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Abstract

The programmeof researchof model-baseddiagnosisis basedon several assumptions,
foremostof whichis theavailabilityof component-basedmodelsof thesystembeingdiagnosed.
Thisassumptionhasbeenfairly innocuousfor diagnosisof networksof combinatorialdevices,
for whichtheconstructionof modelswithappropriatelevelsof discriminatorypowerhasbeen
easy.A priori, however,thereis no reasonto believethatit will be possibleto easilyconstruct
modelsof appropriategenerality,powerandusability for complex,real-time,computational
electro-mechanicalsystems.

This paperreportson aprojectwe startedthreeyearsagoto constructa component-based
model for the input document-handlerof a photocopier. Our goalwas to developamodel
thatwas rich enoughto allow the generationof diagnostictreeswith the samediscriminatory
powerasexistingdocumentation(RAPs,orRepairAction Procedures),whichareby andlarge
constructedmanually. This goalhasbeenmet in principle,but we havelearnt severaluseful
lessonsalongthe way.

1 Introduction

Model-baseddiagnosishas beena centralareaof researchfor membersof our groupfor several
years.1

For sometime it has beenrecognizedthat the central challengein model-baseddiagnosisis
developingappropriatemodelsof structureandbehaviorfor thesystemsunderconsideration.To
be usefulfor diagnosis,suchmodelsshouldbe accurate— theyshouldbe discriminatingenough
to correctly identify exactly thosestatesof the systemthat are in fact consistentwith the given
observations.To beusablein practice,theyshouldbe abstract— so thatrelevantreasoningcanbe
performedwith appropriatetime- andspace-efficiency.To beeconomicalto produce,theyshould
be veridical— they shouldbe designedto capturethe physicsof the devicebeingmodeledso that
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theycould bereusedin all thosesettingsin whichthedevicewouldbeused.Globalbehaviorshould
be derivedfrom local interactionbetweencomponents.This is usuallycalledthe“No functionin
structureprinciple” [1].

Models with thesepropertieshavebeeneasyto constructfor networksof electronicdevices.
But will it bepossibleto constructsuchmodelswith reasonableeffort forotherreal-worlddesigned
systems?In particular,it is natural for us to askthis questionfor the very complex engineered
devicesabout which detailedinformation is availableto us, namely, reprographicsmachines.
Typically, thesemachinesconsistof hundredsof electrical,mechanical,electro-mechanicaland
computationalcomponents— sensorsandeffectors— involved in movingsheetsof paperthrough
mechanicalpathways,using complex xerographicprocessesto transferoptical images(or bit-
patterns)onto markson paper,and applyingvariousphysicaltransformationsto streamsof paper
(stapling,stitching,shrink-wrapping,... ) — whilekeepingtheentireprocessundercomputational
control.

Fortunately,therealreadyexistsextensivediagnosticdocumentationfor suchmachines,princi-
pally in theform ofdetaileddiagnostictreescalledRAPs(RepairAnalysisProcedures).This gives
us a pre-existingstandardfor coverageandaccuracythat wecould try to match. Thequestionwe
askedourselves,thereforewas:

Fora complex,real-world, computational,electro-mechanicalsystem,is it possible
to systematicallycreateanabstractandveridicalmodelSDofstructureandbehavior
that is such that thediagnostictree generatedby SDis query-equivalentto existing
diagnosticdocumentation?

In more detail: How much detail would be necessary,particularly whendescribingsignal and
errorpropagation?At what level of abstractionwould we haveto model continuousprocesses
(e.g. air-knife)? How detailedwould informationaboutgeometryand spatial organizationand
interaction haveto be? How detailedwould information about temporal interactionsbetween
sub-systemshaveto be? Which ontologiesfor spaceand time would be appropriate?Could the
modelsplausiblybe generatedasabyproductofdesign?Couldmodelsbe constructedexplicitly at
a level ofeffort that would bejustified whencomparedto theexistingapproachto creatingservice
documentation?

This paperis a preliminaryreport on our work in answeringthesequestions. We chosethe
RecirculatingDocumentHandler(RDH) subsystemof a copier in wide use — a major reason
was that this subsystemis the only subsystemthat handlescustomerinput documents,and is
relatively isolated from othercomponentsthat are concernedwith imaging and movingmarked
sheets. In brief, we havebuilt an abstract,qualitativemodel that is detailedenoughto produce
diagnostictreesthat matchexisting documentation.But wehavelearnt severalimportantlessons
alongtheway,chiefamongthembeingtheimportanceof understandingbothcurrentwork-practice
and existingprocessesfor informal model construction,and the wider organizationalcontext in
whichre-engineeringofcurrentwork processes(suchas that implicit in themodel-baseddiagnosis
approach)is to be done.

The rest ot this paperis as follows. We first briefly describethe particular subsystemwe
modeled. We then considerthe particularmodeling viewpoint we adopted,and discusssome
representationalissuesand the diagnosticalgorithm we employed. Finally, we step back and
reviewsomelessonswe learnt (arelearning)from this (ongoing)work.



2 The task

TheRDH for theparticularmachineweexaminedis responsiblefor feedingdocumentsone at a
time througha seriesof rolls from thetray to the platenglass, registeringthemon theplatenfor
exposure,andmoving thembackto thedocumenttray (Figure 1).

The systemis brokenup by into severalsubsystems.2The first subsystemhandlespower
and interlocks. It providesmotordriveto subsequentchains. It containsprimarily the interlock
mechanismandtheAC motorthatsuppliestorqueto therestofthedocumenthandler.Theinterlock
mechanismensuresthat the left-cover,right-coverandthe input stationareall latchedshut;only
then is powersuppliedto the motor. It containsthe mechanicalcomponentsfor interlocking(a
counter-balanceand a magneticcatch) — thesecontrol interlock switcheswhich electronically
signalwhetheror not thelatch is in place.

The secondsubsystemhandlesdocumentstackingand separationin re-circulatingmode. It’s
principle operationsareto sensethe presenceof a documentstackin the RDH (and report the
heightof the stack),achievesheetseparationusing theair knife3 andprovidevacuumto transport
thebottom-mostsheetinto thenext chain. It containssolenoids,(positionandlight) sensors,valve
assemblies,vacuumblowerassembly,vacuumtransportassembly,andstackheightsensor.

The next subsystemhandlesthe preregistrationtransportationof paperfrom the input tray
(startingat thetakeawayroll) to theplaten. In simplexmode,it simply transportsthepaperaround
thepaper-pathloop so asto providethepaperto theplatenface-down.In duplex mode,thischain
is responsiblefor inverting thepaperandprovidingthe paper“face-up” to the platen. It consists
primarily of roll stations,the inverter assembly(for duplex sheets)consistingof an inverterroll,

2Weconcentrateonly on thosesubsystemsthat comeinto play during theoperationof the recirculatingdocument
handler. The documenthandleralso providesthe functionsof transportingcomputerforms and sheetsfed from a
side-feeder.

Figure 1: Schematicview oftheRecirculatingDocumentHandler

3A side-waysflow of air that flutters andthusseparatestopsheetsfrom thebottomone.



an invertergateandtwo differentoutputpaperpaths,a bi-directionalroll station(to handleboth
simplex and duplex), and forward and reversedrive assembly.

Thefourth subsystemis responsiblefor driving thedocumentontotheplatenglass,stoppingthe
documenton theglassin theproperpositionfor exposure,andafterexposuredriving thedocument
off theglassinto thereturn transport. It usesseveralmain componentassemblies.Thedocument
driveassemblydrivesthepaperup to theregistrationfingerswhichstop thedocument.Theclamp
plateassemblythenclampsthedocumentin this registeredposition. Onceregisteredandclamped,
the fingers retract,clearingthe paperpathfor futuretransport. After exposure,theclamp plate
movesup allowing thedocumentdrive assemblyto drivethedocumentoff theglass.

Thefifth subsystemhandlesthereturntransportationof paperfrom theplatento theinput tray,
without curling thedocument. It consistsof a documentexit roll station,an exit roll drive clutch,
decisiongates,baffles,anda staticeliminator.

Finally, an electronicsubsystemmonitorsthe stateof the signalsreceivedfrom the switches
and sensorswithin thedocumenthandler. If it detectsa fault, thedocumenthandleroperationis
stoppedandamessageis displayedon thecontrolpanel.

Overall, the systemwe model consistsof about 160 components,with approximately40
different componenttypes. The componentsare pneumatic,mechanical,electro-mechanical,
electricalandcomputationalandhavetime-varyingbehavior.

The diagnostictask Innumerablethingscango wrongin this complexprocess.Sheetsof paper
maynotseparateproperly,mayjam duringtransport,maynot registercorrectly(producingskewed
copies),ormay sticktogetherbecauseof electro-staticcharge.

Whenthingsgo wrongaservicetechnicianis called. Partof hisjob is to diagnosethemachine
by makingaseriesoftestson thesystemto refinehis hypothesesuntil thefaultycomponent(s)have
beenidentified. In this task,the servicetechnicianis guidedby a thick binderof RepairAnalysis
Procedures(RAPs). As the copier’s builtin monitoring softwarereportsa fault codein caseof
a malfunction,thereis one RAP for eachfault code. Startingfrom this initial symptom,a RAP
includesa sequenceof testsandobservationsfor the servicetechnicianto follow, culminatingin
somesuggestedrepairactions.

Currently,RAPsaregeneratedmanuallyby systematicexperimentation.Ourgoalis to construct
a qualitativemodelof thecopierwhich would be adequateto either interactivelyguideaservice
technicianthroughtherepairprocessor automaticallygeneratetheRepairAnalysis Procedures.

3 Model and Methodology

Diagnosisof time-varyingsystemsis a complexproblem.Our taskis aidedby thesequentialand
cyclic natureof activity in theRDH.

“Critical event” modeling. Thecorrectoverall functioningoftheRDH is generallydetermined
by thebehaviorAofeachcomponentat certain“critical” periods,typically determinedby thetime
that asheetof paperusually passesa particularpositionin thepath. Further,interactionsbetween
successivecyclesof paperthroughthe RDH are very rareand canbe ignoredto the first degree
of approximation.This allows us to adoptthe following modelingstyle. We model one“typical



pass”of a “typical” sheetthroughthesystem,and for thetypical pass,statethedeviationsfrom
normalityof variouscomponentbehaviorsat thecritical time-events(cf.,[7]).

Forinstance,asegmentof apaper-pathtakeson asvaluea “sheet”. A sheetmaybe thevalue
none(if in fact no sheetis transmittedduring the prototypicalpass)or doc(P),whereP is a
complexdescriptionwith attributessize,dep_timeandarr_time. Thenormalvaluefor sizeis
oneindicatinga cleanlyseparatedsheetofpaperpassingthroughthat paper-pathsegmentduring
the prototypicalpass. It may be shingled if in fact two sheetsstuck togetherwere passedin.
Thevaluesthatdep_timeandarr_timetakeon includenormal,early_i, early_2,late_i and
late_2,indicatingthetime (relativeto normal)atwhich thedocumentdepartedfrom the station
at thebeginningof thepath,andarrivedat thestationat theendof thepath. In addition,arr_time
cantakeon thevaluej am to indicatethatpaperdid not leavethestationat theend ofthepath.

Other types of entities in the system(e.g., representingtorque, fluid-path, sensorsignals,
electricalwires,etc.) couldalso bemodeledastaking on valuesin a discreteset. (For example,a
sensorsignalis oneofStep, clear,blocked, orpulse(T), whereT specifiesrelativelyapossible
delay(none,early, late).)

Such a representationdecisioneliminatesthe needfor explicit representationof time and
complextemporalconstraints.In somecases,a sheetpassesthesamedevicemorethanonce(e.g.,
invertingroller for a duplexsheet).This is handledby havingthat componentdealwith atuple of
values,onefor eachmomentof interactionbetweenthedeviceandthepaperduringtheprototypical
pass.However,genuinerepetitiveactions(e.g.,the comparisonbetweenmultiple passes)cannot
be modeled. ‘~

Classifying behavior For the task of diagnosis, weare interestedin identifyingand therefore
modeling both correct and incorrect behavior. As an example, a roller might transport a sheetof
paperwith normalorlow speed.With eachbehavior,weassociatethe(qualitative)statesor modes
of theprocessconsistentwith that behavior.For example,theroller behaviorjust describedmight
be dueto theroller beingin normalor wornmode.

Correctand incorrectbehavioris modeledfor thosecasesonly wheretheinput is “in band”,
i.e. for eachcomponent,wemakeadeliberatechoiceof which valuesareacceptedasvalid input
values. For all otherinputs, we makethesimplifying assumptionthat no informationaboutthe
behaviorofthedevicecanbegainedin thesesituations,andthereforeusuallyprovidesomedefault
behavioronly. This is in line with anotherdecision,namelythe single-faultassumptionthat we
will seeatmostonecomponentin a faultmode. Forthetaskat hand,this significantassumptionis
appropriate.Wheneveranerroris encounteredasasheetmovesaroundthepaperpath,thephysical
systemis shutdown, thus maskingany “down-stream”faults. This strongly sequentialnatureof
theartifactallows an analysisof mostproblemsas singleindependentfaults.

Encapsulating complex processes. Since our task-objectivewas to be RAP-equivalent,we
did not haveto createdetailedmodelsof theinternal workingof mostcomponents;rathercoarse

4This still allowsus to handlesomekinds of faults that ariseonly on multiple passesof a documentthroughthe
system. For example,supposethat a largenumberof copiesare beingmadeof a given document.The stateof the
platenglassis suchthat asmall amountofextrastaticchargebuildsup on thesheeton eachpass.If thechargecrosses
a thresholdthenit cancausethe sheetto stick andbe detectedas lateat the trayexit sensor.This kind of multi-cycle
interactioncanstill betackledthroughthe“prototypical-pass”approximation.



qualitativemodelssufficed.Forexample,theactualfunctioningoftheair-knifeinvolvesacomplex
interactionbetweenastackof paper,air blowingon thestackto separatethesheetsof paper,and
a vacuumsystemthat sucksthe bottomsheetdown onto a movingbelt. To describethe correct
functioningof sucha system(e.g., in termsof air pressure,suctioneffects,thephysicsof paper
separation,etc.) would be asignificantundertakingin physicalmodeling.But for thetaskat hand,
we areonly interestedin the(correctandincorrect)interactionsof aprocesswith its environment,
regardlessof its internalstructure.

Similarly, thestart-upcircuit for an AC motorexhibitscomplexdynamics,which did not have
to bemodeledin detail. Forourpurposesit wassufficientto encapsulateit asasingle“component”
whoseinput/outputbehaviorwasequivalentto theRAP’s view of thesubsystem.

Hierarchicalmodes. Becauseof the sheersizeof thesystembeingmodeled,we foundit very
convenientto associatehierarchicalmodeswith subsystems.In generalthemodeof a subsystem
wassomefunctionof themodeofits components;typically, it wasjusta tupling. This meantthat
the overall systemhada modethat took on as valuea treeof mode-values.This requiredus to
handletheimplementationof single-faultassumptionswith care— just becausethemodefor one
devicewasknown to be ok, it wasnotpossibleto instantiatethemodesfor all otherdevices,since
the shapeof the mode-tree(i.e., theshapeof thetreeunderlyingother sub-systems)maynot yet
havebeendetermined.

Implementation and system-levelissues. The model is implementedin an earlyversionofthe
languagecc (AL), aconcurrentconstraintlanguage[8] with the“attribute-value”constraintsystem
and naivearithmetic. Termsof theform P[dep_time >> normal] designatean av-list identical
to P exceptthat thevalueof theattributedep_timeis normal. Accessornotation (P.dep_time)
canbe usedfor obtainingvaluesat attributes.Limited but usefulconstraint-solvingover av-lists
is allowed. AV-lists proved invaluablein passing, accessingand updating complex aggregate
data-structuresbetweenprocesses.

Eachcomponenttypeis representedby apredicatewhoseclausesdescribethepossiblebehav-
iors for all modesofthecomponentandfor “out ofband” inputs. Interconnectionaxiomsestablish
local componentinteractionsvia sharednodevariables. Figure2 showsa simple example,the
modelof aroll station.

A simplecompilertranslatescc(AL) programsinto (Sicstus)Prolog,usingdelayprimitivesto
controlevaluationof non-groundarithmeticexpressions.Thediagnosticalgorithmis implemented
asan invocationof the model, undera pro-activesingle-faultassumption(which is not in pure
Prolog). This versionofthecompilerdoesnotgeneratecodethatdoesconstraintpropagationatrun-
time. Hence,in essencethe run-timebehavioris that of Prolog-styledepth-firstgenerate-and-test
search.

4 Diagnosisin RAPPER

Givenan observedfaultcodewhich indicatesfaulty behavior,wecanquerytheRDH model for all
possiblemodesof componentsconsistentwith this observation.As explainedabove,wemakethe
single-faultassumption.



Roll Station. If a roll station receivesno documentor low torque, then it doesnot passany paperthrough. In
other (in-band)cases,its behavioris determinedby whether it is ok or worn. If more than onesheetof paper is
simultaneouslyreceived(shingled),then ajamis asserted.Otherwise,the sheetis transferrednormally (if thedevice
is ok) andwith an incrementaldelayotherwise.

Mode is {ok, worn_roller}

RDLL_STATIOM(Mode, Torque, Paperln, Paperout) */

roll_station(_M, _T, none, none).

roll_station(_M, Torque, doc(PIarr_time >> jam]), none):~ low_torque(Torque).
roll_station(worn_roller, normal, doc(P[size >> shingled, arr_time >> jam]), none).

roll_station(ok, normal, doc([size >> shingled, arr_time >> jam]), none).

roll_station(worn_roller, normal, doc(P[size >> one]), doc(P_o[size >> one])):—

delayed_doc(P,P...o).

roll_station(ok, normal, doc(P[size >> one]), doc(P_o[size >> one])):—
transferred_doc(P,P_o).

low_torque(low).

low_torque(none).

transferred_doc(P[arr...time >> A, dep_time >> A], P[deptime >> A, arr_time >> _New]).

delayed_doc( P[arr_time >> A, dep_time >> A], P[dep_time >> Dep, arr.time >> _New]) :—

delayed(A,Dep).

delayed(late_2,late2).
delayed(late_1 ,late...2).

delayed(normal ,late_i).

delayed(early...i ,normal).

delayed(early_2, early_i).

Figure2: A samplecomponentmodel: TakeawayRoll Station

Diagnostic Algorithm Concretely,given a symptom, all hypothesesi~1/consistentwith this
symptomcanbe computed. A hypothesis a’ C W is thetriple (p11,. ~ M~~idescribinga specific
fault, wherep,~is the probability of hypothesisw, A~,a set of probe points .v with their values
v, and ~ a set of componentsc with theirmodes5

iii. p~,is definedby P~L = ll(~=m)Ei~f,,P~7n,

wherep~ is theprior probability thatcomponentc is in modeni. Probepointsx havedomain
~/ç.= { v iv E 14/ A (x = v) ~ N~,}.

Given the hypothesesconsistentwith the symptom,we want to rank theprobesaccordingto
howwell theycandistinguishbetweenthehypotheses,andleadto adiagnosis.Currently,weusea
standardShannonentropycalculation[3]. When usedin an iterativealgorithmthat choosesprobe
points, acceptstheirvalues,andremovesinconsistenthypotheses,this correspondto a one-step
lookahead[2]. Given set 14/ andaprobepoint ;T, theexpectedentropyis definedby

5A hypothesiscontainsall componentmodes,not just thefaulty one.



He(X,14/) = ~ p(W~~,)Jf(W~(11))
VEVr

where~ arethehypothesesconsistentwith x beingv, W7~(.~~)is therespectivenormalized
set,p(W) is thetotal probabilityofthehypothesesW,and 11(14/) is theentropyof hypothesesj4/
definedby 11(W)= — >I:wEw p~ln ~

Basedon W andX, X~.is a list of probepointsrankedwith respectto theirexpectedentropy.
Thealgorithmis parameterizedsuchthat subsetsof 14/ (“leadinghypotheses”basedon p,.~.)andX
(“relevantprobepoints” basedon V~)are usedto computeXr.

We havealso implementeda variant of this diagnosticalgorithmthat takesinto accountthe
hierarchyof the model’s structuraldescription. Essentially,insteadof using hypothesesj4/, an
abstractionA1 of 14/ at subsystemlevel / is usedto rankprobepoints. Diagnosisstartsatan abstract
levelandadaptivelyproceedsto alower level only whenno discriminationamonghypothesescan
beperformedatthis level. Theideaof this variationis thatinitially thoseprobepointsarepreferred
that ruleout entiresubsystems.

Interactive Diagnosis In interactivediagnosis,the algorithmstartsfrom thesymptomandcom-
putesan initial setofhypothesesWwith arankedprobelist X7. Thetechnicianchoosesoneofthe
top-rankedprobesx C X~,makesameasurementx = v, andreportstheobservedvaluebackto the
system. Thediagnosticalgorithmthenremovesall hypothesesinconsistentwith this observation
from W,recomputesXr, anditerates.Thealgorithmhaltsif only onehypothesisis left, indicating
thefaultycomponent.

RAP Generation With asimilaralgorithm,RAPscanbe generatedby automatingprobeselection
and anticipating all possibleprobevalues.Insteadof havingtheuserchooseprobepoints,thefirst
probepointx in X~is taken,andthenall possiblevaluesare“envisioned”insteadofreactingjust to
theonemeasuredby theuser. Thus, thegeneratorspans,at eachchosenprobepoint, adiagnostic
subtreewith branches,one branchfor eachpossiblevalue in ~%. For eachbranchof the
subtree,thegeneratorproceedsas in the interactivediagnosticalgorithm,removinginconsistent
hypothesesand rankingtheremainingprobepoints,beforegeneratingthenextsubtree.

This procedureresultsin one diagnostictreeper fault code,where internal nodesare probe
points, branchesare transitionsto subsequentprobepointsbasedon possibleprobe values,and
leavesarediagnoses.

WhenproducingRAPs from thediagnostictrees,a rangeof formattingoptionsareavailable.
For example,it is useful to order the branchesof eachnode suchthat shorterpathscome first.
Also, similar measurementsof the sametypes of componentscan be summarized,especiallyif
theyappearin adegeneratesubtreewhich simplycheckseachcomponentin asuspectset. Another
formattingoption is to addfocus information,which is a statementthat tells the useron which
subsystemall furtherhypothesesof adiagnosticsubtreewill focus(seebelow). All theseoperations
result in skeletalRAPs, which arebasicallyannotated,ordereddiagnostictrees. Figure 3 lists a
typical skeletalRAP (excerpt).



RAP generatedfor fault codea069:

Measureprobepo3.
Is thevalueof po3 normal?
Yes (All suspectsarenowin ‘chain-5-3’.)

Measureprobes[cm,cn,cp,co]in ‘chain-5-3’.
Is thevalueof any of themfloat?
Yes Diagnoses:

cm: cm in ‘chain-5-3’ is open
cn: cn in ‘chain-5-3’ is open
cp: cp in ‘chain-5-3’ is open
co: co in ‘chain-5-3’ is open

No (co is v5dc,cp isdc-com,cm isdc-com, cm is blocked)
Diagnosis:doc-to-platenin ‘chain-5-3’ is obstructed

No (po3 is none)
(All suspectsarenowin ‘chain-5-4’.)
Measureprobereg-finger-positionin ‘chain-5-4’.
Is the value of reg-finger-position in?
Yes Diagnosis:pwb-5-4 in ‘chain-5-4’is bad
No (reg-finger-positionis out)

Measureprobes[at,as] in ‘chain-5-4’.
Is the valueof anyof themfloat?
Yes Diagnoses:

at: at in ‘chain-5-4’ is open
as: as in ‘chain-5-4’ is open

No (as is dc-corn,at is v24dc)
Diagnoses:

gear in ‘chain-5-4:doc-drive-assembly’is bad
drive-rollsin ‘chain-5-4:doc-drive-assembly’is bad
clutchin ‘chain-5-4:doc-drive-assembly’is stuck-open

Figure3: A skeletalRAP

5 Evaluation and Future Work

Coverageof RAPs. The evaluationof coverageis mostly very encouraging— the generated
RAPs coverthe diagnosesof existing RAPs fairly well. Missing diagnosescan oftenbe traced
backto inadvertentomissionsin themodel. In afew cases,thegeneratedRAPsalsoshowdiagnoses
that aremissingfrom theexisting RAPs.

The existing RAPs also often summarizea seriesof diagnosesfor similar components,and
contain intermediate,generalhints (abstractdiagnoses). Both featurescanbe achievedin the
generatedRAPs. However,the existing RAPs are clearly richer in theirexplanations,and also
contain“catch-all” diagnosesand referencesto otherRAPs,to be appliedwhenall elsefails.

Observationsobviously missingfrom the generatedRAPs are thoseabout“non-systemic”
events(e.g., loose or burnedobjects),missingcomponents,and observationsthat are functions
of the devicerunningin diagnosticmode. The existing RAPs also emphasizea different set of
observations,which maybe dueto adifferentprobecostmodel.

One areanot addressedby the generatedRAPs is descriptivedocumentation. The existing



RAPscontainbackgroundinformationon symptoms,components,functions,andgeneralservicing
informationstrategicallyplacedthroughouttheprocedures.This informationis meanttooutlinethe
contextandpoint to furtherexplanations,or to relatedRAPs. Often,RAPsalsocontainschematic
diagramsand referencesto thedescriptivedocumentation(anotherthick binder). This could be
somewhatimprovedby using keywordsandan appropriatelystructureddatabaseof cannedtexts,
but thehumananalystsclearlyaddimportantvalueto thedecisiontrees.

Simple modeling techniquessuffice. Fordiagnosticmodelsof mechatronicsystems,the80/20
ruleseemsto apply — simplemodelscan go along way.

In retrospect,while the“critical event” modelingstyleweadoptedconsiderablysimplified the
task of generatingthemodel, it maynot havebeenasuseful aswe thought. To understandwhat
countedasdeviation from normality for a particulardevice, we hadto understandwhat counted
asabnormalfor devicesfartherdownstream:this requiredenvisioningthe component’sbehavior
in context,and characterizingthehistoriesof the signalsin and out. We were helpedby the fact
that thesubsystemhasonefocusof interest,namelythesheetmoving throughthesystem,but this
oftenprovedawkward.

We areexploringtherelativemeritsof differentmodelingstyles in terms of both simulation
speedand naturalnessof the description. This includesusing discreteevent-basedmodelsof
devicesin eitheratraditionalevent-drivensimulatororatemporalconstraintsystem. It is possible
that the smoothintegrationof event-drivensimulationideas in this contextwill requirethe use
of certain non-monotonicfeatures,suchas “safedefaults”. We are also exploringwhetherit is
possibleto automaticallyderivecritical eventsfrom a simulation,and hencegeneratethecritical
eventmodel.

Nevertheless,by and large,we feel weunderstandthe technicalissuesinvolved in designing
modelinglanguagesto allow therepresentationofmodelsofelectro-mechanicalsystemsatthelevel
of detailnecessaryfor constructingmostRAPs. Simpleconstraintlanguages,perhapsaugmented
with real-timefeatures(as wearecurrentlyinvestigating)seemto be adequate.

Perhapsthe most suprisinglesson seemsto be: General mechanismsfor reasoningabout
space,time,spatialandtemporalinteractionsmaynotbe necessaryfor usefuldiagnosticmodelsof
real-worlddevices.Clearly,this will haveto be furthersubstantiated— atleastin thereprographics
domain— aswe work on othersubsystemsof a reprographicengine. But to datewe havebeen
surprisedby how far we could go with extremelysimplerepresentations.

Sometimessimple inference techniquessuffice. Currently,very little controlis exercisedover
the searchtree; neverthelessundera single-faultassumptionthe entire fault tree for a single
symptomcan be generatedin a few secondson a SparcStation.For largerdiagnosisproblem,it
maywell be necessaryto focuson a few probablediagnosis(asin, for example,Sherlock[4]), as
opposedto exploringall diagnosessimultaneously.Regardless,a betterconceptualunderstanding
is neededof combiningprobabilisticinformationwith constraint-basedcomputation.

Understanding the larger organizational setting is crucial. An unexpectedlessonwe are
learningis that thedevelopment,delivery anddeploymentofknowledge-ormodel-baseddiagnostic
systemsis seriouslyaffectedby largerorganizationaldynamics.In thecaseof Xerox,diagnostics
involves several different groupsof people— productand design engineers,serviceanalysts,



servicetechnicians,management,researchersdevelopingcomputationaldiagnosticsystems—

who maynot sharea commonbackgroundaboutfield serviceand diagnosis.An appreciationof
the organizationaldynamicsbetweenthesegroups is essentialto understandingthe appropriate
role oftechnologyin thework-place.

When we startedthe project we were by and largeunawareof the crucial role playedby
serviceanalysts. Theseare a group of people— distinct from the engineerswho work on
developingproducts— chargedwith assimilatingall the sourcesof information (if any) about
thegiven productto producedocumentationto be usedby servicetechnicians.As weploughed
throughthe varioussourcesof documentationabouttheRDH — principlesof operation,Block
SchematicDiagrams,RAPs, partslists, systemandmoduleoperationdescriptions— we beganto
gaina betterunderstandingof thecomplexassimilationtask performedby serviceanalysts(who
manuallyproduceRAPscurrently),andof thetools that maybeof usein aiding themin theirtask.
(In somecases,serviceanalystsmaynot evenhaveaccessto someof thedocumentation— they
mayjust havea “Box from Heaven”whosemodesof correctand incorrectfunctioningtheytry to
infer by literally “pulling wires” andobservingresultantsymptoms.)

Equally, in order to makea diagnosticsystem useful for service technicians,a seriesof
additionalissueson top ofmodelinganddiagnosticalgorithmshaveto be addressed.Amongthese
areexplanation,learningandadaptation,gracefuldegradation,andintegrationwith complementary
techniques[6].

We realizedthat tools needto beintegratedinto actualworkpractice,ratherthancausing“task
intereference”;tools should be a time saving practicefor work alreadybeing done ratherthan
appearto be additional work. This requiresstudyingcurrentwork practiceand working with
practitionersto evolvenew work methods.

In particular,it is importantto presentmodel-baseddiagnosistechnologyas an incremental
build on theexistingworkpractice.To do this,thenewtechnologymustsupportall thedeliverables
theold technologydeliveredthat arestill consideredessential:

Network models(pathwaysof interaction)shouldbe built. We’veseenthatanalystsalready
build Block SchematicDiagrams(BSD’s), theyare keptup to date,andareusedby field service
techniciansfor deductivediagnosis. Guidelinesfor building BSD’s needto be refined(e.g. to
captureall of thepathwaysof interactionwe would like).

In addition, serviceanalystsarealso responsiblefor producinga “Principles od Operation”
document. How can model-basedreasoningtechniquesbe usedto aid in thetask of generating
suchdocuments?

Component models should extend FMEA-like models. FailureMode Effects Analysis
(FMEA), Fault InsertionandFailureAnalysisarethreecurrentpracticesthatdevelopaqualitative
understandingof the machinebehavior. The modesof eachcomponentare identified, and the
resultingeffectsare captured. We should understandwhat additional benefitsareprovidedby
the moreexplicit and detailedcompositionalmodelswe havebeendeveloping,and how sucha
modelingactivity can beintroducedasan extensionof currentpractice.

‘Just-In-Time” modeling should be supported. In subsequentprojectswe havefoundthat
serviceanalystsdevelopamoreaccurateknowledgeofthemachineovertime throughenvisionment,



testswherebadmodesareinsertedinto amachineandbehaviorsobserved,andthroughfeedback
from field experience.In addition,componentsofthemachineareconstantlybeingchangedand/or
updated.This makesmodel developmentanevolvingprocess,with analystsrecordingtheirmodels
right beforethe momenttheyare needed.Modeling is far from beingthe one-timeprocessthat
designengineersengagein andhand-offto customersdownstream.Whatkinds of model-analysis
andmaintenancetools needto bedevelopedto aid in this task?

Future work Theseandmanyotherrelatedquestionsarebeingtakenup in ourcontinuingwork
on understandingtheengineeringand productdevelopmentprocesswithin Xerox. We havebeen
developingaXerox-widemodelingandsimulationinfra-structure,amethodologyfor representing
and reasoningwith real-timeandhybrid systemsandforusingconstraint-basedmodelsto generate
control software,and a suite of tools to enhancecurrentwork-practicein smartservice(model-
baseddiagnosis,FAST/FMEA tools,descriptivedocumentation,“tips” data-base,...).We expect
to reporton theseactivitiesin subsequentpapers.
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