
plete cancellation in the integration so that the argu-
ment that the major contribution to the integral comes
from the region of maximum is no longer valid .
So in order to apply Laplace's idea, we have to look

for a contour where the imaginary part is constant (i .e .,
along the constant v-lines which, as we have seen, are
just the paths of steepest descents or ascents) . By
Cauchy Integral Theorem, the contour C can be de-
formed without changing the value of I(A) . Since we
want the magnitude of h(z) to decrease rapidly away
from zo, C should be deformed to the path of steep-
est descent emanating from zo . But a regular point zo
has only one path of steepest descent emanating from
it . So for the contour to end in another valley, we
must switch to another path of steepest descent in the
neighborhood of zo . But that means we can't stay on
a single constant v-line and again we have the contri-
bution from the e'A° to contend with .
Now it is clear why the saddle point is important . A

simple saddle point has two paths of steepest descent
(with the same v value) emanating from it . There-
fore, it seems that the saddle point and its steepest de-
scent paths are the correct paths to apply the Laplace's
method . The above informal reasonin can be backed
up by formal arguments [Olver, 1974. We will take
the proof for granted and instead turn to the imple-
mentation of the method of steepest descent .
The method consists of four basic steps [Bleistein

and Handelsman, 1986] :
1 . Identify the critical points of the integrand of I(A), i .e .,

the endpoints of integration contour C and the saddle
points of h(z) .

2 . Determine the paths of steepest descent from each of the
critical point.

3 . Justify, via Cauchy's Integral Theorem, the deformation
of the original contour C onto one or more of the paths
of steepest descent found in step (2) .

4 . Sum the contribution to the integral from each of the
paths ofsteepest descent . (Each integral is of the Laplace
type.)
Steps 1,2 and 4 offer no conceptual difficulties - we

will see how to do them in section 5 . Step 3, the choice
of a new contour, as alluded above is considered the



hardest . The function h(z) might have an infinite num-
ber of saddle points, but only a few of them will be rele-
vant to the determination of I(A) . A selection method
based on conformal mapping is sometimes proposed
[Olver, 1974], but it is too cumbersome to use . In the
next section, we will see how an informal method can
quickly find the desired contour .

Theory of Contour Selection

The topography of an analytic function is exceedingly
simple : it can't have peaks or pits, and around any sad-
dle point there are alternating hills and valleys . Fur-
thermore, the valleys of two distinct saddle points can't
overlap partially (again a consequence of the Maximum
Modulus Theorem): either they are disjoint or one is
completely included in the other . We will exploit these
properties to come up with a simple graphical repre-
sentation of the topography of u(z), the real part of
h(z), and reduce the problem of contour selection to a
shortest-path graph search .

In problems of physics, it is typically the case that
the contour C begins and ends at valleys so that the
integrand tends to zero as z tends to oc . Informally, to
deform the contour we find the valley where C begins
and run the path over a saddle point along the steepest
paths into another valley . If C ends at this valley,
then the process is done ; otherwise, run the path over
another saddle point into a third valley . We repeat the
process until we find the valley where C ends .

Since a valley may belong to more than one saddle
point, we need a strategy to decide which saddle point
to pick . Let's define some concepts . Given two simple
saddle points sl and s2, we say sl dominates s2 if
s2 E V(sl), where V(sl) is a valley of sl . We say sl
immediately dominates s2 ifthere is no other saddle
point s3 such that sl dominates s3 and s3 dominates
s2 . The saddle point sl strictly dominates s2 if s2
lies on a path of steepest descent emanating from sl .
The admissible region of V(sl) is defined to be :

A
V(sl)

	

if no other saddle point E V(sl)
R(V(sl)) -_

	

$
2

if s2 E SDPATH(s1,V(s l))
V(sl)nAR(V(s2))

	

if SDPATH(sl,V(sl))nV(s2)

	

m

where SDPATH(sl , V(sl )) denotes the path of steep-
est descent from sl running down the valley V(sl).

Using these concepts, we can define a graphical rep-
resentation for the topography of u(z) . The graph con-
sists of two types of node and one type of edge . Each
node represents an admissible region ; it can be either a
saddle point or a valley . Let's call the first type ofnode,
S-node, and the second V-node . Each edge represents
a steepest descent path from some saddle point . Two
S-nodes are connected if one is on the steepest descent
path of another . A S-node is connected to a V-node if
the steepest descent path lies in the valley represented
by the V-node . See Fig . 4a(ii) . Now we can formulate
our informal contour selection strategy more formally.
Contour Selection Heuristic : Given an integral

fc g(z)eah(Z)dz and a contour C with endpoints in val-
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Figure 4 : a(i) : The topography of u(x,y) for A > 0. The dotted
lines are steepest descent paths through the saddle points sl and
$2 . The original contour C marked by the dashed line is seen on the
far left . The remaining solid lines are the boundaries of valleys and
hills . Note that sl is strictly dominated by s2 .

Figure 4: a(ii) : The topography graph corresponding to that in
Fig. 4a(i).

Figure 4 : b(i) : The topography of u(x,y) for phase(a) _

	

. Note
that 32 is immediately dominated by sl .

Figure 4 : b(ii) : The topography graph corresponding to that in
Fig. 4b(i).
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Figure 4: c(i) : The topography of u(x,y) for A < 0.

Figure 4: c(ii) : The topography graph corresponding to that in
Fig. 4c(i).

leys Vl and V2, deform it to a new contour represented
by the shortest path connecting V1 and V2 in the to-
pography graph of the real part of h(z) .

Let's see how this heuristic is used . For A > 0, i.e .,
phase(A) = 0, the shortest path between Vl and V2 is
through the saddle point sl . So sl is the only relevant
saddle point. For phase(A) = a the shortest path still
passes through only s1 even the structure of the graph
has changed . For A < 0, the shortest path connecting
V1 and V2 runs over both saddle points ; so they both
contribute to the integral .

Implementation : the details
In this section, we will describe how the four steps of
the method of steepest descent (as mentioned in the
end of section 3) are implemented.

Preliminary Transformation
Frequently the integral to be analyzed is not in the
standard form where h(z) is independent of A . A pre-
liminary rescaling of the variable z is thus required .
For example, for the Airy integral, h(z) = Az - 3 z3 .

Solving h'(z) = A - z2 = 0, we get the saddle points
z = tV'A_. With a change of variable w = z, we get
rid of the dependence of h(z) on A :

Ai(A) _

	

ea i~-3 W3)dtytai JC
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In general, the scaling factor is determined by the roots
of h'(z) = 0. If the solution is z = f(A), then choose a
new variable w = z x f(A).

Finding Saddle Points
The saddle points are the solutions of the equation
h'(z) = 0. Typically the function h(z) consists of
simple polynomials in z, and functions of z such as sinh
or cosh . We use the Mathematica solve routine to find
the roots . However, since Mathematica typically drops
all but one root for multi-valued inverse functions, we
need to patch it to recover all the roots. The capability
of Solve is quite limited; for instance, it can't solve
equations like log(1+z) = z. So in the general case we
will have to use numerical root-finding methods . Since
root finding is not our research objective, we have not
pursued this line of development.

Determining Valleys and Paths of Steepest
Descent
This step is an important part of the algorithm . The
valley boundaries of a saddle point are the constant u-
lines emanating from it . To determine the boundary,
we use a numerical continuation algorithm to track the
constant u-lines starting from the saddle point. Track-
ing a curve given by an implicit equation u(x, y) = c,
where c is a constant, can be tricky because the curve
can hit a turning point, or a bifurcation point, where
the curve is split into multiple branches . The algo-
rithm makes uses of analytical information about the
saddle point to guide the numerical continuation .
The procedure, track-valley-boundaries, takes

four inputs : (1) an expression h(z), (2) a saddle point
s, (3) a stepsize, and (4) upper and lower bounds for x
and y. Its output are the four constant u-lines emanat-
ing from s. The main steps of the algorithm are:

1 . Compute u(x,y), the real part of h(z),
symbolically .

2 . Evaluate u(x,y) at s to get the height d
3 . Compute the directions of steepest descent and

ascent (by computing the second derivative of
h(z) symbolically and evaluating it at s to
get the phase) .

4. Compute four starting points by taking a step
of size z in each of the four steepest
directions .

5 . Call continuation on each starting point .
The procedure, continuation, takes six inputs :

(1) the lambda functions u(x, y) - d, dudx(x, y), and
dudy(x, y), where dudx and dudy are the partial
derivatives of u with respect to x and y respectively,
(2) a start point (xo, y), (3) an initial direction of the
curve, (4) a stepsize h, maximum step size, and mini-
mumstep size, (5) upper and lower bounds for x and y,

'Let re" = V(s).

	

Then the directions are given by
z (2 -8),,+3 (z -e), z (-2 -e), and r +2 (-2 -0) .
For details, see [Bleistein and Handelsman, 1986] .



and (6) special terminating points . The special termi-
nating points are the saddle points of h(z) ; the contin-
uation will stop if it runs into one of these points . The
procedure returns a path on the constant u-line start-
ing from (xo, yo) . The algorithm has 4 steps :

1 . Apply a corrector to the start point to get a
more accurate initial point on the curve .

2 . Apply a predictor to the current point to get
a guess for the next point on the curve .

3 . Apply a corrector to the predicted point .
4 . Repeat steps 2 and 3 until the curve either

exceeds the upper or lover bounds of x and y,
or hits a special terminating point .

The predictor is based on arc-length continuation, a
popular method to get past the turning point [Allgower
and Georg, 1990] . Our implementation solves a set of
two equations for two unknowns dz and d, where s is
the arc length :

du

	

8u dx

	

au dy
as - ax as +ay ds

(d)2 + (as )z =1

	

(4)
Once the numerical values of sd

	

and d are found, an
explicit multi-step 4th-order Adams-Bashforth is used
to solve for the increments x and y [Kahaner et al.,
1989] .
The corrector is Newton-Raphson with a small

bound on the number of iterations allowed .

Finding the Steepest Descent Paths
Since the steepest descent (ascent) paths are identical
with constant v-lines, we find them by tracking the
function v(x, y) = c', where c' is the value of v(x, y) at
the saddle point, using exactly the same continuation
procedures for determining the valley boundaries. To
tell which two of four v-lines are the descent paths, we
just compare the value of u(x, y) at each of the four
starting points with that of the saddle point .

Constructing the Topography Graph
The construction of the graph depends on a number of
well-known geometric algorithms . A valley is approxi-
mated by the convex hull of its valley boundaries . The
convex hull is computed by the Graham scan algo-
rithm, which runs in O(n logn) time where n is the
number of points in S (see Shamos 1985) . The out-
put of the algorithm is the vertices of the convex hull
arranged in the counterclockwise direction .

Testing if a saddle point s lies in the valley becomes
a point-location problem for polygon . There are many
algorithms to solve this problem. We simply compute
the angles subtended by the edges of the convex hull
about the point s . If s is inside the polygon, the total
angle should sum to 27r .
An admissible region is approximated by intersec-

tion of convex polygons corresponding to the valleys .

We use an algorithm invented by O'Rourke, which runs
in O(n + m) time where n and m are the number of
vertices of the two convex polygons [Preparata and
Shamos, 1985] . The output of the algorithm is an-
other convex polygon ordered in the counterclockwise
direction .

Finally, the strictly dominance relation is deter-
mined by the tracking algorithm when it reports hit-
ting a saddle point .
As discussed in section 4, the desired contour is com-

puted by a simple breadth-first search for the shortest
path in the topography graph. The relevant saddle
points, i .e ., those that contribute to the integral, are
those that lie on the shortest path .

Finding the Asymptotic Formula
Given the relevant saddle points, we symbolically ex-
pand h(z) about them and truncate the series at the
second derivative term to get a hat function as dis-
cussed in section 3.2 . The Laplace type of integral is
easily solved by Mathematica's Integrate command:
In[5]:= Sgrt(l]/(2 Pi I)' Integrate[Exp[- 1'(3/2)(2/3- x-2)],-x,
Infinity,Infinity-1

-1
out[5]=

3/2
(21 )/3 1/4

2 E

	

1

	

Sgrt(Pi]

Performance
Let us see in more detail the output of the anal-
ysis program when it is finding the valley bound-
aries and steepest descent paths . The procedure
display-landscape takes three inputs : (1) the ex-
pression h(z) in infix form, (2) the list of saddle points
(z = ±1 in this run), and (3) a stepsize size (0.2 in
this run) . Notice that in tracking the second steepest
descent path of the saddle point (1,0), the path hits
the other saddle point (-1,0), causing a termination .
(display-landscape '(z - 1/3' (z " 3)) '((1 0) ( -1 0)) .2))

Tracking valley boundaries of saddle point = (1 .0000,0 .0000)
Stepsize is 0.200
start point is : (1 .0707,-0 .0707) direction = (1 .0,-1.0)
Total path points is: 33 .
start point is: (1 .0707,0.0707) direction = (1 .0,1 .0)
Stepsize increases to : 0.4000
Total path points is: 18 .
start point is: (0 .9293,0.0707) direction o (-1.0,1 .0)
Total path points is: 33 .
start point is: (0 .9293,-0 .0707) direction = (-1.0,-1.0)
Total path points is : 55 .

'hacking its steepest descent curves . . .
Stepsize is 0.050
start point is : (1 .0250,0.0000) direction = (1 .0,0) descent an-
gle = 0.0000
Total path points is : 70 .
start point is : (0 .9750,0.0000) direction = (-1 .0,0) descent an-
gle = 3.1416
Terminating at saddle point (-1.0000,0.0000)
Total path points is : 22.

Tracking valley boundaries of saddle point = (-1 .0000,0.0000)
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Stepsize is 0.200
start point is : (-0.9293,0.0707) direction = (1 .0,1 .0)
Stepsize increases to : 0.4000
Total path points is: 18 .
start point is : (-1.0707,0 .0707) direction = (-1.0,1 .0)
Total path points is : 61 .
start point is : (-1.0707,-0 .0707) direction = (-1.0,-1.0)
Total path points is : 61 .
start point is : (-0.9293,-0 .0707) direction = (1 .0,-1.0)
Total path points is : 55 .

Tracking its steepest descent curves . . .
Stepsize is 0.050
start point is : (-1 .0000,0.0250) direction = (0,1 .0) descent an-
gle = 1.5708
Total path points is : 130.
start point is : (-1 .0000,-0 .0250) direction = (0,-1.0) descent angle = -
1 .5708
Total path points is : 246.

A typical run takes less than 40 seconds real time on
a Sparc 330. All the figures describing the topography
of the real part of h(x) in this paper are automatically
produced by display-landscape .

Evaluation
We tested the program on the Airy function with sev-
eral parameter values of a (when its phase values are
0, a , 3 , and a), and on half a dozen of integrals, in-
cluding the Gammafunction, the Bessel function, and
the Hankel function of the first kind . In each case,
the program is able to reproduce the leading term of
the asymptotic expansion as found in standard math-
ematical handbooks. In Fig. 5, we compare the exact
Airy function with the approximate analytical expres-
sion obtained from asymptotic analysis for a < 0. No-
tice the good agreement between the two graphs up to
rather small values of a (approx. -1) despite the fact
the asymptotic formula is derived under the assump-
tion of large negative a.

Figure 5 : Comparison of the Airy function Ai(a) (the
solid line) and the function '~- sin(3 I A 1 -21 +Z)
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(the dotted line). Note the good agreement between
the two graphs up to .1 < -1.

Extension
The most obvious extension to the program is to allow
the integrand to have singularities like poles, contours
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with finite end points, and branch cuts . Adding poles
is a small task . It consists of detecting what poles are
crossed over when the original contour is deformed, and
summing the contribution of each pole according to the
residual theory [Carrier et al., 1966]. Detection can be
reduced to the point location problem [Preparata and
Shamos, 1985] ifthe the region bounded by the original
and new contour is approximated by a convex polygon.
Handling contours with finite end points is also easy -
we add theend points to the topography graph with
the paths of steepest descent from them. Unlike a sad-
dle point, there is only one such path from each end
point . Adding branch cuts requires some work because
the programhas to decide where to place the cuts . The
integration around a branch cut is also slightly different
from that around a saddle point. Another extension
might be to generate higher order approximation be-
yond the leading term [Campbell ei al., 1987]. A third
extension - being currently worked on - is to use the
topography graph to automatically find all bifurcation
behaviors of the integrals.

Conclusion

That the type of informal and heuristic reasoning for
analyzing complex integrals as practiced by profes-
sional scientists can be captured in a computer pro-
gram combining numerical, geometric, and symbolic
techniques is the major contribution of this paper. The
reformulation of the contour selection problem as a
graph search allows a quick way to find the desired
contour, a task usually considered difficult by text-
book authors on the subject. - Accomplished applied
mathematicians [Carrier, 1972] consider the method of
steepest descent an important technique that "has had
a profound influence on the mathematical treatment of
scientific and other real world problems." The present
paper demonstrates that such powerful analysis tech-
nique can be brought within the grasp of computer
programs today.
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