RAPPER: The Copier Modeling Project

David Bell Daniel Bobrow Brian Falkenhainer Markus Fromherz
Vijay Saraswat Mark Shirley*

May 6, 1994

Abstract

The programme of research of model-based diagnosis is based on several assumptions,
foremost of which is the availability of component-based models of the system being diagnosed.
This assumption has been fairly innocuous for diagnosis of networks of combinatorial devices,
for which the construction of models with appropriate levels of discriminatory power has been
easy. A priori, however, there is no reason to believe that it will be possible to easily construct
models of appropriate generality, power and usability for complex, real-time, computational
electro-mechanical systems.

This paper reports on a project we started three years ago to construct a component-based
model for the input document-handler of a photocopier. Our goal was to develop a model
that was rich enough to allow the generation of diagnostic trees with the same discriminatory
power as existing documentation (RAPs, or Repair Action Procedures), which are by and large

constructed manually. This goal has been met in principle, but we have learnt several useful
lessons along the way.

1 Introduction

Model-based diagnosis has been a central area of research for members of our group for several
years.!

For some time it has been recognized that the central challenge in model-based diagnosis is
developing appropriate models of structure and behavior for the systems under consideration. To
be useful for diagnosis, such models should be accurate — they should be discriminating enough
to correctly identify exactly those states of the system that are in fact consistent with the given
observations. To be usable in practice, they should be abstract — so that relevant reasoning can be
performed with appropriate time- and space-efficiency. To be economical to produce, they should
be veridical — they should be designed to capture the physics of the device being modeled so that

*Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.; Name@parc.xerox.com

!Our group, the Scientific and Engineering Reasoning Area at Xerox PARC, includes David Bell, Danny Bobrow,
Johan de Kleer, Brian Falkenhainer, Markus Fromherz, Olivier Raiman, Vijay Saraswat, Mark Shirley and Brian
Williams.

they could be reused in all those settings in which the device would be used. Global behavior should
be derived from local interaction between components. This is usually called the “No function in
structure principle” [1].

Models with these properties have been easy to construct for networks of electronic devices.
But will it be possible to construct such models with reasonable effort for other real-world designed
systems? In particular, it is natural for us to ask this question for the very complex engineered
devices about which detailed information is available to us, namely, reprographics machines.
Typically, these machines consist of hundreds of electrical, mechanical, ¢lectro-mechanical and
computational components — sensors and effectors — involved in moving sheets of paper through
mechanical pathways, using complex xerographic processes to transfer optical images (or bit-
patterns) onto marks on paper, and applying various physical transformations to streams of paper
(stapling, stitching, shrink-wrapping, . . .) — while keeping the entire process under computational
control.

Fortunately, there already exists extensive diagnostic documentation for such machines, princi-
pally in the form of detailed diagnostic trees called RAPs (Repair Analysis Procedures). This gives
us a pre-existing standard for coverage and accuracy that we could try to match. The question we
asked ourselves, therefore was:

For a complex, real-world, computational, electro-mechanical system, is it possible
to systematically create an abstract and veridical model SD of structure and behavior
that is such that the diagnostic tree generated by SD is query-equivalent to existing
diagnostic documentation?

In more detail: How much detail would be necessary, particularly when describing signal and
error propagation? At what level of abstraction would we have to model continuous processes
(e.g. air-knife)? How detailed would information about geometry and spatial organization and
interaction have to be? How detailed would information about temporal interactions between
sub-systems have to be? Which ontologies for space and time would be appropriate? Could the
models plausibly be generated as a byproduct of design? Could models be constructed explicitly at
a level of effort that would be justified when compared to the existing approach to creating service
documentation?

This paper is a preliminary report on our work in answering these questions. We chose the
Recirculating Document Handler (RDH) subsystem of a copier in wide use — a major reason
was that this subsystem is the only subsystem that handles customer input documents, and is
relatively isolated from other components that are concerned with imaging and moving marked
sheets. In brief, we have built an abstract, qualitative model that is detailed enough to produce
diagnostic trees that match existing documentation. But we have learnt several important lessons
along the way, chief among them being the importance of understanding both current work-practice
and existing processes for informal model construction, and the wider organizational context in
which re-engineering of current work processes (such as that implicit in the model-based diagnosis
approach) is to be done.

The rest of this paper is as follows. We first briefly describe the particular subsystem we
modeled. We then consider the particular modeling viewpoint we adopted, and discuss some
representational issues and the diagnostic algorithm we employed. Finally, we step back and
review some lessons we learnt (are learning) from this (ongoing) work.

\ .
Document to tray 5 2 ! Document to inverter

>1 Stacking and ‘
l ‘Separanon | ‘
55 o | 53 |
‘ Return | | ! Preregxstranon}
Transportatlon' ! Transportatmn‘]
y | | | |
| : | a
E ’ l \ f 5 4 4 !
! Docupent from platen; ‘ Registration Document
| i { ! 1to platen
i ! | | i
| H H | - - 1
R : ! I T 1
i i i |
5.1 l ‘ i | g
‘Powerand | _ R ——
nerocks | | | O
L : Monitoring |

Figure 1: Schematic view of the Recirculating Document Handler

2 The task

The RDH for the particular machine we examined is responsible for feeding documents one at a
time through a series of rolls from the tray to the platen glass, registering them on' the platen for
exposure, and moving them back to the document tray (Figure 1).

The system is broken up by into several subsystems.? The first subsystem handles power
and interlocks. It provides motor drive to subsequent chains. It contains primarily the interlock
mechanism and the AC motor that supplies torque to the rest of the document handler. The interlock
mechanism ensures that the left-cover, right-cover and the input station are all latched shut; only
then is power supplied to the motor. It contains the mechanical components for interlocking (a
counter-balance and a magnetic catch) — these control interlock switches which electronically
signal whether or not the latch is in place.

The second subsystem handles document stacking and separation in re-circulating mode. It’s
principle operations are to sense the presence of a document stack in the RDH (and report the
height of the stack), achieve sheet separation using the air knife* and provide vacuum to transport
the bottom-most sheet into the next chain. It contains solenoids, (position and light) sensors, valve
assemblies, vacuum blower assembly, vacuum transport assembly, and stack height sensor.

The next subsystem handles the preregistration transportation of paper from the input tray
(starting at the takeaway roll) to the platen. In simplex mode, it simply transports the paper around
the paper-path loop so as to provide the paper to the platen face-down. In duplex mode, this chain
is responsible for inverting the paper and providing the paper “face-up” to the platen. It consists
primarily of roll stations, the inverter assembly (for duplex sheets) consisting of an inverter roll,

>We concentrate only on those subsystems that come into play during the operation of the recirculating document
handler. The document handler also provides the functions of transporting computer forms and sheets fed from a
side-feeder.

3 A side-ways flow of air that flutters and thus separates top sheets from the bottom one.

an inverter gate and two different output paper paths, a bi-directional roll station (to handle both
simplex and duplex), and forward and reverse drive assembly.

The fourth subsystem is responsible for driving the document onto the platen glass, stopping the
document on the glass in the proper position for exposure, and after exposure driving the document
off the glass into the return transport. It uses several main component assemblies. The document
drive assembly drives the paper up to the registration fingers which stop the document. The clamp
plate assembly then clamps the document in this registered position. Once registered and clamped,
the fingers retract, clearing the paper path for future transport. After exposure, the clamp plate
moves up allowing the document drive assembly to drive the document off the glass.

The fifth subsystem handles the return transportation of paper from the platen to the input tray,
without curling the document. It consists of a document exit roll station, an exit roll drive clutch,
decision gates, baffles, and a static eliminator.

Finally, an electronic subsystem monitors the state of the signals received from the switches
and sensors within the document handler. If it detects a fault, the document handler operation is
stopped and a message is displayed on the control panel.

Overall, the system we model consists of about 160 components, with approximately 40
different component types. The components are pneumatic, mechanical, electro-mechanical,
electrical and computational and have time-varying behavior.

The diagnostic task Innumerable things can go wrong in this complex process. Sheets of paper
may not separate properly, may jam during transport, may not register correctly (producing skewed
copies), or may stick together because of electro-static charge.

When things go wrong a service technician is called. Part of his job is to diagnose the machine
by making a series of tests on the system to refine his hypotheses until the faulty component(s) have
been identified. In this task, the service technician is guided by a thick binder of Repair Analysis
Procedures (RAPs). As the copier’s builtin monitoring software reports a fault code in case of
a malfunction, there is one RAP for each fault code. Starting from this initial symptom, a RAP
includes a sequence of tests and observations for the service technician to follow, culminating in
some suggested repair actions.

Currently, RAPs are generated manually by systematic experimentation. Our goal is to construct
a qualitative model of the copier which would be adequate to either interactively guide a service
technician through the repair process or automatically generate the Repair Analysis Procedures.

3 Model and Methodology

Diagnosis of time-varying systems is a complex problem. Our task is aided by the sequential and
cyclic nature of activity in the RDH.

“Critical event” modeling. The correct overall functioning of the RDH is generally determined
by the behavior-of each component at certain “critical” periods, typically determined by the time
that a sheet of paper usually passes a particular position in the path. Further, interactions between
successive cycles of paper through the RDH are very rare and can be ignored to the first degree
of approximation. This allows us to adopt the following modeling style. We model one “typical

pass” of a “typical” sheet through the system, and for the typical pass, state the deviations from
normality of various component behaviors at the critical time-events (cf.,[7]).

For instance, a segment of a paper-path takes on as value a “sheet”. A sheet may be the value
none (if in fact no sheet is transmitted during the prototypical pass) or doc(P), where P is a
complex description with attributes size, dep_time and arr_time. The normal value for size is
one indicating a cleanly separated sheet of paper passing through that paper-path segment during
the prototypical pass. It may be shingled if in fact two sheets stuck together were passed in.
The values that dep_time and arr_time take on include normal, early.1, early_2, late_1 and
late_2, indicating the time (relative to normal) at which the document departed from the station
at the beginning of the path, and arrived at the station at the end of the path. In addition, arr_time
can take on the value jam to indicate that paper did not leave the station at the end of the path.

Other types of entities in the system (e.g., representing torque, fluid-path, sensor signals,
electrical wires, etc.) could also be modeled as taking on values in a discrete set. (For example, a
sensor signal is one of step, clear, blocked, or pulse(T), where T specifies relatively a possible
delay (none, early, late).)

Such a representation decision eliminates the need for explicit representation of time and
complex temporal constraints. In some cases, a sheet passes the same device more than once (e.g.,
inverting roller for a duplex sheet). This is handled by having that component deal with a tuple of
values, one for each moment of interaction between the device and the paper during the prototypical

pass. However, genuine repetitive actions (e.g., the comparison between multiple passes) cannot
be modeled. *

Classifying behavior For the task of diagnosis, we are interested in identifying and therefore
modeling both correct and incorrect behavior. As an example, a roller might transport a sheet of
paper with normal or low speed. With each behavior, we associate the (qualitative) states or modes
of the process consistent with that behavior. For example, the roller behavior just described might
be due to the roller being in normal or worn mode.

Correct and incorrect behavior is modeled for those cases only where the input is “in band”,
i.e. for each component, we make a deliberate choice of which values are accepted as valid input
values. For all other inputs, we make the simplifying assumption that no information about the
behavior of the device can be gained in these situations, and therefore usually provide some default
behavior only. This is in line with another decision, namely the single-fault assumption that we
will see at most one component in a fault mode. For the task at hand, this significant assumption is
appropriate. Whenever an error is encountered as a sheet moves around the paper path, the physical
system is shut down, thus masking any “down-stream” faults. This strongly sequential nature of
the artifact allows an analysis of most problems as single independent faults.

Encapsulating complex processes. Since our task-objective was to be RAP-equivalent, we
did not have to create detailed models of the internal working of most components; rather coarse

“This still allows us to handle some kinds of faults that arise only on multiple passes of a document through the
system. For example, suppose that a large number of copies are being made of a given document. The state of the
platen glass is such that a small amount of extra static charge builds up on the sheet on each pass. If the charge crosses
a threshold then it can cause the sheet to stick and be detected as late at the tray exit sensor. This kind of multi-cycle
interaction can still be tackled through the “prototypical-pass™ approximation.

qualitative models sufficed. For example, the actual functioning of the air-knife involves a complex
interaction between a stack of paper, air blowing on the stack to separate the sheets of paper, and
a vacuum system that sucks the bottom sheet down onto a moving belt. To describe the correct
functioning of such a system (e.g., in terms of air pressure, suction effects, the physics of paper
separation, etc.) would be a significant undertaking in physical modeling. But for the task at hand,
we are only interested in the (correct and incorrect) interactions of a process with its environment,
regardless of its internal structure.

Similarly, the start-up circuit for an AC motor exhibits complex dynamics, which did not have
to be modeled in detail. For our purposes it was sufficient to encapsulate it as a single “component”’
whose input/output behavior was equivalent to the RAP’s view of the subsystem.

Hierarchical modes. Because of the sheer size of the system being modeled, we found it very
convenient to associate hierarchical modes with subsystems. In general the mode of a subsystem
was some function of the mode of its components; typically, it was just a tupling. This meant that
the overall system had a mode that took on as value a tree of mode-values. This required us to
handle the implementation of single-fault assumptions with care — just because the mode for one
device was known to be ok, it was not possible to instantiate the modes for all other devices, since

the shape of the mode-tree (i.e., the shape of the tree underlying other sub-systems) may not yet
have been determined.

Implementation and system-level issues. The model is implemented in an early version of the
language cc (AL), a concurrent constraint language [8] with the “attribute-value” constraint system
and naive arithmetic. Terms of the form P[dep_time >> normal] designate an av-list identical
to P except that the value of the attribute dep_time is normal. Accessor notation (P.dep_time)
can be used for obtaining values at attributes. Limited but useful constraint-solving over av-lists
is allowed. AV-lists proved invaluable in passing, accessing and updating complex aggregate
data-structures between processes.

Each component type is represented by a predicate whose clauses describe the possible behav-
iors for all modes of the component and for “out of band” inputs. Interconnection axioms establish
local component interactions via shared node variables. Figure 2 shows a simple example, the
model of a roll station.

A simple compiler translates cc (AL) programs into (Sicstus) Prolog, using delay primitives to
control evaluation of non-ground arithmetic expressions. The diagnostic algorithm is implemented
as an invocation of the model, under a pro-active single-fault assumption (which is not in pure
Prolog). This version of the compiler does not generate code that does constraint propagation at run-
time. Hence, in essence the run-time behavior is that of Prolog-style depth-first generate-and-test
search.

4 Diagnosis in RAPPER

Given an observed fault code which indicates faulty behavior, we can query the RDH model for all

possible modes of components consistent with this observation. As explained above, we make the
single-fault assumption.

Roll Station. If a roll station receives no document or low torque, then it does not pass any paper through. In
other (in-band) cases, its behavior is determined by whether it is ok or worn. If more than one sheet of paper is
simultaneously received (shingled), then a jam is asserted. Otherwise, the sheet is transferred normally (if the device
is ok) and with an incremental delay otherwise.

Mode is {ok, worn_roller}

ROLL_STATION(Mode, Torque, PaperIn, PaperQut) */

roll_station(_M, T, none, none) .

roll_station(_M, Torque, doc(Plarr_time >> jam]), none):- low_torque(Torque).
roll_station(worn_roller, normal, doc(P[size >> shingled, arr_time >> jam]), none).
roll_station(ok, normal, doc{[size >> shingled, arr_time >> jam]), none).

roll_station(worn_roller, normal, doc(P[size >> onel), doc(P_o[size >> onel])):-
delayed_doc(P,P_o).

roll_station(ok, normal, doc(P[size >> onel]), doc(P_o[size >> onel)):-
transferred_doc(P,P_o).

low_torque(low).
low_torque(none).

transferred_doc(Plarr_time >> A, dep_time >> A], P[dep_time >> A, arr_time >> _New]).
delayed_doc(Plarr_time >> A, dep_time >> A], P[dep_time >> Dep, arr_time >> _New]) :-
delayed(A,Dep).

delayed(late_2,late_2).
delayed(late_1,late_2).
delayed(normal,late_1).
delayed(early_1,normal).
delayed(early_2,early_1).

Figure 2: A sample component model: Takeaway Roll Station

Diagnostic Algorithm Concretely, given a symptom, all hypotheses W consistent with this
symptom can be computed. A hypothesis 1 € W is the triple (p,,. N, M,,) describing a specific
fault, where p,, is the probability of hypothesis w, /N, a set of probe points 2 with their values
v, and M, a set of components ¢ with their modes® m. p,, is defined by p,, = H(C:m)e M., Pe=m s
where p.-,, is the prior probability that component ¢ is in mode . Probe points x have domain
Vi={v|lweWAaA(z=v)e N,}.

Given the hypotheses consistent with the symptom, we want to rank the probes according to
how well they can distinguish between the hypotheses, and lead to a diagnosis. Currently, we use a
standard Shannon entropy calculation [3]. When used in an iterative algorithm that chooses probe
points, accepts their values, and removes inconsistent hypotheses, this correspond to a one-step
lookahead [2]. Given set W and a probe point , the expected entropy is defined by

5 A hypothesis contains all component modes, not just the faulty one.

Z P r= u]1 M/n(x 1/)

veV;y

where W, are the hypotheses consistent with x being v, W,,(»=.) is the respective normalized
set, p(W) is the total probability of the hypotheses W, and H (W) is the entropy of hypotheses W
definedby H(W) = — 3 cw Pw INpy.

Based on W and X, X, is a list of probe points ranked with respect to their expected entropy.
The algorithm is parameterized such that subsets of W (“leading hypotheses” based on p,,) and X
(“relevant probe points” based on V,,) are used to compute X,.

We have also implemented a variant of this diagnostic algorithm that takes into account the
hierarchy of the model’s structural description. Essentially, instead of using hypotheses ¥/, an
abstraction A; of W at subsystem level [is used to rank probe points. Diagnosis starts at an abstract
level and adaptively proceeds to a lower level only when no discrimination among hypotheses can

be performed at this level. The idea of this variation is that initially those probe points are preferred
that rule out entire subsystems.

Interactive Diagnosis In interactive diagnosis, the algorithm starts from the symptom and com-
putes an initial set of hypotheses W with a ranked probe list X,. The technician chooses one of the
top-ranked probes x € X,, makes a measurement = = v, and reports the observed value back to the
system. The diagnostic algorithm then removes all hypotheses inconsistent with this observation
from W, recomputes X,, and iterates. The algorithm halts if only one hypothesis is left, indicating
the faulty component.

RAP Generation With a similar algorithm, RAPs can be generated by automating probe selection
and anticipating all possible probe values. Instead of having the user choose probe points, the first
probe point = in X, is taken, and then all possible values are “envisioned” instead of reacting just to
the one measured by the user. Thus, the generator spans, at each chosen probe point, a diagnostic
subtree with |V| branches, one branch for each possible value in V,. For each branch of the
subtree, the generator proceeds as in the interactive diagnostic algorithm, removing inconsistent
hypotheses and ranking the remaining probe points, before generating the next subtree.

This procedure results in one diagnostic tree per fault code, where internal nodes are probe
points, branches are transitions to subsequent probe points based on possible probe values, and
leaves are diagnoses.

When producing RAPs from the diagnostic trees, a range of formatting options are available.
For example, it is useful to order the branches of each node such that shorter paths come first.
Also, similar measurements of the same types of components can be summarized, especially if
they appear in a degenerate subtree which simply checks each component in a suspect set. Another
formatting option is to add focus information, which is a statement that tells the user on which
subsystem all further hypotheses of a diagnostic subtree will focus (see below). All these operations

result in skeletal RAPs, which are basically annotated, ordered diagnostic trees. Figure 3 lists a
typical skeletal RAP (excerpt).

RAP generated for fault code ¢069:

Measure probe po3.
Is the value of po3 normal?
Yes (All suspects are now in ‘chain-5-3’.)
Measure probes [cm,cn,cp,co] in ‘chain-5-3°.
Is the value of any of them float?
Yes Diagnoses:
cm: cm in ‘chain-5-3" is open
cn: cn in ‘chain-5-3’ is open
cp: cp in ‘chain-5-3’ is open
co: co in ‘chain-5-3’ is open
No (cois v5dc, cp is de-com, cn is dc-com, cm is blocked)
Diagnosis: doc-to-platen in ‘chain-5-3’ is obstructed
No (po3 is none)
(All suspects are now in ‘chain-5-4.)
Measure probe reg-finger-position in ‘chain-5-4".
Is the value of reg-finger-position in?
Yes Diagnosis: pwb-5-4 in ‘chain-5-4" is bad
Ne (reg-finger-position is out)
Measure probes [at,as] in ‘chain-5-4°.
Is the value of any of them float?
Yes Diagnoses:
at: at in ‘chain-5-4’ is open
as: as in ‘chain-5-4’ is open
No (as is dc-com, at is v24dc)
Diagnoses:
gear in ‘chain-5-4:doc-drive-assembly’ is bad
drive-rolls in ‘chain-5-4:doc-drive-assembly’ is bad
clutch in ‘chain-5-4:doc-drive-assembly’ is stuck-open

Figure 3: A skeletal RAP

5 Evaluation and Future Work

Coverage of RAPs. The evaluation of coverage is mostly very encouraging — the generated
RAPs cover the diagnoses of existing RAPs fairly well. Missing diagnoses can often be traced
back to inadvertent omissions in the model. In a few cases, the generated RAPs also show diagnoses
that are missing from the existing RAPs.

The existing RAPs also often summarize a series of diagnoses for similar components, and
contain intermediate, general hints (abstract diagnoses). Both features can be achieved in the
generated RAPs. However, the existing RAPs are clearly richer in their explanations, and also
contain “catch-all” diagnoses and references to other RAPs, to be applied when all else fails.

Observations obviously missing from the generated RAPs are those about “non-systemic”
events (e.g., loose or burned objects), missing components, and observations that are functions
of the device running in diagnostic mode. The existing RAPs also emphasize a different set of
observations, which may be due to a different probe cost model.

One area not addressed by the generated RAPs is descriptive documentation. The existing

RAPs contain background information on symptoms, components, functions, and general servicing
information strategically placed throughout the procedures. This information is meant to outline the
context and point to further explanations, or to related RAPs. Often, RAPs also contain schematic
diagrams and references to the descriptive documentation (another thick binder). This could be
somewhat improved by using keywords and an appropriately structured database of canned texts,
but the human analysts clearly add important value to the decision trees.

Simple modeling techniques suffice. For diagnostic models of mechatronic systems, the 80/20
rule seems to apply — simple models can go a long way.

In retrospect, while the “critical event” modeling style we adopted considerably simplified the
task of generating the model, it may not have been as useful as we thought. To understand what
counted as deviation from normality for a particular device, we had to understand what counted
as abnormal for devices farther downstream: this required envisioning the component’s behavior
in context, and characterizing the histories of the signals in and out. We were helped by the fact
that the subsystem has one focus of interest, namely the sheet moving through the system, but this
often proved awkward.

We are exploring the relative merits of different modeling styles in terms of both simulation
speed and naturalness of the description. This includes using discrete event-based models of
devices in either a traditional event-driven simulator or a temporal constraint system. It is possible
that the smooth integration of event-driven simulation ideas in this context will require the use
of certain non-monotonic features, such as “safe defaults”. We are also exploring whether it is
possible to automatically derive critical events from a simulation, and hence generate the critical
event model.

Nevertheless, by and large, we feel we understand the technical issues involved in designing
modeling languages to allow the representation of models of electro-mechanical systems at the level
of detail necessary for constructing most RAPs. Simple constraint languages, perhaps augmented
with real-time features (as we are currently investigating) seem to be adequate.

Perhaps the most suprising lesson seems to be: General mechanisms for reasoning about
space, time, spatial and temporal interactions may not be necessary for useful diagnostic models of
real-world devices. Clearly, this will have to be further substantiated — at least in the reprographics
domain — as we work on other subsystems of a reprographic engine. But to date we have been
surprised by how far we could go with extremely simple representations.

Sometimes simple inference techniques suffice. Currently, very little control is exercised over
the search tree; nevertheless under a single-fault assumption the entire fault tree for a single
symptom can be generated in a few seconds on a SparcStation. For larger diagnosis problem, it
may well be necessary to focus on a few probable diagnosis (as in, for example, Sherlock [4]), as
opposed to exploring all diagnoses simultaneously. Regardless, a better conceptual understanding
is needed of combining probabilistic information with constraint-based computation.

Understanding the larger organizational setting is crucial. An unexpected lesson we are
learning is that the development, delivery and deployment of knowledge- or model-based diagnostic
systems is seriously affected by larger organizational dynamics. In the case of Xerox, diagnostics
involves several different groups of people — product and design engineers, service analysts,

service technicians, management, researchers developing computational diagnostic systems —
who may not share a common background about field service and diagnosis. An appreciation of
the organizational dynamics between these groups is essential to understanding the appropriate
role of technology in the work-place.

When we started the project we were by and large unaware of the crucial role played by
service analysts. These are a group of people — distinct from the engineers who work on
developing products — charged with assimilating all the sources of information (if any) about
the given product to produce documentation to be used by service technicians. As we ploughed
through the various sources of documentation about the RDH — principles of operation, Block
Schematic Diagrams, RAPs, parts lists, system and module operation descriptions — we began to
gain a better understanding of the complex assimilation task performed by service analysts (who
manually produce RAPs currently), and of the tools that may be of use in aiding them in their task.
(In some cases, service analysts may not even have access to some of the documentation — they
may just have a “Box from Heaven” whose modes of correct and incorrect functioning they try to
infer by literally “pulling wires” and observing resultant symptoms.)

Equally, in order to make a diagnostic system useful for service technicians, a series of
additional issues on top of modeling and diagnostic algorithms have to be addressed. Among these
are explanation, learning and adaptation, graceful degradation, and integration with complementary
techniques [6].

We realized that tools need to be integrated into actual work practice, rather than causing “task
intereference”; tools should be a time saving practice for work already being done rather than
appear to be additional work. This requires studying current work practice and working with
practitioners to evolve new work methods.

In particular, it 1s important to present model-based diagnosis technology as an incremental
build on the existing work practice. To do this, the new technology must support all the deliverables
the old technology delivered that are still considered essential:

Network models (pathways of interaction) should be built. We’ve seen that analysts already
build Block Schematic Diagrams (BSD’s), they are kept up to date, and are used by field service
technicians for deductive diagnosis. Guidelines for building BSD’s need to be refined (e.g. to
capture all of the pathways of interaction we would like).

In addition, service analysts are also responsible for producing a “Principles od Operation”
document. How can model-based reasoning techniques be used to aid in the task of generating
such documents?

Component models should extend FMEA-like models. Failure Mode Effects Analysis
(FMEA), Fault Insertion and Failure Analysis are three current practices that develop a qualitative
understanding of the machine behavior. The modes of each component are identified, and the
resulting effects are captured. We should understand what additional benefits are provided by
the more explicit and detailed compositional models we have been developing, and how such a
modeling activity can be introduced as an extension of current practice.

‘Just-In-Time” modeling should be supported. In subsequent projects we have found that
service analysts develop a more accurate knowledge of the machine over time through envisionment,

tests where bad modes are inserted into a machine and behaviors observed, and through feedback
from field experience. In addition, components of the machine are constantly being changed and/or
updated. This makes model development an evolving process, with analysts recording their models
right before the moment they are needed. Modeling 1s far from being the one-time process that
design engineers engage in and hand-off to customers downstream. What kinds of model-analysis
and maintenance tools need to be developed to aid in this task?

Future work These and many other related questions are being taken up in our continuing work
on understanding the engineering and product development process within Xerox. We have been
developing a Xerox-wide modeling and simulation infra-structure, a methodology for representing
and reasoning with real-time and hybrid systems and for using constraint-based models to generate
control software, and a suite of tools to enhance current work-practice in smart service (model-
based diagnosis, FAST/FMEA tools, descriptive documentation, “tips” data-base, . ..). We expect
to report on these activities in subsequent papers.

Acknowledgement

The work reported here has benefited immeasurably from interactions with Johan de Kleer, Brian
Williams and Olivier Raiman. Special thanks are also due to Bob Easterly, and Ken Kahn for
valuable discussions and comments.

References
[1] Johan de Kleer, John S. Brown, “A Qualitative Physics Based on Confluences”, Artificial Intelligence, vol. 24,
1984; also in: [9], pp. 88-126.

{2] Johan de Kleer, Olivier Raiman, Mark H. Shirley, “One Step Lookahead is Pretty Good”, in: Proc. Second Int.
Workshop on Principles of Diagnosis, Milano, [taly, October 1991, pp. 136-142.

[3] Johan de Kleer, Brian C. Williams, “Diagnosing Multiple Faults”, in: Artificial Intelligence, 32, 1987.

[4] Johan de Kleer, Brian C. Williams, “Diagnosis with Behavioral Modes”, in: Proc. [1th 1JCAI, 1989, pp.
1324-1330.

[5] Ken D. Forbus, “Qualitative Physics: Past, Present and Future”, in: H. E. Shrobe and the American Association
for Artificial Intelligence (Eds.), Exploring Artificial Intelligence, Morgan Kaufmann, 1988, pp. 239-296; also
in: [9], pp. 11-39.

[6] Markus P. J. Fromherz, Mark H. Shirley, “Supporting Service Technicians: Model-Based Diagnosis in Context”,
in: Proc. Workshop on Al in Service and Support at AAAI’ 93, Washington, DC, July 1993, pp. 59-69.

[7] Walter Hamscher, ‘“Temporally Coarse Representation of Behavior for Model-Based Troubleshooting of Digital
Circuits”, in: Proc. 11th IJCAI, Detroit, M1, August 1989.

[8] Vijay A. Saraswat, Concurrent Constraint Programming Languages, MIT Press, 1993.

[9] Daniel S. Weld, Johan de Kleer (eds.), Readings in Qualitative Reasoning about Physical Systems, Morgan
Kaufmann, 1990.

