Automatic Construction of Accurate Models of Physical Systems

Elizabeth Bradley”
University of Colorado
Department of Computer Science
Boulder, CO 80309-0430

1izbQcs.colorado.edu

Abstract

This paper describes some preliminary work on
a program that builds ordinary differential equation
(ODE) models of target systemns from user-supplied
hypotheses, observations, and specifications. Its im-
plementation exploits symbolic and qualitative reason-
ing whenever possible, only resorting to low-level nu-
meric methods if absolutely necessary. ODI theory
and domain-specific rules are used to combine hypothe-
ses, to check evolving models against the observations
modulo the resolution inherent in the specifications,
to remove unnecessary terms, and to synthesize new
terms from scratch if need be. This tool has been de-
signed to use sensors and actuators in an input-output
approach to modeling real physical systems.

Introduction

One of the most powerful analysis tools in existence
-~ and often one of the most difficult to create — is a
good model. Expert model-builders typically construct
hierarchies of successively subtler representations that
capture the salient features of a physical systemn, each
incorporating more physics than the last. At each level
in the hierarchy, the modeler assesses what properties
and perspectives are important and uses approxima-
tions and abstractions to focus the model accordingly.
The subtlety of the reasoning skills involved in this
process, together with the intricacy of the interplay be-
tween them, has led many of its practitioners to classify
modeling as “intuitive” and “an art(Morrison 1991).”
This paper presents some preliminary ideas about a
computer program, currently under development, that
is an attempt to automate a coherent and useful part
of this art. Such a tool is of obvious practical impor-
tance in science and engineering: as a corroborator of
existing models and designs, as a medium within which
to instruct newcomers, and as an intelligent assistant,
whose aid allows more time and creative thought to be
devoted to other demanding tasks.

The modeling program described here works with
ordinary differential equations (ODFEs), linear or non-

*Supported by NSEF NYT #CCR-9357740

linear, with multiple variables; it combines powerful
mathematical formalisms with domain-specific notions
- Kirchhofl’s laws for electronic circuits, for instance,
or force balances for mechanics — to allow the type of
“custom-generated approximations” (Weld 1992) that
are lacking in many existing automated modeling pro-
grams. The current incarnation of the program is writ-
ten in Scheme and Maple; its implementation combines
traditional numerical analysis methods, such as simu-
lation and nonlinear regression, with symbolic compu-
tation, and will soon incorporate qualitative simula-
tion(Kuipers 1986).

The program builds ODE models from three types
of information: mathematical precepts that are true
for all ODEs, such as the definition of an equilibrium
point; rules that apply in individual domains, such as
Kirchofl's voltage law for electronic circuits; and highly
specific information about the individual target sys-
tem, entered by a user. Hypotheses may conflict and
need not be mutually exclusive, whereas ODE and do-
main rules are always held to be true. The ODE and
domain rules are currently hard-coded in the program;
we ultimately envision incorporating a few dozen of
the former in total, plus half of a dozen of the latter
for each supported domain, and allowing users to aug-
ment and modify both types. The specific information
about the target system is presented to this modeling
tool In a variety of forms and formats:

e the user’s hypotheses about the physics involved

e observations, interpreted and described by the user,
symbolically or graphically, in varying degrees of
precision

e physical measurements made directly and automat-
ically on the system

Because the physical interface will include both sen-
sors and actuators, this tool will be able to take an
input-output approach to modeling, another novel and
powerful feature.

This research project has two goals; one is immediate
and concrete, while the other is far-reaching and less
well-defined. The first is Lo create a program that au-
tonomously constructs mathematical models using the

same kinds of inputs that a human expert would use.
The second is a first cut at “mental modeling”(Bo-
brow 1984): to understand what matters in a model
and what qualitative and quantitative properties are
affected by the requirements of the situation and the
knowledge of the user.

What the Program Does

A model is an abstraction of someone’s understanding
of a particular system. It is based on observations,
depends critically on the physics background of its ar-
chitect, incorporates some notion of what quantities
matter (scope'), and adapts to changing scales (reso-
lution). Because exact descriptions are often unknown
and/or inappropriate, modeling almost always involves
abstractions and approximations. Refinement increases
the order of a model, adding terms, sharpening ap-
proximations, and shrinking “black box” boundaries.
In simplification, the dual of refinement, unnecessary
terms are removed. Refinement occurs when a model
does not match observations and must be improved.
Simplification occurs when a model is more complex
than necessary. Both operations are governed by the
required accuracy and resolution.

Figure 1 shows the connections between the tool de-
scribed in this paper and the system to be modeled.
The program represented by the right-hand block in
this figure constructs an ODE model of a target system
based on information entered by a user; if the model
is to be based on direct observations of a physical sys-
tem, the program will obtain additional information
via sensors, actuators, a hardware I/O channel, and
data acquisition software. The control vector @ rep-
resents the actuator inputs. The observation vector
¥ is a set of variables that represent the system state
— or at least parts of it that are observable and/or
interesting.?

The program’s output is an ordinary differential
equation, of the form f(Z,t) = 0 (or f(Z,t) = (1), if
the system is driven), that matches the observations to
within the prescribed resolution. The program builds
this model by mapping the domain rules encoded in
its knowledge base onto the user’s hypotheses, checks
it against the observations modulo the precision inher-
ent in the specifications, and refines or simplifies it,
as necessary, using a collection of techniques that are
outlined in the later sections of this paper.

Figure 2 shows an example of how one might in-
struct the program to build a model of the damped

!The terminology of (Weld 1992) will be adopted here,
identified with sans serif font upon first appearance of each
term.

?Note that the components of # may or may not repre-
sent a unique function of the internal system state, and that
measuring any given quantity may not be possible (i.e., no
appropriate sensor may exist). Observability, controllabil-
ity, and reachability issues will not be addressed here.

pendulum. The user first sets up the problem, hy-
pothesizes four different force terms, gives three obser-
vations about #, and specifies the required resolutions.
The details and implications of each part of this syntax
are covered in the rest of this section; the next section
describes how the program uses that information to
build a model.

The initial problem setup requires several steps. The
first specifies the domain and instantiates its associ-
ated rules. (autonomous <force>) tells the program
to apply all <force> rules blindly, and not to require
the right-hand side of the model to include any par-
ticular forcing function. The next two lines identify
<theta> as a state variable that is a coordinate asso-
ciated with a point (the bob). The modeling process
works most efficiently if all of the important state vari-
ables are identified in the state~variablesstatement,
but the program does incorporate a few techniques, ad-
dressed in a later section of this paper, that allow it
to construct a model, in some cases, even if the user
omits important state variables. Redundant state vari-
ables — ones that play no role in the model — increase
the size of the search space but otherwise present no
problems.

Hypotheses are ODE fragments (single terms, cur-
rently) whose variables are (1) elements of the ob-
servation vector and (2) special keywords that pro-
vide the connection to domain and ODE rules.
The <time> keyword is common to all domains;
keywords specific to the mechanics domain are
<force> and <energy>, with the associated domain
rules (point-sum <force> = 0) and (point-change
<energy> = 0).> The electronics domain uses the
keywords <current> and <voltage>, which work
with the domain rules (point-sum <current> = 0)
and (loop-sum <voltage> = 0). Manipulation of
these point and loop constructs places some inter-
esting requirements on the internal representations of
coordinates, as the program must be able to infer
connections, cutsets, etc. Note that the concepts of
loop and point sums are not only appropriate for these
examples, but also generalizable well beyond mechan-
ics or electronics. Finally, its syntax and setup make
the program easily extensible to other paradigms (e.g.,
volume-change, etc.) via simple syntax extensions
and new rules that tap into those extensions, much
as (point-sum <force> = 0) works with hypotheses
that include the <force> keyword.

Multiple hypotheses about a single effect can — and
should - exist; the program will automatically deter-

3A body-centered inertial reference frame is assumed
here, together with coordinates that follow the formulation
of classical mechanics(Goldstein 1980), which assigns one
coordinate to each degree of freedom, thereby allowing all
equations to be written without vectors. A conjugate mo-
mentum is associated with each coordinate; this concept
is useful in symmetry identification and symbolic model
matching.

tuators | DOMAIN THEORY
. B Fle HYPOTHESES
TARGE'T U
SYSTEM MODELER e—— SPECIFICATIONS
R OBSERVATIONS
x { ODE THEORY
MODEL

Figure 1: Structure of the modeling tool

mg

(find-model
(domain mechanics)
(autonomous <force>)
(state-variables (<theta>))
(point-coordinate <theta>)
(hypotheses
(<force> (* (constant A1 ()) (deriv (deriv <theta>))))
(<force> (* (constant A2 ()) (sin (¥ (constant A5 ()) <theta>)))
(<force> (* (constant A3 ()) (deriv <theta>)))
(<force> (* (constant A4 ()) (square (deriv <theta>)))))
(observations
(<theta> (linear (1 0) <theta> (range -.05 .05)))
(<theta> (asymptote (eqn 0)
(at <time> *infinity*)
(range 0 *infinity*)))
(<theta> (numeric (<theta> <time>) ((0 .1234) (.1 .1003) ...)
(specifications
(mesh-width <time> absolute 1le-6 (0 120))
(mesh-width <theta> absolute 1e-3 (0 (* 2 pi)))))

Figure 2: Instructing the program to model the damped pendulum

mine which one is appropriate. Some other modeling
programs, e.g., {Falkenhainer & Forbus 1991), define
groupings of terms in such situations, such as a set
of hypotheses about friction. Mutual exclusivity con-
straints are then imposed within each group, greatly
reducing the complexity of the refinement process. We
have chosen not to use such groupings, for two reasons:
(1) to minimize the restrictions on the models that the
program can choose and (2) to minimize the high-level
conceptual processing required of the user.

Observations describe the behavior of a single
element of the observation vector, either in the
time domain or in any state-space projection.’
Unlike hypotheses, observations may not conflict.
They have two potential sources: the user and
the sensors. User observations may be descrip-
tive, graphical, or numeric. The former use spe-
cial descriptive keywords, the second are sketches
drawn on a computer screen with a mouse, and
the third simply specify data points. Descriptive
keywords concave, monotonic, oscillation,
linear with [slope, interceptl], etc. closely
resemble terms in qualitative physics(QP)(Weld & de
Kleer 1990). The user’s sketches will be processed
curve fitting, interpolation, recognition of linear re-
gions, and so on using Maple functions, and the
results will be used in the same way as descriptive ob-
servations. Observations from the hardware 1/O chan-
nel will be treated much like graphical observations,
but at a higher confidence level. Finally, observations
of any form must encode the range in which they are
valid; the endpoints of these ranges are akin to QP’s
landmarks.

Observations guide the modeling process in a funda-
mental way. A model constructed by a human expert
matches, minimally, a particular set of observations:
the model builder does no more work than necessary
to effect the match, and does not try to anticipate ex-
tensions or further developments until forced to do so
by model failure or requirement escalation. The au-
tomatic modeler described here does exactly the same
thing: at all times, the program attempts to estab-
lish the match with the minimum of work, using in-
formation at as high a level as possible to do so. The
most important implications of this concern the deter-
mination of the coefficients A1, A2, etc. in figure 2.
A descriptive observation often places only qualita-
tive requirements or bounds on those coefficients, while
matching a model against a detailed numeric obser-
vation usually requires exact coefficient values out to
some number of significant figures. Moreover, a sin-
gle observation, even a qualitative one, can contain
information about many different variables - if, for
example, it concernus a state variable that appears in
all of the terms in the model. Such an observation
would significantly focus the model by forcing the eval-

*This program will perform no frequency-domain
reasoning.

uation of several coeflicients in several different parts
of the differential equation. Thus neither the number
nor the characteristics — qualitative, quantitative, etc.

of observations required for the construction of a
successful model are necessarily related to the number
of undetermined coeflicients or state variables; these
requirements are complicated and possibly nonlinear
functions of the terms involved. Finally, a higher-level
and more obvious implication of the role of observa-
tions in the modeling process is that neither a pro-
gram nor a human expert can construct a model if no
observations are giver.

A specification concerns any function of any num-
ber of observation vector elements; it prescribes range
and resolution limits for that quantity and specifies
whether the resolution is absolute or relative. The
mesh-width statements in figure 2, for instance, in-
struct the modeler to impose mierosecond and mil-
liradian accuracy over 120 seconds of system evolu-
tion. All observation processing is based on the ranges
and resolutions given in the specifications; if only the
range z2=[3, b] is of interest, asymptotes at z, = 40
are immaterial. Landmarks that overlap can be com-
bined, and any effect that occurs on a smaller scale
than the one specified can be subsumed into the in-
tervals around it (e.g., a nanosecond glitch during a
millisecond-resolution run). It is important to note
that specifications mmplicitly govern the level of ab-
straction that the modeler enforces: sharpening the
mesh-width will typically force the modeler to account
for lower-level eflects and add terms to the ODE, given
a fixed set of observations.

This set of inputs was consciously chosen to mimic
the information that an expert designer uses when he
or she constructs a model. The motivation for this
choice is that, in a project whose secondary aim 1s
to understand the human problem-solving process, the
program should emulate the process that a human ex-
pert would follow, insofar as possible. Moreover, a tool
designed for human use should interface smoothly with
human skills, reasoning and communication patterns.
This choice, and its justification, are specific to this
particular project. The debate about whether or not
computer problem-solving processes should in general
emulate their human equivalents has a long and some-
what contentious history, to which we plan no contri-
bution.

How The Program Works

The program encodes a body of general knowledge
about ODEs — how to recognize, locate, and quan-
tify equilibria, basins of attraction, integrability, pe-
riodicity, ete. and domain-specific knowledge like
(point-sum <force> 0). Together, the ODF and do-
main rules, operating on the inputs described in the
previous section, govern how hypotheses and models
are combined, tested, ruled out, augmented, and sim-
plified. Throughout the process, tasks are performed

process observations

and hypotheses

{

generate

base model

match

specitications? refine

match
specifications?

simplify

maich
specifications?

N last model to pass check

Figure 3: Flowchart of the modeling program

at the highest, most qualitative level possible; symbolic
techniques are attempted first and numeric ones only
as a last resort. Finally, the modeling process is not
passive: the program can use its actuators to manipu-
late the system and actively test the evolving model.
A set of candidates for the program’s first attempt
at a model is constructed by mapping the domain
rules onto the hypotheses e.g., using (point-sum
<force> 0) to combine <force> = 4,0 and <force>
= Aysin A58 into the model 4.0 + Aasin 450 = 0.
Most of the resulting candidate models can quickly
be ruled out using rough symbolic rules and tech-
niques; for example, unless a state variable is observed
to be constant, the model must include its derivative.
The simplest remaining model -— the base model
is then passed to the check/refine/simplify loop, as
schematized in figure 3. This model is checked against
the specifications and observations; if it passes, the
program then attempts simplification, removing each
term in succession and checking the resulting ODE.
If the consistency check fails, the program refines the
ODE, using the domain rules to introduce successive
hypotheses from the user’s list. As a last resort, the
refiner calls upon general ODE theory and purely me-
chanical methods, such as power-series expansion, to

synthesize terms from scratch. The refined model un-
dergoes one last round of simplification that finds and
removes any newly-superfluous terms, and the final
product is returned to the user.

This control flow design has a variety of interest-
ing implications. The simplify /refine loop allows the
program to move sideways through the search tree of
models, recovering {rom bad choices and making glob-
ally good moves that require one locally bad interme-
diate step. We could also have chosen to loop more
than once, which would increase the width of the pro-
gram’s lateral reach through the search space; and, ul-
timately, allow it to find the provably minimal model
in that space. However, such a search would have the
standard complexity problems(Winston 1992) and a
secondary goal of this project is to produce a “good
enough” answer in minimal time.

The four blocks of figure 3 — and the mechanics and
implications of failure in each —— are described in the
next four subsections. The following section describes
the as yet unimplemented hardware interface and the
mechanics of input-output modeling, and is followed
by a brief discussion of related work.

Generating the First Model

The base model generator uses domain rules to com-
bine hypotheses, then ascertains which of those combi-
nations (models) are consistent with the user’s obser-
vations. The idea here is to produce a preliminary solu-
tion to an exponentially complex problem very quickly;
to do so, the base-model generator uses only symbolic
manipulation and stops short of an exhaustive check
of all possible combinations of hypotheses. When the
answer that it produces is suboptimal or even incorrect

- a not-unlikely occurrence because of its quick-and-
dirty techniques the refiner and simplifier act as a
safety net, as described in the penultimate paragraph
of the previous section.

The hypothesis list is first sorted using a simple-
minded complexity metric, discussed later in this pa-
per. The base-model generator then constructs a one-
term model from the first hypothesis in the list and
checks it against the observations. Symbolic linear al-
gebra, for instance, can be used to establish that the
candidate model 4;0 = 0 is inconsistent with an ob-
served initial condition #(0) = 1.2 and an equilibrium
point f(oc) = 0. If the check fails, the process is
repeated using the next entry in the hypothesis list,
and so on. If none of the one-term models passes,
the base model generator then starts testing two-term
combinations.® If all two-term models fail, the pro-
gram proceeds {o three-term models, and so on. The
first ODE in this succession that is not implausible,
given the observations, is then passed to the consis-
tency checker.

Note that combination need not imply sum; the com-
bination operator is implicit in the operative domain rule.

Checking Models Against Observations

The consistency checker compares the behavior of an
ODE to a set of observations using the specifications as
guidelines for how closely to enforce the match. When
operating upon descriptive or graphical observations,
the consistency checker reasons symbolically when pos-
sible, falls back on numerical simulation if necessary,
and recognizes different types of behavior (e.g., chaotic,
periodic) in both numeric and symbolic results. With
numeric observations, the check proceeds directly to
the numeric phase.

As mentioned previously, the evolving precision of
the model’s coefficients follows the procession of the
ODE through the phases of the consistency check. If a
symbolic check is coefficient-independent, none of the
Ai need be determined. If the check proceeds all the
way to a point-by-point comparison of Runge-Kutta
output to the data in a numeric observation, data-
point interpolation and Newton-Raphson are used to
compute all undetermined coeflicients. Many cases
will fall between these two extremes, yielding par-
tially determined coefficients. For example, to match
a model against an observed oscillation, the program
might symbolically construct a root-locus plot and de-
termine the coefficient values that cause the system
poles to cross into the right-half plane — e.g., (A1
greater—than 0).

The symbolic techniques used to check a model
against a qualitative observation are similar to those
used by the base model generator — in fact, the
latter are a subset of the former. For instance, if
the observations included a description of an asymp-
tote, the consistency checker would use symbolic dif-
ferentiation and I’Hopital’s rule to take the appro-
priate limit and corroborate the observation. Re-
gions where the system is linear or where a partic-
ular polynomial has been specified — or found by a
curve-fitting procedure — can be checked using the
first few terms of a symbolically constructed Taylor se-
ries. The QSIM program(Kuipers 1986) performs qual-
itative simulation of qualitative differential equations
(QDEs); given an ODE—QDE translator(Crawford,
Farquhar, & Kuipers 1990), QSIM could be used to
do some of these first-cut symbolic consistency checks.

A numeric consistency check of a model entails a
comparison of a mechanical integration of the ODE,
computed using Runge-Kutta(Press ef ol 1988), and
a set of point-by-point observations. As mentioned
above, this comparison is preceded by a numeric fit
of model coefficients to numeric data; if it was invoked
by a non-numeric observation, the check may entail
geometric recognition of high-level behavior patterns
— such as chaos, thresholds, or periodic orbits — in
the simulation data.,One easy — and proven(Bradley
1992) — way to perform this type of geometric recog-
nition is to superimpose a variable-resolution grid over
the system’s state space, discretize the trajectories into
lists of grid squares, and analyze the patterns in those

lists. This ties in well to the input format proposed
earlier: specifications and observations can be used to
set up the parameters of the mechanical integration
and the geometry of the grid, assuring adequate accu-
racy and resolution in the results, attained with the
minimum computation.

If any model fails a check, a failure report is gen-
erated; this report contains the model, the violated
observation(s), the data (qualitative or quantitative)
that caused the violation, perhaps a simple interpre-
tation derived from those data, and the model’s full
genealogy — all branches in the search tree that were
traversed during the search. This information could
be used by the other program modules — a form of
discrepancy-driven refinement(Addanki, Cremonini, &
Penberthy 1991; Weld 1992) — in a variety of ways:
to back intelligently out of blind alleys, to avoid du-
plicating previously performed checks, or to pick up at
some appropriate midpoint in the event of a restart.

Simplification: Reducing a Model to
Lowest Order

The simplifier identifies a candidate term for removal,
deletes it, and then invokes the consistency checker on
the remaining ODE. If the check fails, the simplifier
replaces that term and removes another. This process
is repeated until some (n—1)-term “sub-model” of the
n-term model passes the check, or until all n—1-models
have been tested. In the latter case, the model cannot
be further simplified and is passed on as a final result.
If any sub-model does pass the check, the entire process
1s repeated, testing all n — 2-term subsets of that ODE,
and so on.®

Like the consistency checker, the simplifier takes a
symbolic-first approach to identification of candidate
terms for removal. It uses some of the same sym-
bolic techniques as do the base model generator and
the checker; the main area of overlap 1s in ODE theory
(e.g., asymptote recognition and symbolic differentia-
tion). It also uses some symbolic techniques that would
not be useful in the checker, such as pole-zero analysis
and conjugate momentum/symmetry recognition. If
symbolic reasoning cannot identify a good candidate
for removal among the terms in the ODE, the simpli-
fier then turns to less-intelligent techniques, such as
removing the “simplest” terms (see below), or terms
whose coefficients are much smaller than the others in
the model. These choices are somewhat ad hoc; it is
not at all clear that we gain much from either beyond
a defined order of attack. Another approach would be
to give the user some leverage by weighting hypotheses
according to order of entry. Each of these tactics has
advantages and disadvantages; each shifts a different

5This raises a subtle issue: sometimes adding or remov-
ing pairs of terms (or larger groupings) works where suc-
cessive single-term removal does not: consider coriolis and
centripetal forces, which must appear together in a rotating
frame. We plan to investigate this in the near future.

amount of the burden of rigor from the simplifier to
the checker.

Ordering terms or hypotheses logically is difficult
because no satisfying simplicity metric exists. The
modeling literature contains no good solutions, and
this author has no better suggestions. The somewhat-
arbitrary metric that we use is based on number and
complexity of terms and derivatives: z + 3 z;2" b
"1 £ x; ete, where > denotes “more complex
than.” This is unsatisfying for a variety of reasons, not
the least of which is how to resolve ties between equa-
tions like z +z? and £ +4. One of the seminal papers
in qualitative modeling uses a similar metric(Falken-
hainer & Forbus 1991) — and gives similar disclaimers
about its unsatisfying nature. A more-recent pa-
per(Nayak 1992) defines model simplicity heuristically,
terming a model that is “more approximate” or that
“uses fewer phenomena” as more simple.

Refinement: Adding Terms to a Model

The refiner uses ODE and domain rules, observations,
and hypotheses to add terms to a model, keeping track
of previous attempts in order to avoid duplication of
effort. It first draws upon the user’s hypotheses, then
synthesizes ODE terms from scratch using power-series
expansions if no successful hypothesis-based model can
be found. These power-series methods are a pow-
erful safety net: a one- or two-term expansion in 0
and # would regenerate every form of friction found
in freshman physics texts — and a few more besides.
Moreover, these methods actually allow the program
to create new state variables — an important feature
if the observation vector is smaller than the true state
vector. Like the other program modules, the refiner
uses physics concepts before less-intuitive mechanical
techniques and follows symbolic reasoning with more-
expensive numeric approaches.

The refiner’s first task is to prune the sorted hy-
pothesis list, removing any that were used in the base
model. The first hypothesis in the sorted list is then
added to the base model and the checker is be called
on the new ODE. If that model fails, the refiner re-
moves the previously introduced term and successively
tries the rest of the hypotheses in the ordering, one at
a time. If no one-term addition causes the model to
match the observations, the refiner then tries pairs of
terms, and so on. The first successful model is returned
as the refiner’s result. If the refiner exhausts the list
of hypotheses before finding an adequate model, the
power series methods outlined in the previous para-
graph are invoked. These expansions are subject to a
user-specified limit p; if no match has been established
after the refiner tries the p** term in the expansion,
the program admits failure and requests additional hy-
potheses from the user.

Simplicity metric difficulties, discussed at the end of
the previous section, also affect the refiner. The met-
ric proposed here may not be rigorous, but it at least

provides a starting point. A much more intelligent ap-
proach would be to sort the hypotheses according to
their behavior, using the same symbolic and numeric
techniques used in the checker to make a rough com-
parison to the observations, all modulo specification
precision. For instance, if an observed voltage con-
verged to zero, a hypothesis that caused that value to
diverge to infinity should be lower on the list of things
to try. Note that such a hypothesis should not be re-
moved from the list altogether; it may well appear in
the ultimate model, moderated by another term (e.g.,

r— 561 + Tl’z:’(? ...). This sorting by behavior assessment
may be computationally expensive enough to negate
its advantages. Moreover, serious problems can arise
when one attempts to extend conclusions about the
parts of a system to conclusions about its whole (e.g.,
closed-loop versus open-loop dynamics in a feedback
system). However, the advantages of ruling out some
of the hypotheses may dominate, making this approach
attractive. Another possibly useful alternative would
be, again, to use the entry order verbatim. A half-
dozen informal interviews have shown that most users
do indeed list physics hypotheses in order of perceived
simplicity,” so this may not be a bad idea.

The two automatic term-synthesis techniques to be
used here are both derived from power-series expan-
sion. Canonical perturbation theory(Goldstein 1980,
chapter 11) creates new parameters and Frobenius’s
method(Morrison 1991, page 187) creates new state
variables, each via expansion in the appropriate quan-
tity. One could also synthesize new state variables us-
ing delay coordinates(Gouesbet & Maquet 1992), but
doing so would vastly complicate the symbolic algebra.
Because the lower-order terms of power-series expan-
sions are likely to match (up to a coefficient) simple
physics hypotheses, the modeler will use simple sym-
bolic techniques to avoid duplication of effort, eliminat-
g any power series expansion terms that also appear
in a user hypothesis.

The combination of all of this machinery allows the
program to preferentially check the user’s hypotheses,
then synthesize and explore new state variables and pa-
rameters if necessary, possibly concocting model terms
that do not resemble any of the given hypotheses. It
can even construct models in the absence of any hy-
potheses, if the underlying physics admits a power-
series description. The ODE and domain rules, to-
gether with symbolic reasoning and qualitative behav-
ior descriptions, will allow this tool to reason at a very
high level indeed. For example, if a system was ob-
served to be chaotic, but only one state variable was
specified, the power series methods would be invoked
automatically to introduce a new state variable before
the program even attempted to build a base model ®

7

The exception is serious experts, who sometimes add
the simplest terms only as an afterthought.

#Three state-space dimensions are a necessary condition

This automatic modeling tool will be able to adapt the
scope of the model on the fly, inferring “state variables”
that are internal (e.g., voltages inside a black box) or
that were omitted by oversight (e.g., low-amplitude,
low-frequency vibration of a bench by a lab’s HVAC
system). ‘These quantities are diffeomorphically re-
lated to the true system state, so they can be used
to draw some rigorous conclusions. Again, formal ob-
server theory is not a goal of this project, so the pro-
posed program will not be able to solve this problem in
all situations, and this research will include only lim-
ited study of the relationships between inferred and
true state variables.

Incorporating Physical Measurements

An important feature of the physical link between
modeler and system is that data will be able to flow
across it in both directions, making the modeling pro-
cess an active one —— in all parts of the procedure de-
scribed in the previous three sections. This has a num-
ber of important implications. Among other things,
the program could autonomously exercise the target
system in order to verify or augment the user’s obser-
vations; it could even construct and check observations
that transcend its user’s knowledge of physics. For in-
stance, the boundaries of the basins of attraction of the
ODE and the target system could be compared using
different-energy kicks, even if the user knew nothing
about dynamics and basin structure. Obviously, this
presents some dangers: if the program is free to use
the sensors, the actuators, and the full breadth of its
own (significant) knowledge base, the only controls on
the sophistication -—— and intricacy — of the resulting
model are the resolution (mesh-~width) and the expan-
sion limit p. To address this problem, we have intro-
duced another parameter, max-level, that allows the
user explicit control over the number of terms that the
program may use in the model.

Physical measurements will be treated exactly like
graphical user observations, from the program’s point
of view, with one important distinction: in the event
of a conflict, the former will be trusted over the latter.
Measurements will be processed and translated into
the syntax of descriptive user observations and then
used in exactly the same ways — as targets for sym-
bolic comparisons. The measurement processing algo-
rithms that extract this qualitative information from
the sensor data will essentially duplicate the approach
to behavior recognition outlined in the discussion on
checking models against observations.

With the hardware data channel in place, the pro-
gram could potentially be used not only to model a
physical system, but also to debug designs — and even
to validate and vetify devices ostensibly constructed
according to a known design. For example, if a partic-
ular 2.5KQ, 1/4 Watt resistor burned up every time a

for chaos.

device was turned on, one could place probes across its
terminals, set up an observation that specifies “voltage
over 25 volts,” and observe discrepancies between the
resulting model and what was intended. Needless to
say, one would want to isolate the sensors from poten-
tial damage during such an experiment.

Related Work

Modeling research spans many fields, from the cogni-
tive science-related branch of Al(Langley et al. 1987)
through dynamic systems(Gershenfeld & Weigend
1993) and control theory{Astrom & Eykhoff 1971) to
qualitative reasoning (QR)(Bobrow 1985). Some of
the earliest QR/modeling work(Falkenhainer & For-
bus 1991) built upon a fixed base of hypotheses, in-
stantiated only those that were appropriate to an-
swer a given query, and chose between them with a
truth maintenance system. The GoM approach(Ad-
danki, Cremonini, & Penberthy 1989) is similar in
many regards to (Falkenhainer & Forbus 1991), but
represents the space of possible models as a directed
graph of models where edges between nodes (models)
are approximations.” Another approach(Weld 1992)
adapts models to problems using model sensitivity
analysis, which formalizes and exploits the effects of
parameter changes in the construction of the model.
The combinatorial explosion involved in limit checking
(e.g., the pendulum’s asymptote to # = 0) can be mit-
igated(Kuipers 1987) by decomposing and abstracting
time into a hierarchy of scales. Rules for determin-
ing the behavior of a composite device can be derived
from the models of its constituent components(Kleer
& Brown 1984).

This is an extremely active research area; many good
papers by many other groups, as well as many other
papers by the cited groups, have appeared in the past
four years. The state of the art in this field is particu-
larly well-summarized in a recent article by Weld(Weld
1992), which is also the source of much of the termi-
nology used in this document. Concepts common to
this paper and the bulk of the QR/modeling literature
include avoidance of unnecessary terms, model refine-
ment driven by failure at a “lower” modeling level, and
reasoning that proceeds at as a high level of abstraction
as possible.

Status and Discussion

This paper is a description of the first stages of work-
in-progress on a highly ambitious task. To date, we
have only built a small, but functional - and hope-
fully representative — subset of the program.’” This
subset incorporates a few instances of each technique,
providing a quick check of the whole symbolic/numeric

?(Falkenhainer & Forbus 1991)’s propositional reasoning
also uses a digraph, but it is used implicitly and constructed
somewhat differently.

Yhence the mix of verb tenses in this paper.

paradigm and the overall control flow (hierarchy of hy-
potheses, domain rules and ODE rules; control flow
between modules, and so on). Most importantly, it
has allowed us to test and refine the syntax and the
use of the various types of user inputs.

This first version, constructed'? with the aid of Rein-
hard Stolle, allows one-term hypotheses involving the
keywords <force> and <time>, sorts them according
to the simplistic metric proposed in a previous sec-
tion, incorporates one rule ((point-sum <force> 0))
in one domain (mechanics), has a reduced vocabu-
lary of qualitative terms (above, below) and a corre-
spondingly small repertoire of symbolic and numeric
techniques to verify them, and has been tested on two-
dimensional systems with numeric observations, such
as figure 2 with all but the numeric observation omit-
ted. Iven this limited exercise has turned up some
interesting problems. Determining the coefficients for
the numerical integrator run required linear interpola-
tion of the data points to produce m nonlinear equa-
tions In the m unknown constants, which were then
solved with Newton-Raphson. In general, this prob-
lem -— known as parameter estimation is solved
with much more sophisticated techniques like Kaliman
filtering(Kalman 1960), and is the topic of a rich body
of literature(Sorenson 1985). Our simplistic solution
spawned a second problem: a failure to match a Runge-
Kutta run against an observation could mean either
that the model was inadequate or that our parameter
estimation algorithm was inaccurate. We solved this
by imposing an artificially high accuracy on the latter,
but this is not a good general solution. The mechanics
domain syntax has grown far closer to the Lagrangian
formulation than we had originally envisioned because
its formalized structure is so useful (for example, the
coordinate/momentum pair for each degree of freedom,
related by a derivative, that suffice to describe the sys-
tem completely and contain symbolically extractable
mformation about symmetries and conserved quanti-
ties as well).

Figure 4 depicts a modeling run on a simplified ver-
sion of the pendulum of figure 2, shown at the top of
figure 4, that includes only two hypotheses and one
numeric observation. The base-model generator is by-
passed in this run because the only observation is nu-
meric. The refiner rules out all one-term models via
symbolic methods, then uses the force-balance rule to
map the two hypotheses into a two-term candidate
model, upon which the checker is invoked. The check
proceeds directly to the numeric phase, the parameter
estimator computes the coefficients, and the point-by-
point comparison succeeds. Since both “sub-models”
of this model have already failed the check, this model
and its coefficients are returned as the final result. We
have also experimented with adding white noise to the
numeric data and changing the resolution in the spec-

"hoth code and ideas

ifications, with predictable results. The program still
finds the right model if the added noise is small com-
pared to the resolution, and fails when it is not, as the
repertoire of hypotheses does not allow it to model the
noise.

Later versions will use the hardware 1/O chan-
nel, incorporate more symbolic and qualitative meth-
ods, be tested with underspecified modeling tasks and
sketchier observations, and use more domain rules in
multiple domains that operate on multiple, heteroge-
neous keywords. We expect the first and the last to be
the hardest and most interesting of these tasks, par-
ticularly since our aim is emphatically not to build a
tool that is tuned for one particular application do-
main. Beyond that, further development will entail
the exploration of different implementation paradigms
and techniques: sorting hypotheses by behavior or by
order of entry, allowing multi-term hypotheses, etc.

Summary

The nascent program described here uses general
mathematical theory as a foundation, adds concise
and powerful domain-specific rules, and funnels user-
specified hypotheses through general ODE theory and
domain-specific rules to generate “appropriate” models

models that are well-matched to the task at hand.
It exploits intelligent, high-level techniques like sym-
bolic manipulation from the outset, carrying them as
far as possible through each phase of the work, and
using them to make the type of quick, overall assess-
ment that a human expert uses in the first stages of
model-building. The program then resorts to lower-
level, less-intuitive methods to complete the analysis
and synthesis processes. The chosen set of inputs and
the way that they are used closely resembles the pro-
cess one finds documented on any designer’s scratch
paper: parts of equations, rough sketches, scratched-
out forays up analytical blind alleys, and an overall
progression of ideas and abstractions from simpler to
more complex.

This mixture of exact and approximate techniques
and precise and heuristic knowledge is powerful, but
has one important disadvantage: it makes formal, rig-
orous analysis of the necessary conditions for model-
ing success very difficult to come by. This is not a
pure mathematician’s tool, though pure mathematics
certalnly contributed to the plan for its implementa-~
tion. 1t is a design tool that is intended to be useful:
to find a “good enough” solution with minimum time
and effort. This tradeofl motivated many of the de-
sign choices described here, notably the control flow
between the simplifier and the refiner.

Though the examples here are drawn from the do-
mains of mechanics and electronics, many other po-
tential application areas exist. The general framework
described here has been designed to smoothly accom-
modate rules from many domains, and the program it-
sell has been written to be easily extensible. It should

The invocation:

(find-model
(domain mechanics)
(autonomous <force>)
(state-variables (<theta>))
(point-coordinate <theta>)
(hypotheses
(<force> (* (constant a ()) (deriv (deriv <theta>))))
(<force> (* (constant b ()) (sin <theta>))))
(observations
(<theta> (numeric {(<theta> <time>) ((0 .1234) (.1 .1003)
(specifications
(mesh-width <time> absolute 1e-6 (0 120))
(mesh-width <theta> absolute 1e-3 (0 (* 2 pi)))))

The transcript:

Trying to find model for

hypotheses = ((* a (deriv (deriv <theta>)))
(* b (sin <theta>)))

with max level = 2.

Trying to find model at level 2...
Checking model
(model ((= (+ (¥ (constant b ()) (sin <theta>))
(* (constant a ()) (deriv (deriv <theta>)))) 0))).
Checking model
(model ((= (+ (* (constant b ()) (sin <theta>))

(* (constant a ()) (deriv (deriv <theta>)))) 0)))
numerically.

Checking
((= (deriv <theta>) d<theta>)
= (deriv d<theta>) (/ (- 0 (* 3. (sin <theta>))) 2.)))
against data.

((model
((=
(+ (* (constant b ()) (sin <theta>))

(* (constant a ()) (deriv (deriv <theta>))))
(IDDD)
((a 2.) (b 3.)))

Figure 4: A modeling run on the damped pendulum

IO

be obvious that the definitions and solutions presented
here are preliminary and will necessarily undergo much
development and refinement as this program is devel-
oped, but the preliminary results have been encourag-
ing — and some of the early problems have been subtle,
rich, and rewarding to think about and to solve.

References
Addanki, S., Cremonini, R., and Penberthy, J. S.
1989. Reasoning about assumptions in graphs of mod-
els. In Proceedings IJCAI-89. Detroit, MI.

Addanki, S., Cremonini, R., and Penberthy, J. S.
1991. Graphs of models. Ariificial Intelligence
51:145-178.

Astrom, K. J., and Eykhoff, P. 1971. System identi-
fication -— a survey. Automatica 7:123-167.

Bobrow, D. G. 1984. Qualitative reasoning about
physical systems: An introduction. Artificial Intelli-
gence 24:1-5.

Bobrow, D. G., ed. 1985. Qualitative Reasoning about
Physical Systems. Cambridge MA: M.I'T. Press.
Bradley, E. 1992. Taming Chaotic Circuits. Ph.D.
Dissertation, M.1.T.

Crawford, J. M., Farquhar, A., and Kuipers, B. J.
1990. QPC: a compiler from physical models into
qualitative differential equations. In Proceedings of
the National Conference on Artificial Intelligence
(AAAI-90).

Falkenhainer, B., and Forbus, K. D. 1991. Composi-
tional modeling: Finding the right model for the job.
Artificial Intelligence 51:95-143.

Gershenfeld, N. S., and Weigend, A. S. 1993. The fu-
ture of time series. In Time Series Prediction: Fore-
casting the Future and Understanding the Past. Santa
Fe, NM: Santa Fe Institute Studies in the Sciences of
Complexity.

Goldstein, H. 1980. Classical Mechanics. Reading
MA: Addison Wesley.

Gouesbet, G., and Maquet, J. 1992. Construction of
phenomenological models from numerical scalar time
series. Physica D 58:202-215.

Kalman, R. E. 1960. A new approach to filtering and
prediction problems. J. Basic Eng. 82D:35-45.
Kleer, J. D., and Brown, J. S. 1984. A qualitative
physics based on confluences. Artificial Intelligence
24:7-83.

Kuipers, B. J. 1986. Qualitative simulation. Artificial
Intelligence 29:289-338.

Kuipers, B. J. 1987. Abstraction by time scale in
qualitative simulation. In Proceedings AAAI-87, 621-
625. Seattle, WA.

Langley, P., Simon, H. A., Bradshaw, G. L., and
Zytkow, J. M. eds. 1987. Scientific Discovery: Com-
putational Explorations of the Creative Process. Cam-
bridge, MA: MIT Press.

Morrison, . 1991. The Art of Modeling Dynamic
Systems. New York: Wiley.

Nayak, P. 1992 Causal approximations. In Proceed-
mgs AAAIL-92.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T. 1988. Numerical Recipes: The Art
of Sctentific Computing. Cambridge U K.: Cambridge
University Press.

Sorenson, H. W. 1985. Kalman Filtering: Theory and
Application. IEEE Press.

Weld, D. S., and de Kleer, J., eds. 1990. Readings in
Qualitative Reasoming About Physical Systems. San
Mateo CA: Morgan Kaufman.

Weld, D. S. 1992. Reasoning about model accuracy.
Artifictal Intelligence 56:255-300.

Winston, P. H. 1992. Artificial Intelligence. Redwood
City CA: Addison Wesley. Third Edition.

