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Abstract

This paper describes some preliminary work on
a program that builds ordinary differential equation
(ODE) models of target systemsfrom user-supplied
hypotheses,observations,and specifications. Its im-
plernentationexploitssymbolicand qualitativereason-
ing wheneverpossible,only resortingto low-level nu-
meric methodsif absolutely necessary. ODE theory
anddomain-specificrulesareused to combinehypothe-
ses, to checkevolving modelsagainst the observations
modulo the resolution inherent in the specifications,
to remove unnecessaryterms, and to synthesizenew
termsfrom scratchif need he. This tool has beende-
signedto usesensorsand actuatorsin an input-output.
approachto modeling real physical systems.

Introduction
One of the most powerful analysis tools in existence

and often oneof the most difficult to create-~ is a
good model. Expertmodel—builderstypically construct
hierarchiesof successivelysubtler representationsthat
capturethe salient featuresof a physical system,each
incorporatingmore physicsthan thelast. At eachlevel
in the hierarchy, the modeler assesseswhat properties
and perspectivesare important and uses approxnna—
lions and abstractionsto focus the model accordingly.
The subtlety of the reasoning skills involved in this

process,togetherwith the intricacy of the interplaybe-
tween them,hasledmanyof itspractitionersto classify
modeling as “intuitive” and “an art(Morrisori 1991 ).“

This paperpresentssonic preliminary ideas about a
computerprogram,currently un (icr development,that
is an attempt to automatea coherentand useful part
of this art. Such a tool is of obviouspractical impor-
tancein scienceand engineering:as a corroboratorof
existing modelsarid designs,asa niediumn within which
to instruct newcomers,and as an intelligent assistant,
whoseaid allows more time and creativethoughtto be
devotedto other demandingtasks.

The modelwg program described here works with
ordinary differential equations(ODEs), linear or non—
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linear, with multiple variables; it combinespowerful
mathematicalformalismswith domain—specificnotions

Kirchhoff’s laws for electronic circuits, for instance,
or forcebalancesfor mechanics-~-~to allow the type of
“custom-generatedapproximations”(Weld 1992) that.
are lacking in mrianyexisting automatedmodelingpro—
grams. The current incarnationof the program is writ-
ten in Scherrie and Maple; its implementationcombines
traditional numerical analysis methods,suchassimu-
lation and nonlinear regression,with symbolic compu-
tation, and will soon incorporatequalitative simula—
tiomm(Kmnpers 1986).

The program builds ODE models from three types
of information: mathematicalpreceptsthat are true
for all ODEs, such as the definition of an equilibrium
point; rules that apply in individual domains,such a,s
Kirchoff’s voltage law for electronnc circuits; andhighly

specific information about the individual target sys—
tern, entered by a user. Flypothesesmay conflict and
need not he mutually exclusive, whereasODE anddo-
nmairm rules are alwaysheld to he true. The ODE and
domainrules arecurrently hard—codedin the programTi;
we ultimately envision incorporating a few dozen of’
the former in total, plus half of a dozen of the latter
foi’ each supporteddonmain, and allowing usersto aug-
ment and modify both types. The specific infornmation
about time target system is presentedto this modeling
tool in a variety of formsand formats:

• the user’shypothesesaboutthe physicsinvolved

• observations,interpreted and describedby the user,
symbolically or graphically, in varying degreesof

precisiomi

• physical neasurenmentsmadedirectly and automat—
ically on the system

Becausethe physical interface will include hotIi sen-
sors and actuators, this tool will he able to take an
input—output.approach to modeling, another novel amid

powerful feat nrc.
This research projecthas two goals;oneis inmniediate

and commcrete, whnle the oilier is fa.r—reachmimmg amid less
well—defined. The first is to createa programmmthat an—
tommomnouslycommstmuctsmuatheniaticalnmodelsusing the



same kinds of inputs that a humnan expert would use.
The second is a first cut at “mrmental nmodelimmg”(Bo-
brow 1984): to understand what matters in a model
and what qualitative and quantitative properties are
affectedby tIme requiremnentsof the situatiomi and time
knowledgeof time user.

What the ProgramDoes

A model is aim abstract iou of somrmeone’sunderstanding
of a particular systenmi. It is based omi observations,
dependscritically on the physicsbackgrouumdof its ar-
chitect, incorporates sonic notiomi of what quaumtities
matter (scope’), and adaptsto changingscales(reso
lution). Becauseexactdescriptionsare often unknown
and/or inappropriate, nnodeling almost always involves
abstractionsand approximations.Refinement increases
the order of a mmiodeh, adding terms, sharpening ap-
proximations,and shrinking “black box” boundaries.
In simplification, the dual of refinement, unnecessary
terms are removed.Refinementoccurs when a model
does not match observations and must be improved.
Simplification occurs when a model is more complex
than necessary. Both operationsare governedby tlme
requiredaccuracyandresolution.

Figure 1 showsthe connectionsbetweemithe tool de-
scribedin this paper and the system to be modeled.
The programrepresentedby time right-handblock in
this figureconstructs an ODE modelof a target system
basedon information enteredby a user; if the model
is to be basedon direct observationsof a physicalsys
tem, the programwill obtain additional information
via sensors,actuators, a hardwareI/O channel, and
data acquisition software. The control vector iT rep
resentsthe actuator imiputs. The observation vector
F is a set of variablesthmat representthe systemstate

or at least parts of it that are observable and/or

interesting.2

The program’s output is an ordinary differemmtial
equation,of the form f(F, t) = 0 (or f(~,t) = y(i), if
the system is driven), that matchestheobservationsto
withinm the prescribed resolution. The program builds
this model by mapping the domain rules encodedin
its knowledgebaseommto the user’s hypotheses,checks
it against the observations modulo the precisioninhier-
emit in the specifications,and refines or simplifies it,
as necessary,using a collectiou of techniquesthat are
outlined in time later sectionsof this paper.

Figure 2 shows an example of how one nnight in
struct the program to build a model of time danmped

Time terminology of (Weld 1992) will be adopted here,
identified with sansserif font U~Ofl first appeanamiceof eacim
term.2Notethat time componentsof F niay or may not repre-
sentauniquefunction of theinternal systenmstate,andthat
measuringany given quantity may not be possible(i.e.. no
appropriatesensormay exist). Observability, controllabil-
ity, and reachability issueswill not be addressedhere.

pendulum. ‘I’he user first sets up the problem, by—
pothesizesfour different force ternms,gives threeobser-
vations about 0, amid specifiesthe requiredresolutions.
The detailsandimnphicationsof eachpart of this syntax
are coveredin tie rest of this section;the next section
describeshow tIme program uses that inforunation to
build amodel.

The initial prohlemmisetup requiresseveralsteps. The
first specifies tIme dommiaimm amid imistammtiates its associ
ated rules. (autonomous<force>) tells the program
to apply all <force> rules blindly, and not to require
the right hand side of the nnodel to immclude army par-
ticular forcing fuumctiomi. ‘l’he next two lines idemmtify
<theta>asa statevariablethat is a coordinateasso-
ciated with a point (the bob). The modeling process
works most efficienitly if all of the importantstatevari-
ablesare identified in the state—variablesstatement,
hut theprogramim doesincorporateafew techmmiiques,ad
dressedin a later section of this paper, that allow it
to constructa model, in somecases,even if the user
omitsimuportantstatevariables.Redundantstatevari-
ables onestlmat play no role in the rmiodel increase
the size of the searchspacebut otherwisepresentno
problems.

Hypothesesare ODE fragmnments(single terms, cur-
reumtly) whose variables are (1) elementsof the ob-
servation vector and (2) special keywords that pro
vide the conmiection to domain and ODE rules.
‘Flie <time> keyword is common to all domains;
keywords specific to time mechanics domain are
<force> and <energy>, with the associateddomain
rules (point—sum <force> 0) amid (point—change
<energy> = 0).~ The electronics domain uses the
keywords <current> and <voltage>, which work
with the donmain rules (point—sum <current> 0)
amid (loop—sum <voltage> 0). Mamupulation of
these point amid loop constructs places some miter-
estimig requirementsomi the internal representationsof
coordinates, as (lie program must be able to infer
connections,cutsets, etc. Note that the conceptsof
loop amid point sunisare miot only appropriatefor these
examples,hut also generalizablewell beyond mechami-
ics or electronics. Fimmally, its symmtax amid setup make
theprograumieasilyextensibleto other paradigms(e.g.,
volume—change,etc.) via simple syntax extensiomms
amid new rules that tap imuto those extensiomis, much
as (point—sum <force> = 0) works with hypotheses
that include the <force> keyword.

Multiple hypothesesabout asingleeffect can and
should exist; time program will autonmaticahlydeter-

A body—centered inertial referenceframe is assumed
here, togetherwith coordmatesthat follow time formulation
of classical niecimamiics(Golclsteiui 1980), which assignsomme
coordinate to each degreeof freedom, thereby allowimmg all
equatioumsto be written without vectors. A conjugate nmo—
xuieim I urn is associatedwith each coordimmate; this concept
is museful iii synummetry identificatiomm amid symbolic model
matching.



(domain mechanics)
(autonomous <force>)
(state—variables (<theta>))
(point—coordinate <theta>)
(hypotheses

(<force>

(<force>
(<forc~’m>
(<force>

(observations
(<theta>
(<theta>

Figure 1: Structure of themodeling tool

(<theta>
(specifications

(mesh—width <time> absolute le—6 (0 120))
(mesh—width <theta> absolute le—3 (0 (4~ 2 pi)))))

TAH.GET

SYSTEM

actuators
(1

sensors

a:

~)OMAIN THEORY

MOh) ELER

ODE THEORY

MODEL

‘— HYPOTHESES

— SPECIEICA’FIONS

i— OBSERVA’I’IONS

(find—model

~mg

(deny (deny <theta>))))
(sin (* (constant AS 0) <theta>)))
(deny <theta>)))
(square (deny <theta>)))))

(* (constant Al 0)
(* (constant A2 0)
(* (constant A3 0)
(* (constant A4 0)

(linear (1 0) <theta> (range —.05 .05)))
(asymptote (eqn 0)

(at <time> *infinity*)
(range 0 *infinity*)))

(numeric (<theta> <time>) ((0 .1234) (.1 .1003) . . . )fl)

Figure 2: Instructing the programto nnodel time damped pemiduhunn



muimie wIn cli one is appropriate. Somneoilier mnodeli ng
programmis, e.g., ( l’ahkemihiaimier ~.‘ Forhu.s 1991), defiuie
gromipings of termmms imi such situations, such as a set
of Imypothesesabout friction. M mit u ah exclusivity coui
straits are thieui immmposedwit himi each group, greatly
reducingthe commiplexity of the refinemnemitprocess. We
havechosennot to usesuchgroupimigs, for two reasons:
(1) to mimimmimnize (lie restrid iomis on time umuodelsthat the
programcanchooseamid (2) to mmii mum mm ize the Ii igh level
conceptnal processimigrequiredof t lie miser.

Observations describe the behavior of a simigle
elemnemit of the ohservatiomi vector, either imi the

june domiiaini or imm any St ate—span’e projectiou.
4

Unlike hypotheses, ohservations may not couiflict
‘flmey have two potential sources: the user amid
the seumsors. [ser observations unay he descrip
tive, graphical, or nmjmeric. Time fornier misc spe
cial descriptive keywords, time second are sketches
drawn on a computer screen with a mouse, amid
tie third siunply specify (lata points. Descriptive
keywords concave, monotonic, oscillation,
linear with [slope, intercept], etc. closely
reseunihleterunsimi qualitativephysics(QP)(Weld ,~‘ (Ic
Kleer 1990). Time user’ssketcheswill be processed
curve fittimig, iumt erpohation, recogmuitioum of linear re
gions, amid so on usimig Maple functions, aimd time
results will he used ium time sauneway asdescriptiveoh
servationms.Observatiomis fronn the imardwareI/O chami-
mmcl will be treated mmdi hike graphical observatiomis,
but at a higher coumfidence level. F’imially, observatiomis
of any form unust eumcodethe rangeiii which they are
valid; time enidpoiumtsof theseramigesare akium to QP’s
landmarks.

Observatiomisguide t lie u modeling processin a fumi da
ummental way. A model comist metedby a hmuniami expert
mimat cues, mimi imu ally, a particular set of observatioums:
(lie mmiodei builder does mio I miore work (ham m iecessary
to effect time ummatchi, amid does mint try to amiticipatecx-
emisions or fu rt her developu emits unit i I forced to (ho so

hy ummodel fail ire or requiremneuit escalatioui. ‘l’he an
I ounatm’ mimodeler (lescrihedhere (hoesexactly t lie same
timing: at all tiummes, the prograumi attempts to estah—
hish the una.teli with the uimiumimminumi of work, usimmg ium—
forunation at as buighm a level aspossibleto do so. ‘lime
nost immuport aumt in ipl icatiouis of tIns conceu’ui time (let er

mmnmiatiou of time coefTiciemits Al , A2, etc. imi figure 2.
A descriptive observation oft cmi places only quahita

i ye reqmiiremmiemits or homimids oum thosecoefficients, while
mm atcli imug a model agaimist a (letailed numneric obser
vatioui usually requiresexact coefficiemit valuesout to
some umunmiber of sigmnficauit figuu’es. Moreover, a simi
gle ohservatioui, eveum a qualitative one, can commtaim
in forunat ioum about mu i amy di iferemit van ahies if, for
examumple, it commdermis a state variable that appearsiui
all of the t eu’nis imm (lie model. Such aum observatiomm
would sigmi ificamithy focus t lie m nodelby forcingthe evah

Tim is program will penforum ii 0 freqmmcmi ‘, —(1 ouii a ii
reasonumig.

nation of several coefTiciemits in several differemit parts
of time hfferemmIi al equat iou. Thins nei t her time umuuiuber
mior time characteristics qualitative,quantitative,etc.

of ohseu’vations required for (lie couistrmmct ioum of a.
successful model are umecessarilyrelated to I lie umumimber
of ummdeteu’mniuiedcoeflicieumts om’ state variables; these
requiremmmemitsare counphicated and possibly mmomihmmear
fm mict ions of t lie term ms involved. Fin ally, a Ii ighmer level
amid unoreobvious immiplicat iomm of t lie role of observa
t iomis imi t lie niodeli mug processis I hat umeither a pi’o—
grain nor a hinumanexpert can couistruct a mu model if no
observationsaregivemi.

A specificationconcernsany fmmnctionm of any numim
her of ohservaiiou vec(or elemmients; it prescribesraumge
aumd resolution humnts for that quaui(ity aumd specifies
whether time resohntiomm is absoluteor relative. ‘lime
mesh—widthst ateunemilsimu figure 2, for inst ance, imi
struct the mnodeher to imiupose umncrosecoumdamid mnil—
hradiaui accuracyover 120 secomidsof systcmi evolu—

ioum. All ohservation processingis basedomi t lie raumges
aumd resolutionsgiveum ium the specificatiomms; if oumly (lie
rauige .u:2=[3, 5] is of iumterest, asymmiptotesat a:2 = ‘1(1
are in mmmi aten al. Landmm arks timat overlap cami be comm
himied , amid any effect (hat occum’s or a sumiahler scale
(biami t lie omie specified c~ammbe smibsumnedimit o time imi
tervals arouumd it (e.g., a naumosecoumdglitch duriumg a
unill isecomid—resolmit iou mumi ). It is i nmpontam t to mini e
(hat specifications iniplucit hy govenum time level of aim
stractiomi thuat time umiodelem’ emmforces: sharpemnuig(lie
mesh—widthwill typically force time unodelento accouuit
for lower level effects amid addtermums to tIme ODE, given
a fixed set of ohservaiioums.

r1~h set of imiputs was comiscionslychmoseum to uni m mnc
lie imifonummat ioui t hat ami expeu’( desigmier useswimeum ime

or she cons(ruucts a model. The mimot ivat iomi for thus
choice is that, ium a project whose secoumdary aim is
to uumderstaid the hmummuammproblem—solvingpu’ocess,time

prograumishould emmmnlate(lie processthmat a hmuuimamm ex-
pert womml d follow, imisofam’ aspossible. Moreover,a tool
desigmiedfor hiuuIiamm useshould iumt erfacesmnootlily with
humniam skills, reasoumimigamid commimimmmuncation pattem’mms.
‘Fins choice, amid its justificatioum , are specific to (Ins

particular project. ‘lime debateabout whetlien or not
coluiputerproblem solviuig processesshould in general
emminI ate t hem himi inaim equivalenm(s hasa long ami (I sonic-
what (‘omit emit ions list ory, to wIncli we plamm no coui(ui—
butiou.

How rihe ProgramWorks
‘Ilie i~nogu~unemucodes a body of gemmenal kuiowledge
ahomm( ODEs how to recognize, locate, amid quaum—
t ify equilibria, hasiumsof attractiomi, iudegu’ahihity, PC
niodicity, et(‘ . aid (bunaimi—specific kumowledgelike
(point—sum <force> 0). Together,theOl)E anddo-
mmiaiui rules, operatimigoil (lie iumpnts describedium tIme

pu’evions sectioi , govenum low hypothesesaid unodeis
arecomnhiumed, tesieuh, rmmled omit, augmuiemited, amid simmi
phi fled. ‘lii u’onghiomit the process,tasks are performed



at the highest,most qualitativelevel possible;symnhohic
t.echnmiquesarc attemptedfirst amid numericomies ommhy
as a last. resort. Finally, time umiodehingprocessis nmot
passive:the program can misc its actuatorsto mnauiipu-
late time systemand actively test time evolvimmg model.

A set of candidates for time program’sfirst attcnmpt
at a nnodel is constructed by mappinig the donmaiuu

rules onto the hypotheses- e.g., mising (point—sum
<force> 0) to counbimme<f once> = A10 amid <force>
= .42 sin .4~0imito time mnmodel .4~0+ ~42sin A50 = 0.
Most of the resulting camididatemodels caum quickly
he ruled out using rough symbolic rules amid tech-
niques; for cxaniplc, ummless astate variableis observed
to be constant.,the mmmodeh mmmnst imiclmide its derivative.
‘Fume simplest remaimmingmniodel - the ba’e model
is then passedto the chicck/rcfimme/simnphify loop, as
schematizedin figure 3. This mmmodel is checkedagainst
time speciflcatiouis amid observations;if it passes,the
program timemi attenipts sinnmphficatiomm, remnovimig each
term in successionand checking tie resulting ODE.
If time conmsistemicy check fails, the programnrefines the
ODE, using the domain rules to introduce successive
hypothesesfromnm the user’s list. As a last resort, the
refiner callsupon generalODE theory amid purely mime-
chiammical nmethods,smmch as power—seriesexpansion,to

symithiesize tennis fromum scratch.The reflumed mmiodel num—
dergoesone last ronmmd of siunphificatiomm that finds amid
reunovesany newly—superfluousterms, and (he final
product is retuirumed to the user.

‘i’imis control flow (Iesigmm hasa variety of interest—
imig immiplicationis. ‘[lie siunphify/refimue 1001) allows the

progranuto movesidewaystimrouigh tIme searchtree of
models, recoveringfrom bad choicesand making glob-
ally gooul movesthat reqmmireone locally haul imiterme—
diate step. We could also imave choseum to hoop uliore
than ommce, whuiciu would increasethe width of the pro—
grammi’s lateral reacim throuigl.i tlme searchspace,amid, nh—
timnatehy,allow it to fimmd time provably niininnmal model
in that space. llowever, such a searchwould have tIme
stan dard conmplexity problemns(Winmstoui 1992) and a

secondarygoal of this project is to produce a “good
enoumghi” answer in mnmiumiuiia.i time.

The four blocks of figure 3 -- amid themcdi armiesarid
immmphicatioumsof failure iii each -- are describedin tIme
miext four suhscct,ionms.The following sect.ioum describes
time as yet. umnmmmplemeumted hardware interface amid the
mecliammicsof input—output modehuig, amid is followeub
by abrief discussionof relatedwork.

Generatingthe First Model
The basemnodel gemicratoruses donmaimmrules to conm—
himie hypotheses,(lieu ascertains whicim of those comnbi—
nations (mmiodels) are consistent ~vit.hmtime miser’s obser—
vatiomis. The ideahereis to produceapreliminarysolmi—
tiomi to an exponmemmtiaiiycomplexprohienmmvery quickly;
to (bo so, time base—unodehgenieratom’ usesonly syrmmbohic
nnaumipumlatiomiand stops short of aim exhaustivecheck
of ahi possible comnbimmations of hypotheses. Wimemi time
amiswer that it produces is suihoptimal or evemi incorrect.

a riot—unlikely occumrremucebecauseof its quick—and—
dirty techimmiques the refimier amid simnmphifier act asa
safety miet, as describedin the peniultinmat.eparagraph
of time previoussection.

The hypothesis list, is first sorted using a simimple—
unimided conmpiexity mmmet.nic, discussedlater in this pa-

per. Time hase—nuodelgemmeratorthiemi coumst.rmictsa omic—
termii mnmodel froun tIme first hypothesisiii tIme list, amid
cimecks it against.the observat.iouis.Symimbohic himiear al-
gebra, for instance,cami he used to establish timat the

candidatemodel A10 = 0 is imicoimsistemit wit,li aim ob-
servedinitial comiditioum 0(0) = 1.2 and ami eqmuuihriumnm
poimit 0(oc) = 0. If the check fails, tIme process is
repeated mmsiumg t lie next entry in time hypothesislist,
amid so on. if mionie of tIme omme—teu’nn mnmodels passes,
time basenmmodeh gcumcratortimeii starts testing two—ternm
combinatiomms:’ If all two—term mmmodehs fail, the pro—
granmi proceedsto timree—tcrnmmodels, arid so 0mm. The
first OI)E iii thus successionthat is umot i imiphausible,
given the observations,is t.heum passedto the conmsis—
t.ency ciieckcr.

INote that conij)iIiaiioIi need not iuimply .smirn: the coumu—
hium atioui operator is iii phicit Ri the operativedonmaimm nmuhe.

Y

N

Y

last modelto passcheckN

Figure 3: Flowchart of the numodehuigprogramnm



Checking Models Against Observations
The consistencycheckercomparesthe behavior of an
ODE to asetof observationsusingthespecificationsas
guidelines for how closely to enforce the match. When
operatingupon descriptiveor graphical observatiomis,
the consistencycheckerreasonssynnbolicahhywhenpos-

sible, falls back on nunnerical simulation if mmecessary,
and recognizesdifferemmt typesof behavior(e.g., chaotic,
periodic) in bothnumericandsymbolic results. With
numeric observatiomis, the check proceeds directly to
the nmurmmenic phase.

As mentionedpreviously, the evoivimmg precision of
the model’s coefficients follows the processionof the
ODE throughthe phasesof time consistencycheck. If a
symbolic check is coefficient-independent,none of the
Ai need be determined.If the check proceedsall the
way to a point-by-point comparisonof Runge-Kutta
output to the data in a numeric observation,data-
point interpolation and Newton-R.aphsonare used to
compute all undeterminedcoefficients. Many cases
will fail between these two extremes, yielding par-
tially determinedcoefficients. For example,to match
a model againstan observedoscillation, the program
might symbolically constructa root-locusplot and de-
termine the coefficient values that causethe system
poles to cross into the right-half plane -- e.g., (Al
greater-than0).

The symbolic techniques used to check a model
againsta qualitative observationare similar to those
used by the base model generator -— in fact, the
latter are a subsetof the former. For instance, if
the observationsincluded a descriptionof arm asynnp-
tote, the consistencycheckerwould usesymbolic dif-
feremmtiation ammd L’Hdpitai’s rule to take the appro-
priate limit and corroborate the observation. Re-
gions where the system is linear or where a partic-
ular polynomial bias beenspecified ~ or found by a
curve-fitting procedure— can be checked using the
first few termsof asymbolically constructedTaylorse-
ries. Time QSIM programn(Kuipers1986)performsqual-
itative simulation of qmaalitativedifferential equations
(QDEs); given an ODE~—~QDEtranslator(Crawford,
Farquhar, & Kuipers 1990), QSIM could be used to
do someof thesefirst-cut symbolic consistencychecks.

A numeric consistencycheck of a model entails a
comparisonof a mechanicalinmtegration of the ODE,
computedusingRunge-Kutta(Pressel al. 1988), and
a set of point-by-point observations. As mentioned
above, this comparisonmis precededby a numeric fit
of model coefficientsto numericdata; if it wasinvoked
by a non-numericobservationm, the check nmay entail
geometricrecognitionof high-level behavior patterns

such as chaos,thresholds,or periodic orbits -- in
the simulation data.~Oneeasy -- and proveui(Bradley
1992) -- way to perform this type of geometricrecog-
nition is to sumperinmposeavariable-resolutiongrid over
thesystem’sstatespace,discretizethe trajectoriesinto
lists of grid squares,amid analyzethe patternmsin those

lists. ‘Fhis ties mm well to the input format proposed
earlier: specificationsamid observationscan be used to
set up the paramnietersof time mechanicalimmtegrat.ioui
amid time geometryof tIme grid, assuringadequateaccu-
racy and resolmition imm time results, attaimiedwith the
mimiimnunm conmputatioui.

If any model fails a check, a faihmire report is gen-
erated; this repom’t commtainms the model, the violated
observation(s), the data (qualitative or quaimtitative)
that causedthe violation, perhapsa simple interpre-
tatiomi derived from thosedata, ammd the model’s fmill
genealogy--~ all hraumchesin the searchtree timat were
traversed during the search. This imiformatiomm could
he used by the other program nmodules—- a form of
discrepancy-drivenreflnernent(Addanki,Cremoninmi,
Penberthy 1991; Weld 1992) -- in a variety of ways:
to back intelligently out of humid alleys, to avoid du-
plicating previously performedchecks,or to pick up at
sonicappropriatemidpoint in the eventof a restart.

Simplification: Reducinga Model to
Lowest Order
‘l’lme simplifier identifies a cammdidateterm for removal,
deletesit, amid thuenm invokesthe consistencycheckeron
the remainingODE. If the check fails, the simmiphifier
replacesthat terni and rennmovesamiother. ‘[his process
is repeateduntil sonic (n — 1)-terun “sub-model”of the
ni-terni modelpassesthecheck,or until all mm— i-models
havebeentested.Imi the hattercase,the modelcannmot.
be further simplified amid is passedon as a fimial result.
If anysub-modeldoespasstime check, time entireprocess
is repeated,testingall n—2-termsubsetsof that ODE,
and so 0mm.
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Like the commsistemmcy checker, time simplifier takesa
symbolic-first approacimto identification of candidate
terms for removal. It uses sormie of the same sym-
bolic techniquesas do the basemodel generatorand
the cimecker; thenmiainm areaof overlapis in ODE theory
(e.g., asymptoterecognitionaumd symbolic differentia-
tiorm). It also usessomesyui bohic techniiquesthat would
not be useful in time checker,suchaspole-zeroamialysis
amid conjugaterrmomenmtuun/synnmnietryrecognition. If
symbolic reasonmingcannot identify a good candidate
for removalamongthe termsin the ODE, time simpli-
fier then turims to less-intehhigenmttecbmniques,such as
renmoving the “sinmmplest” terms (see below), or terms
whosecoefficientsaremnmuch smallerthian time othmers mm
tIme model. Thesechoicesare somewhatad hoc; it is
not at all clear that we gain much from eitherbeyond
a defimied order of attack. Anotherapproachwould be
to give the miser somneleverageby weightinghypotheses
according to order of entry. Each of these tacticshas
advamitagesand disadvantages;each shifts a different

eThisraisesasmmbtle issue: sometinmesaddingor renmov-

ing pairs of terms(or larger groupings)works wheresuc-
cessivesingle-ternmremovaldoesnot: considercoriohis amid
cemmtripetaiforces,wluich must appeartogetherin a rotatimig
frammie. We plaum to imivestigate this iii time rican futumre.



amount of the burden of rigor froni time simplifier to
time checker.

Ordering terms or hypotheseslogically is difficult
because no satisfying simplicity metric exists. The
modeling literature commtainsno good solutions, amid
this author hasno better suggestionms.‘fime sommmewhat-
arbitrary muetric that we use is basedon nunniberamid
conmplexity of tenuims amid derivatives: a: + 3 n a:; a:”’ ~

~ a:; etc., where ~ denotes “nmmorc conmplex
than.” This is uuisatisfyinmg for avariety of reasons,miot
the leastof which is how to resolveties betweenequa-
lions like a:+ a:2 amid a:3+ 4. Onme of time semmminmal papers
in qualitative modeling uses a simunlar nnetric(Fahkcn-
hainer & Forbus1991) and givessinnmihardisclaimers
about its unsatisfying nature. A more-recent pa-
per(Nayak 1992)definesmodel simphcity heuristically,
terming a model that is “more approxinmate”or that
“usesfewer phenomena”as nmoresinmple.

Refinement: Adding Terms to a Model
‘[he refiner usesODE amid domain rules,observations,
andhypothesesto addtermsto a model, keepimmgtrack
of previousattemptsin order to avoid duphcatiomi of
effort. It first drawsupon the user’s hypotheses,then
synthesizesODE tern’msfrom scratchusingpower-series
expansionsif no successfulhypothesis-basedmmiodel can
be foumid. These power-seriesmethods are a pow-
erful safety net: a one- or two-term expamision iii 0
and 0 would regenerateevery form of frictiomm found
in freshmanphysicstexts — aumd a few more besides.
Moreover, thesemethods actually allow the programrm
to createnew statevariables --— an iniportant feature
if the observationvector is smaller than the true state
vector. Like the other prograun nmiodules, tIme refimmer
uses physics conceptsbefore less-intuitive mechanical
techniquesand follows synmbohcreasoningwith more-
expensivenunmenicapproaches.

The refiner’s first task is to prumie the sorted hy-
pothesislist, removingany thmat were mised in the base
model. The first hypotimesisin the sorted list is then
addedto the basemodel and the checker is be called
0mm the rmew ODE. If that model fails, the refimier m~e-
movestime previouslyinitroducedterm amid successively
tries the rest of the hypothesesin time ordenirmg,omie at
a timmme. if no one-termaddition causestIme nmodel to
match the observations,the refiner therm tries pairsof
terms,andso on. Thefirst successfulnmodel is retumrumed
as time refiner’s result. If time refimmer exhauststime list
of hypothesesbefore finding an adequatenmodei, tIme
power series mmietimods outlined in the previouspara-
graphare invoked. Theseexpansionsare subject to a
user-specifiedlimit p; if mmo niatchm hasbeenestablished
after the refiner tries the pOI term in the expamision,
the programadmitsfailure and requestsadditional Imy-
pothesesfronm time user.

Simplicity nmmetric difficulties, discussedat the endof
the previoussectioum,also affect time refinmer. ‘[lie miiet-
nc proposedhere may not be rigorous,hut it at least.

providesa startimmgpoimmt. A mmmuch nuiore imitelhigemmt aim—
proach would be to sort the hmypotimesesaccordingto
their behavior, using the sammie symnmbohc amid miunmeric
tecimimiquesused mm the cbmeckerto makea rough coni-
panison to the observations,all unoduho specification
precision. For iimstanice, if an observed voltage comi-
verged to zero, a iiypot.hesis that causedthat value to
diverge to inmfimiity should he lower on thelist of timimmgs
to try. Note thiat such a hypothesisshould not be re-
mimoved from time list altogether;it. may well appearmu
time ultimate nmmodeh, moderatedby anmot.hmer t.enmnm (e.g.,

a: — + .. .). This sorting by behaviorassessment
mnmay be counputatiouiahlycxpcmisivc enough to negate
its advantages.Moreover, serioumsproblems cami arise
when one attennmptsto extemmd conclusionsabout the
partsof asystemmm to comiclusionsaboutits whole (e.g.,
closed-loopversusopeum-loop dymiaummmcsin a feedback
system). However, the advamitagesof ruhimug out some
of the hypothesesnmiay dominate,mmmakingthis approacim
attractive. Another possibly useful alternativewould
be, again, to use the entry order verbatim. A half-
dozemm inforummal interviewshaveshmowmi timat unostusers
do indeedlist physicsIiypotlmesesin orderof perceived
simrmphicity,7so thus mniay miot be a had idea.

The two autonmaticternm-synthesistechmmiquesto he
used here are both derived from power-seriesexpan-
sionm. Canonicalperturbation theory(Coldstein 1980,
chapter 11) createsnew paramnmetersarid Frobenius’s
rnethod(Mornisomm1991, page 187) createsmiew state
variables,eachvia expammsioni in the appropriatequan-
tit.y. Omie could also synthesizeumew statevariablesus-
imig delay coordinates(Gouesbet& Maquet 1992), but
doing so would vastly comnmphicatethesymbolic algebra.
Becausetime lower-order tennisof power-seriesexpami-
sions are hikehy to matchi (up to a coefficient) sinmmphe
pimysics hypotheses,tIme modeler will use simple sym-
bolic techmmmiquesto avoidduplication of effort, ehimninat—
immg any power seriesexpaumsiomitennisthat also appear
in a miser hypotimesis.

Time comimbinat.ionof all of timis ummacimineryallows the
program to preferemit.iahlycheck time miser’s hypotimeses,
thiemi syumtlmesizeamid exploreumewstatevariablesamid pa-
raunctersif umecessary,possiblyconmcoctimigmmmodei ternmis
thmat do riot resenmbhcauiy of time given hypotheses.It
can even construict umiodels imm the absenceof any hmy-

pothieses, if time ummdenlyimig physics admits a power-
series description. ‘[lie Ol)E amid domain rules, to-
gethierwithm symbolic reasonmimigamid qualitativebehav-
ior descniptiomis,will allow this tool to reasoumat a very
high level indeed. F’or example, if a systeun was ob-
servedto be chaotic, hmit only omme state variable was
specified, time power series methodswould he invoked
antormmaticalhyto introducea new state variablebefore
tIme programnmevenattemptedto build a basennmodel.8

7
The exception is semiomms experts, who sorumetimesadd

tIme siummplest tenumis ommly as ami aftertiiommghmt.
8

Thineestate—spacedirmmeuisiouusare a miecessarycoumditioui



This automaticnmodehingtool will he able to adapt time
scopeof the niodelomm time fly, inferniumg “statevariables”
timat are iumternal (e.g., voltagesinside a hihack box) or
that were omitted by oversighmt (e.g., low aniphitude,
low-frequencyvibration of a bench by a lab’s IIVAC
systenm). These quanitities are (biffeounorphicallv re-
lated to the (rime sys(emim state, so they calm be useul
to draw somerigorouscomiclusions. Agaimi, formal oh
server theory is nmo( a goal of thus project, so time pro
posedprogranmmwill not be ableto solve t his probhenmiii

all situations,and this researclmwill include only hun
itcd study of time relationmslnpsbetwecum inferred amid
true state variables.

Incorporating Physical Measurements
Arm important feature of time physical link between
modeler amid systemnis that data will he able to flow
acrossit in both directions, nmakinmgthe nmodelingpro-
cess anm active one iii all partsof the procedure(he
scribcd in thepreviousthreesections.‘FIns hasa mimimim-
her of import ant implications. Ammiong other thiumgs,
the program could autonomously exercise (lie target
systeni in order to verify or augriiemmt time miser’s obser-
vations; it could evemi comistructarid checkobservations
that transcendits miser’s kmiowledgeof physics. For in-
stance,time boundariesof tIme basinsof atInaction of I lie
ODE and the target system could he comimpared mmsimmg
different-energy kicks, even if time user knew notbnnmg
about dyuiaummics amid basin strmic(ure. Obviously, this

presentssonic dangers: if time program is free to use
the semisors,tIme actuators,and the fuill breadthof its
own (significanmt) knowledgebase,the omily coumtrohsomi
the soplnsticationm amid intricacy of the resultimig
model are the resolution (mesh—width)anm(b tIme expan-
sion limit p. To addressthis probieni, we have immtro-
duced anotherparanmmeter,max—level, thia( allows the
userexplicit comitrol overtime nmumnnmherof I ermnmsthat time
progrannm ummay use in (he model.

Physical uneasmmremiieuitswill he treated exactly like
graphical miser obsenvatioums, froumm the prognamii’s point
of view, with onme imnmpontamit d ist i mmc( iomm: in (lie evemmt
of a conflict, the former will he trusted oven (lie hatten.
Measuremmientswill be processedand trauishated iumto
(he syntax of descriptive user ohservatioimsamid (lien
mised in exactly time sammie ways as targetsfor synm
holic comparisons.‘[he ummeasuremnenmtprocessimmg algo-
rithms that extract timis qualitative imiforniat ion frommi
thesensordatawill essentiallydmiplicae time approach
to behavior recognitiou omit lined i mm (lie discussionon
checkingnniodels againstobservatioums.

With the hardwaredata cimamnmel ium place, time pro
grain could poteumtially he used miot only to model a
physicalsystemmm,hut also to debugdesigims aim (I eveum
to validate amid ve~’ifydevices osteumsibly comistruicted
accordingto a huiowim desigui. For example,if a partic
milan 2.5K~2,i/I Watt resistor burnedup eveu’y timume a

for chaos.

(bevice was I unmmed on, oume could placeprobesacrossits
I ennnnals,set up au observationt hat specifies ‘~vol(age
over 25 volts,” amid observediscrepamicieshrtweeum tIme
resmilt i mig model amid what wa.s immtemmded. Needlessto
say, omme womild wamit to isolate tIme sensorsfroumm poteum—
ii al damniagedu niumg smi cli an expeniunent

RelatedWork
Nlodehiumg reseau’chmspaums umiaumy fields, fronu I lie cogumi—
live scieumcerelated braumclm of Al( Lammgley ci al. 1987)
I hmrommghm dymi amimic sys(cuims(Gersimeumfeld t~Weigemid
1993) amid (‘omit rol thmeony(Astrouii &r Eyklmoff 1971) to
qualitative reasoniumg(QH)(Bobrow 1985). Some of
tIme earliest QH/mnmodehimmg work (Falkemmimaimmer &c For-
bus 1991) built upon a fixed baseof hypotheses,iii
stantiated ommhy those that were appropriate to aum—
swer a giveum query, amid chosebetweemi theumm with a
(rmi(hm mmmaiuiteumancesystem. The GoM approachm(Ad—
(bamiki , Creuiiomiiumi , &~ Penbertimy 1989) is siummilar iii
uimaniy regards to ( E”ahkemihiainer~z [“orbus 1991), but
representsIlme spaceof possible mmmodels as a directed
graph of models whereedgesbetweennodes (ummodels)
are approxiummalions.9 Amiot lien approach(Wehd 1992)
adapts models o prohhemmms usiumg model sensitivity
anal,ysis, whicim fornumahizesand exploits the effects of
parameterchangesin time construction of (he unodel.
‘I’he conmhinatom’iahexpiosiouminvolved in himnit checkimug
(e.g., tIme pendulummi’sasymimptoteto 0 = 0) cami be mit—
igated(Kuipers 1987)by decomnmposimigand abstracting
tiumme inmto a bneranclmyof scales. Rules for deternumi
immg the behaviorof a coumiposite device caum be derived
froni tIme mimodels of its couistitueumt coniponmeumts(Klcer
tz Browum 1984).

‘This is aim extreunmehyactive researcharea;ummaumygood

papersby umiammy other groups, as well as mimanmy othmer
papersby time cited groups,haveappearedin time past
fomir years. ‘lime stateof (lie art iii tins field is particu-
larly well—summuumianizedin a recentarticleby Weld(Wehd
1992), which is also time sourceof mmmdi of time termnn—
niology used imi (his docuunenmt. Coimcep(scomnumion to
thuspaperamid I lie bulk oft lie QR/mmmodehinmgliterature
immcl mide avoidaumceof ii umniecessarytermmis, ummodel refine
uncut dnivemi by failure at a “lower” modehinmglevel, amid
neasomiing that proceedsat asahigh level of abstractioum
aspossible.

Statusand Discussion
‘h’hmis paperis a (lescniptiomm of the first stagesof work
iii progu’essoum a highly anibitions (ask. To date, we
have oumly bmmilt a sumiall, hut fummctionmal amid hope—
frilly represemmiative subsetof I hue pm’ogrammi~ This
smibset in conpou’ates a few imms( amicesof each technique,

pnovidiuig a quick checkof time wholesymmmbolic/mmumnenic

~( Falkenum aimm er&~Fonbmis I 99 1) ‘s pnopositi 011 ai neasoumiii p,

also usesadignaphi. hum t it is mused i in piicii ly aumd couustrmmcled
sonuewhat(I iffemeumtlv.

~~hmeumee tIme nm ix of yemb t ii iii tim is paper.



paradigmumamid (lie overall comm(rol flow (hierarchyof huy
potheses, domimaimi rules amid ODE ruiles; control flow
between mumoduiles, amid so on). Most i unponiantly, it
has aihowed us to test amid neflume time svn(ax amid time
misc of time vaniomis typesof miser imiputs.

‘Gus first vensioum,comustnmi ct ed1m with I lie aid of Reimm
hi and Siohle, allows one I cmi hmypothesesinvolvi mug I hue
keywords <force> amid <time>, sorts them accondimig
to time siumuphisti(’ nnetnc proposed iii a previomis sec
I ionm, immcorporatesonenude ((point—sum <force> 0))
iii oume (bouniaiui (mechanics), hasa reduced vocabum
lany of qualitative (enumus(above, below) amid a come
sponidiumgly sunall repertoire of syunubohic amid nmi miuenic
techniquesto verify (Imeumu, arid Imas heeum testedon Iwo
d imensiomialsystemuis with mm mmmcmic observatioums,sucim
as figure 2 with all html time numeric observationonuit-
ted. Even thu is 1mmit ed exercise Ii as turned up somime
mit crestimmg problems. Delcnnmu mug the coefficieumts for
I lie ummimimenical iumtegrator rumi required himmear iuuterpola
tioum of I lie data poiui(s to produce mu umonhinuearequa
(ions ium the ni ummikimownm constants,which were t lien
solved with New(oui—Raphmson. In general,tins pro1)
hem kumowni as paranmeterestimation is solved
with much moresophisticatedtechiinquieslike Kahummaum
filtening(Kahuuuaum1960), amid is I lie topic of a rich body
of hiterature(Soremisomi1985). Our sinmphistic solutioum
spawumedasecondprohlenm:afailure to unmat cli a hluumge—
Kutta run aga ist aim observatioumcould uneaum either
hat the model was iuiadequate or I imat our paramuieter

es(imnat iou algoni(hiumm was iuiaccurate. We solved (his
by imposing amu artificially high accuracyon time latter,
but this is imot agoodgemmeralsolutioum. ‘Fhie mechanics
(bomnialni syntaxhasgro~vumfar closer to time Lagramigiami
fomnmuiation (hmamm we hadonigimmally cuuvisiommed because
its fommumahizedstmuctnrc is so useful (for exaumiple,(hue
coordimmate/mmmomncrm(minim pair for each degreeof freedomui
related by aderivative, that suffice to describe(lie sys
I cmii coumupletelyamid comutam symbolicallyextractable
i umfonunatioum al otmt sym iii u uctnies amid couiserved quauit i
tics as well).

Figure 4 depictsa mmuodehiumg u’mi ii on asi mu mph fled yen
siomu of time pemidumlu iii of figum mc 2, shmowum at (lie (op of
figure 4, 1 hat imich udes ondy two hypothesesamid omme
munummenic observation. ‘lIme baseumiodel geumeratoris by
passedin thus mmiii becauseI lie ouuiy observationis num
mumemic. ‘i’hie nefiumen nudes oumt all omme-tcmmn umuodels via
symnbohic ummet hmods, t lien mises time force halamuce rude to
map (lie two hypothesesinto a two temni caumdida(c
model, upon which (hue checker is i mmvoked . ‘flue check
proceedsdirectly to tIme nmummmmemic phase,time pai’auimeter
estii mmatom comm iput es I he coeflicicuits, aim (I (hue point by
poiimt commmpamisonsumcceeds. Sinceboth “sub mmmodehs”
of (Ins ummodel havealready failed time cbmcck, tins nuodel
amid its coefficiemutsarerot unmied as time final result. We
havealsoexpenimnemutedWith addi ig whitenoiseto (hue
umumnmenic (bata amid ch amigimig 1 lie nesoliii iomm iii t lie spec—

~ hoth code amid ideas

ificat ions, wi(hi predictable results. ‘h~lucprogram 51 uI
fluids t lie right nmodel if time ad(bell umoise is sum mali (‘0mm
paredto tIme resolution, amid fails whiemu it is not, as I lie
repentoime of hmypolhmcscsdoesumot allow it to niodel (hue
muoisc.

Later versions will misc tIme hardware I/O chiami
mmcl, iumcorporatemm more sy m umbol i c aim (I qualitative mmmcl hm-~
ods, he testedwit hi mumiderspecifledmm iodehiumgtasksamid
sketchierobservatiomms, amid misc mimome doummaimi rumles ium
umimil I iple (boumuaiums ( hat operateoum mumull iple, Imeteroge
mucouskeywords. We expectthe first amid time last to he
time hardest ammd unost imi(erestiumg of I hmese I asks, par
icuilamly simuce omum aimum is emmmpimatically not to bumild a

tool that is trimmed for one particular apphicatioum do—
iii ai mu. Bcyonmd (hi at., furl lien developmmmemmt will entail
time exploration of different innpheummcnu(at iou paradigmums
and tecimnuiques:sort imug hypothesesby bebmavioror by
orderof emit my, aihowimig mmiuiiti—t emmim hmypotImeses,etc.

Summary
‘flue muascemmt progmammu described lucre muses geumeral
nuatimemnatical I Imeomv as a fomumudatiomm , abds comucise
amid powerful doumiaimm—spcciflc ruihes, amid fri mummels user—
specifiedhypothesesthunoughu geuuerahODE theory aumb
doumuaium—specifi(‘ rumles to generale “appropriate” modeis

mmmodels that are wehl—umiatcimedto the task at hmamud.
it exploits iniehhigemit, high—level techumiqueslike symn—
bohic unamnpuhatioumfromum time omitset, canryiumg them as
far aspossible through eacim phaseof the work, amud
usimig tiueumm to makethe type of quick, overall assess—
mnment I hat a hmuummaum expert uses in the first st agesof
uuiodel huildimug. ‘lime prograurm I hmeum resorts to lower—
level, less—iumtuitive ummethuods to coumuplete lime aumalysis
amid symuthesisprocesses.‘Flue (‘huosenset of imiputs amid
I hue way that they are used closely resemblesI lie pro
cessone fluids documumeumledon aumy desigumen’sscma.tcbm

paper: parts of equalions, rough skelcues, scratched-
omit forays up aiua.lv(ical bhiumd alley’s, amid aim overall
progmessioumof ideas auid m~.bstractions fromim simpler to
ummonc complex.

This ummixt mire of exact amid approxinmmat.e I echmumiques
amid precise amid Imeumnistic kumowledgeis powerfumi, html
has omue imumport amil disadvaiitage: it umiakesfom’n al, rig
orous aimaiysis of time miccessamycomudit ioums for ummodel
iumg successvery difficult to comume h>y. ‘I’hmis is umot a

pure u mmathmeumm‘at i ci aim’s I ool, t Imomigim pure rumathuemmuatics
centaimuhy couutmihu( ed to time plaum for its iummpleumieumta
I ion . It is a desigum tool I hat is ium(cumded to lie useful:
to fluid a “good euuoughi soluu(ioum with umuniummumuntimume
amid effort . ‘lhuis tradeoff unol iva(ed mumaumy of tIme de
sign (‘Imoices described here, umotably time comutroi flow
betweemmtIme si nmphificu’ aimd time reflumen.

‘Fhonghm I lie examumpleslucre are dmawum fromum the (10
mmmaiums of mumecimammics amid chectmouncs,unammy other po—
leuml ial applicationam’easexist. ‘Flue gemmeral fraummework
describedhuem’c has heemu desigumedto snmoollily accomum
n iodate mimics from mm iii auuy (boummaiuis~an(1 tIme progmammi it
self hasheemuwrit I cmi to he easily exiemusihic. It sluonld



The immvocat.ionu:

(find—model
(domain mechanics)
(autonomous<force>)
(state—variables(<theta>))
(point—coordinate<theta>)
(hypotheses

(<force> (* (constant a 0) (deny (deny <theta>))))
(<force> (* (constant b 0) (sin <theta>))))

(observations
(<theta> (numeric (<theta> <time>) ((0 .1234) (.1 .1003) . . .

(specifications

(mesh—width <time> absolute le—6 (0 120))
(mesh—width <theta> absolute le—.3 (0 (* 2 pi)))))

Tue transcript:

Trying to find model for

hypotheses ((* a (deny (deny <theta>)))
(* b (sin <theta>)))

with max level = 2.

Trying to find model at level 2...
Checking model

(model (( (+ (* (constant b 0) (sin <theta>))

(* (constant a 0) (deny (deny <theta>)))) 0))).
Checking model

(model (( (+ (* (constant b 0) (sin <theta>))
(* (constant a 0) (deny (deny <theta>)))) 0)))

numerically.
Checking

((= (deny <theta>) d<theta>)
(= (deny d<theta>) (I (— 0 (* 3. (sin <theta>))) 2.)))

against data.

((model

((=
(+ (* (constant b 0) (sin <theta>))

(‘I’ (constant a 0) (deny (deny <theta>))))
0)))
((a 2.) (b 3.)))

Figure 4: A unmodehingruumon (hue daumipedpeuudulummi



be obvious that thedefinitions amid solutionspresented
herearepreliminaryandwill miecessarihyundergomuch
developnimemitand refinementas this program is (bevel-
oped,but the prelimuuinaryresultshavebeeim encourag-
ing - andsomeof time early problemshavebeensubtle,
rich, amid rewardingto think aboutand to solve.
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