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Abstract

In qualitative modelling, information is lost by abstracting from quantitative
formulae. We show that when the behaviour of two similar systems is compared,
non-changing quantities from these formulae can have a significant influence on
the qualitative prediction. We propose the addition of a new ontological primi-
tive for representing these influences in qualitative models, and provide a calculus
for exploiting this primitive in the reasoning process. Augmentation with the new
primitive enhances the power of the qualitative simulator, resulting in a more ap-
propriate prediction of behaviour, and also improves the explanation capacities of

the model. The latter feature is of major importance for tutoring systems using
qualitative reasoning.



1 Introduction

A behaviour description generated by qualitative simulation consists of a set of states modelling
qualitatively distinct behaviours of the simulated device. The notion of change is the key concept
for generating such a description. In qualitative reasoning basically, two ways of dealing with
changes have been investigated: values and (in-)equalities. In particular in the early days
of qualitative reasoning research, distinct states of behaviour were defined as having different
values for quantities and/or different values for their derivatives. Finding a state transition
implied searching for a quantity whose derivative was plus or minus so that it would adopt
a higher or lower value in its quantity space [3, 6]. In later publications, reasoning with (in-
)equalities became more important (see for instance [9]). Looking for state transitions became
more complex and included reasoning steps such as

if A= B and AA = plus and (AB = 0 or AB = minus) then A > B.

In the approach we are using, both techniques for reasoning with changes can be employed (cf.
[1]). Still we had severe trouble in modelling the behaviour of the balance system (see Figure
1)!. Certain changes in the behaviour of this system cannot be represented adequately. This
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Figure 1: A Balance Problem

behaviour depends on ‘influences’ of quantities that don’t change themselves, but still have a
significant effect on how the behaviour of the system evolves. For example, if the heights of
the water columns in both containers are equal (and therefore also the pressures at the bottom
and thus the flow rates) then the containers will lose water with equal rates. If the widths of
the containers are also equal, both containers will be empty at the same time and the height
of the water columns will stay equal while emptying. However, a problem occurs if the widths
of the containers are unequal. In that case, the container with the smallest water column will
become empty first. In order to reach that state of behaviour the heights of the columns have to
become unequal first. The height of smallest column will become lower (see Figure 2, transition
from State 3 to State 4). In other words, the change in height depends, among others, on
the width of the column. The width has a significant effect on how the behaviour changes,
even though it does not change itself. This feature cannot be modelled adequately by current

!The problem is to predict the behaviour of balances with containers on each balance arm. Both containers
are assumed to be equal in weight. Depending on the difference in the mass of the liquid contained by the
containers, one balance arm may be heavier than the other. Therefore, after releasing it from the starting
position the balance may change its position. Through outlets near the bottom of the containers the liquid
gradually flows out of the containers. Depending on the pressure at the bottom, the flow rates may be different.
As a result, the balance may move to a different position, because the difference in weight between the two
balance arms changes. Eventually, when both containers are empty, the balance will reach an equilibrium.




techniques for qualitative reasoning that use influences and proportionalities as the basis for
determining changes, because the ‘influence’ of the non-changing quantity is not captured by
these dependencies.

We present a technique that can be used for modelling the influence of non-changing quan-
tities. After providing some background on our research in Section 2, the problem we are
facing is explained in more detail (Section 3). In Section 4, we discuss how the problem can be
solved by using quantitative mathematics. Section 5 presents a reformulation of the mathemat-
ically oriented solution in qualitative terms, such that it can be added to current approaches
to qualitative reasoning. Finally, in Section 6 we briefly summarise our results and discuss the
consequences of them for qualitative reasoning.

2 Teaching Qualitative Reasoning

It is widely recognised that for solving physics problems a careful qualitative analysis of the
problem situation is essential (cf. [8, 2, 7, 5]). A typical difference in the problem solving be-
haviour of experts and novices is the large amount of time an expert spends on the qualitative
analysis. The novice is more likely to skip this phase and start computing formulae right away.
One of the problems for physics tutors is to make sure that novices start with a qualitative anal-
ysis before they select mathematical formulae. In other words, teaching qualitative reasoning
is an essential step in teaching physics.

The Balance Tutor [4] is our first realisation of a teaching environment that coaches stu-
dents in analysing the behaviour of physical devices using qualitative knowledge. The teaching
environment uses an on-line qualitative simulator (GARP) that implements a problem solv-
ing capacity similar to the traditional approaches to qualitative reasoning [1]. For teaching
qualitative reasoning, two requirements must be fulfilled by the simulator:

e The simulator must predict the behaviours that are manifested by the real system. This
means that the simulator may not neglect any states of behaviour, but also that it may
not predict any spurious (non-existing) behaviours.

¢ The knowledge used by the simulator for predicting the states of behaviour should facil-
itate explanation of why certain behaviours occur whereas others do not. This implies
that the simulator must be able to provide a causal account of why the behaviour evolves
in a certain direction.

The knowledge representation we use does not completely satisfy these two constraints. The
shortcomings are not just weaknesses in our simulator, but result from lacking reasoning capa-
bilities in current qualitative reasoning techniques. In the next section we will first elaborate
on the knowledge representation that we use and then explain the problem of dealing with
non-changing quantities in more detail.

3 Knowledge Representation

For reasoning about the balance system we use the notion of processes as the prime cause of
changes (cf. [6]). The (direct) changes imposed on a system by influences are propagated by
proportionalities (indirect changes). In addition to these two causal relations, corresponding
values are defined between magnitudes of specific quantities. Non-causal dependencies (<, <, =
,2,>) may be used for representing inequalities between quantities. Note that inequalities are
not the same as correspondences; two quantities can be equal but still have non-corresponding
qualitative values, or vice versa.



Similar to the component oriented approach [3] and the process oriented approach [6], GARP
uses the notion of model fragments for modelling the behaviour of some real-world system. All
model fragments have associated with them a set of conditions under which they are applicable,
and a set of consequences that are given once their conditions hold. Typically, conditions
specify required ob jects, inequalities between quantities, and/or specific values that quantities
must have. Consequences, on the other hand, usually introduce influences and proportionalities
between quantities, although inequalities can also be specified as a consequence.

In order to reason about the behaviour of the balance system, model fragments are needed
for the containers containing liquid, the liquid flow out of the containers, the position of the
balance (depending on the mass difference between left and right), and the movement of the
balance (depending on the flow difference between left and right). In the scenario, or input
system, the balance system is, apart from its physical structure, defined by the quantities Height
(Hr, HR), Volume (Vi,, Vg), Width (W, Wg), and Flow (Fr, Fr). For purposes of clarity,
we will not discuss the fully corresponding quantities Amount and Mass (corresponding with
Volume), Pressure (corresponding with Height), Position (corresponding with Vi, — Vg), and
Movement (corresponding with Fy, — Fr ). Furthermore, we assume that the containers are
rectangular, and for the moment ignore the depths of the containers by assuming that they are
equal.

In the example shown in Figure 2, the following inequalities initially hold: Hjy > Hp,
Vi = Vp and W < Wg. All quantities have the initial value plus. When presenting this
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Height L > Height R Height L » Height R Height L = Height R
Volume L = Volume R Volume L < Volume R Volume L < Volume R
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Figure 2: Behavioural Description of a Balance Problem

system to the qualitative simulator, a causal structure is produced for the different states of
behaviour, as shown in Figure 3. The height of the column determines the flow rate. The
flow rate influences the volume. Changes in the volume propagate into changes of the height.
Changes in the width also propagate into changes in height. This causal structure is applicable




for the liquid columns on both sides of the balance. However, this model of the balance system
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Figure 3: Causal Dependencies and Inequalities for the Balance Problem

does not allow for the derivation of all required states as shown in Figure 2. In particular the
transition from State 2 to State 3 can not be derived.

The transition from State 1 to State 2 is derived because Hy, > Hp yields F, > Fg, and
consequently 6V;, > 8Vp. The volumes decrease with different rates, and will thus become
unequal. The decrease rates of the heights, however, can not be derived. This is caused by the
way in which the effect of the width on the liquid is represented. The height of the liquid is
represented as proportional to the volume (which is decreasing) as well as to the width (which
is constant). Because the relation between Volume, Height and Width is divided into two
proportionalities, the effect of Width on the derivative of Height is lost.

The next section discusses this problem in a mathematical manner, providing the basis for
introducing a new primitive relation type and its calculus.

4 Mathematical Solution

State transitions are induced by (in)equalities between the volumes V on each side of the
balance system and between the heights H of the liquid columns. The relation between V and
H is mediated by the area of the container. Since we assume rectangular containers with equal
depths, only the width W is relevant:

V=WxH (1)

The flow rate F' is defined as the decrease of the volume per second, thus F = —2V. However,
to avoid the confusion caused by the negative derivative, we simplify this formula to

F~ 6V (2)
The relation between the flow and the height of the liquid column is

F=oVH

where o is determined by various quantities that are assumed to be equal for both liquids,
like the viscosity, the area of the outlet, and the gravitational constant. We therefore omit «,
yielding

F~vVH (3)



The change of the volume is equal to the width of the liquid column times the change of its
height.

V=WxéH
This can be rewritten as sV

These equations allow us to infer the state sequence that describes the behaviour of the balance.
In each state, Equation 3 is used to deduce the ratio of the flow rates, and Equation 2 to deduce
the ratio of the volume derivatives. Equation 4 is used to derive the ratio of the derivatives
of the heights. The initial state is characterised by the inequalities V;, = Vg, H;, > Hp, and
Wi < Wg. We describe the first three state transitions in detail. (see also Figure 2).

State 1 — State 2 We use H, > Hp to deduce Fy, > Fgr (Equation 3), and consequently
6VL, > 6Vr (Equation 2). Because the decreases in the volumes are unequal, their ratio
changes from Vi, = Vg to Vi, < Vg in the next state.

State 2 — State 3 Since Wy, < Wg and 6V}, > 6§Vp, we derive that 6 H}, > § Hp, using Equa-
tion 4). State 2 therefore terminates by the heights becoming equal. Another possibility
would be a termination in which the left container becomes empty: because §Vy > §Vp,
and V, < Vg, we can derive that V;, may become zero. However, this requires Hy, < Hp,
and no direct transition is possible from Hy, > Hg to Hy < Hp (the intermediate ratio
Hy, = Hp can not be skipped).

State 3 — State 4 In State 3, H;, = Hp holds, so Fj, = Fr (Equation 3), and thus §Vy, = §Vg
(Equation 2). Because Wi, < Wg also holds, §H, > § Hg is derived using Equation 4,
causing a transition to State 4.

Apparently, there are no problems in deriving the behaviour of the balance in the mathematical
model. However, as observed in Section 3, the transition from State 2 to State 3 cannot
be derived in the qualitative model, because some of the required information is lost in the
abstraction process. A solution for this problem is presented in the next section.

5 Qualitative Solution

The mathematical solution presented in the previous section reveals the limitations of qual-
itative reasoning with respect to the influences of non-changing quantities. In quantitative
formulae, the relations between different variables as well as constants can easily be repre-
sented. But constant values are abstracted from in building qualitative models, because they
are not actively involved in the causal quantity interactions within the system, and hence do
not directly influence the qualitative values of quantities. The ‘hidden’ constant in proportion-
alities and correspondences influences the quantitative value of the resulting quantity, however,

and may become relevant in inequality reasoning, where the quantitative values of quantities
are compared.

5.1 Representation

Consider again the balance example, and the representation of the quantities as given in Fig-
ure 3. The reason why the quantitative model is capable of predicting the change in the height
equation while the qualitative model is not, can be attributed to the fact that in the latter
the relation between Volume and Height is independent from the relation between Volume and




Width. Moreover, the correspondence between the width and the height will not induce any
change in the height because the width has a constant value. In the qualitative model, informa-
tion is lost on the interrelation between the three quantities Width, Volume, and Height. This
loss of information can be compensated by explicitly representing that Volume is the product
of Width and Height.

One option is to define a qualitative version of the (quantitative) multiplication relation for
representing formulae in qualitative models. The formula V = W x H can now straightfor-
wardly be represented as mult(V,W,H)2. In order to support larger multiplications (for instance,
when the depth (D) is taken into account, the formula expands to V = W x H x D), the repre-
sentation can be defined to allow embedded multiplication relations, or intermediate variables
can be added. Incorporating the depth will then result in respectively mult(V,mult(W,H),D)
or mult(V,X,D), mult(X,W,H). We do not elaborate upon the exact representation of larger
multiplications here.

Another option is to enrich the ontology for qualitative reasoning with a new primitive
that we will call relation modification. This enables us to express explicitly that the value of
a non-changing quantity affects another relation. Considering the balance example again, we
can now express that the width affects the influence of the volume on the height. This may be
represented as

prop_pos(Propl, Volume, Height)
mod_neg(Width, Prop1)

The positive proportionality relation Prop1 between Volume and Height states that an increase
(decrease) in the volume causes an increase (decrease) in the height, whereas Width acts as a
negative modifier of Prop1: the larger Width, the smaller the influence of Volume on Height.
Representing more than one modifier for a proportionality is now easily represented by defining
more than one mod_pos or mod.neg relation for the same proportionality.

For the purpose of incorporating the influence of non-changing quantities, there is no princi-
pal difference between these two representations. A formula A = C x B, where C is a constant,
can equivalently be represented as mult(A,C,B) or as prop_pos(Propl, B, A), modneg(C,
Prop1). The difference is in the explicit notion of causality present in the latter representation,
as is discussed in Section 6. In the remainder of this section, we adopt the latter representation
for presenting the calculus.

5.2 Calculus

In designing a calculus for dealing with relation modifiers, it is important to keep in mind that
these modifiers are only relevant in situations where two similar processes are compared. As
long as a single causal sequence of quantity dependencies is considered (as is the case with
causal prediction of behaviour for a solitary system), these modifiers can be omitted. This is
exactly what happens in the current definition of a proportionality: A = «a x B is abstracted to
A x B. When comparing two similar processes, however, it is not always possible to abstract
from constant values. As soon as corresponding constant values are different, they may effect
the relation between other corresponding quantities in the system. Thus, our calculus assumes
the existence of two similar processes. In qualitative reasoning terms, similar processes are
modelled by (sets of) instances of the same generic model fragments. This fact is exploited
explicitly in our calculus.

2To stress the fact that multiplications are only relevant for (quantitative) inequality reasoning, the alternative
representation equal (V,mult (W,H)) could be used.



We start with the simplest case, in which there is a single proportionality with a single
modifier in each of the systems. Let Ay, By,... be the quantities of one system, and A,, Bs,...
the corresponding quantities in the other system. Let the following relations hold3:

prop.pos(Prop;, A;, Cy)
mod_neg(B;, Prop;)
prop.pos(Props, A;, C3)
mod_neg(Bz, Props)

Then the calculus presented in Table 1 is used to compute the effect of the modified correspon-
dences on the relation between 6C; and §Cy%. For reasons of clarity, some boundary cases are

{ Combining prop_pos and mod_neg |
r " B, < B, l B; = B, I B, > B, I B: 7 B, ]
6A1 < 6A, || 6Cy 7 6Cy | 6Cy < 6C, 6C1 < 6C, | 6Cy 7 6Cy
0A1 = 6A, || 0C; < 8C, | 6Cy = 8C, | 6Cy > 6C, | 6Cy 7 6C,
6A1 > 6A, || 6Cy > 6Cy | 6Cy > §Cy | 6C1 T 6Cy | 6C1 7 6C,y

Table 1: A Calculus for Processing Modified Proportionalities

omitted (for instance, if one allows modifiers to be zero). These can be defined in a similar way.
By the same token, analogous calculi are defined for propneg’s and mod_pos’s.

This calculus is sufficient only for computing the influence of a single modifier on a single
proportionality for C. Consequently, we have to expand our calculus to incorporate multiple
modifiers and multiple proportionalities. We do this by first combining multiple modifiers for
each proportionality, then computing the proportionalities one by one, and finally combining
the different proportionalities.
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Figure 4: Multiple Proportionalities and Modifiers

This is best explained by means of examples. In Figure 4-1, a schematic representation is
given of the following relations:

prop-pos(Prop;, A;, Cp)
mod_neg(m;, Prop;)

®Because the systems are modelled by instances of the same generic model fragments, the relations Prop; and
Prop, are abstractions of the same quantitative formula.
*The column for By ? By is added because combined modifiers can be ambiguous, as wﬂl become clear below.
In subsequent tables, similar columns are omitted.




mod_pos(n;, Prop;)
prop-pos(Props, A2, C2)
mod_neg(my, Prop;)
mod_pos(n;, Props)

In addition there are inequality dependencies between the quantities (Rq, Rm, Rn, and R.).
We now want to calculate the combined influence of the inequality relations R,, and R, on
R.. This is done by using a simple combination calculus, as depicted in Table 2. The right-
side table applies to our example, because we want to combine a mod_neg with a mod_pos.
Modifier pairs that have opposite inequality relations can be combined (e.g., “>” and “<”
yields “>”, where the resulting relation is one between mod neg’s), and equal modifier pairs
can be omitted (e.g., “>” and “=" yields “>”). For proportionality relations with more than

L l<{=1>] L I<l=1>]
<fl<l<|? <f?Ii>]>
pound < = > = " < = >
>[1?1>[> >l << |?
Similar relations (e.g., mod_pos with Opposite relations (e.g., mod_pos with
mod_pos) mod_neg); resulting relation is of type

defined in the top row)

Table 2: Calculi for Combination

two modifiers, the calculus can be applied incrementally. The result of this addition is that
all proportionalities can be represented as having exactly one modifier, because non-modified
proportionalities can be seen as having one modifier which is equal in both systems. Similarly,
the different proportionalities for one quantity can now be combined by adding the inequality
relations between modifiers and quantities. Consider the relations in Figure 4-II, illustrating
the relations

prop.pos(Propa;, A1, Cy)
mod_neg(m;, Prop;)
prop.pos(Proppi, B1, C1)
mod_neg(n;, Propp;)
prop_pos(Prop4z, Az, C2)
mod_neg(my, Propasz)
prop-pos(Propgs, By, C3)
mod_neg(n;, Propgs)

The two proportionality relations influencing C are calculated separately using the calculus
from Table 1°. This time, we do not calculate the actual inequality between 6C; and §Cj,
but we calculate the relative influence of each proportionality. For example, if the left side
proportionality relations in Figure 4-II would have caused R, to change from “=” to “>”
provided it was the only proportionality affecting C, then we can say that the relative influence
on R. is “>”. When we have done this for all proportionalities affecting C, then we can add
them conform the calculus in Table 2.

5When the subscripts for a quantity are omitted, the statement holds for both instances.




Summarising, modified proportionalities are dealt with by computing the effect of the modi-
fier on the proportionality using the calculus in Table 1. In the case that multiple modifiers exist
for one proportionality, the inequality relations between corresponding modifiers are combined
by using the calculus in Table 2. If more than one proportionality affects the same quantity,
the relative influences of the inequalities involved are combined by the latter calculus.

5.3 The Balance Problem Revisited

Exploiting the augmentation we proposed in the previous section, we will now show that we can
predict the problematic state transition in the balance problem (Figure 2, State 2 to State 3).

In State 2, we have H;, > Hpg, Vi, < Vg, and Wy < Wgr. The problem was that the
transition from Hy, > Hg to Hy = Hpr was not found. With our new primitive, this can be
modelled adequately. We redefine the proportionality relations between the volumes and the
heights as in Section 5.1.

prop_pos(Prop.L, VL, HL), modneg(WL, ProplL)
prop_pos(Prop R, VR, HR), modneg(WR, PropR)

Given Hy, > Hpg, and thus 6V, > §VR, we use Wy, < Wg to derive that 6Hy > 6Hp (see
Table 1). éH, > 6 Hp together with Hy, > Hp yields the desired transition to Hy, = Hp.

Now suppose the problem is extended by taking into account the depths (D, Dgr) of the
containers as well. Again considering the same situation as in State 2, we can now derive that

if (for example) Dy, > Dpg, the resulting combined modification, and hence the state transition,
is ambiguous:

if W, < Wpand Dy, > Dp then M 7 Mg

Here My, Mp are the resulting combined modifiers for both sides. Applying these modifiers on
the proportionality relations between volumes and heights yields Hy, 7 Hp (see Table 1).

If, on the other hand, D, = Dpg or D < Dg, the same transition to H;, = Hp is found
(see the left table in Table 2):

if W, < Wr and D, = D then M, < Mg
if W, <« Wg and Dj, < D then M1, < Mg

Applying these combined modifiers yields
if 6V, > Vg and M < Mp then 6Hy, > 6Hp

Although the balance problems may seem to be a toy domain, the observed problem occurs
in many situations. On the one hand, processes may be compared in real-life situations. Also,
comparisons of predicted behaviour for different values of relevant constants can be exploited for
tuning equipment. On the other hand, it is often found in teaching situations; a lot of physics
problems in text books are based on the comparison of two similar processes. For example:

e “Two liquids with different heat capacities are heated; which one boils first?”
o “Two different masses slide down a hill. Compute the difference in friction.”

¢ “The front brakes of a car are unequally worn out. In what direction will the car turn if
you brake?”

By taking into account the influence of constant values, a better understanding of the process
is possible.




6 Discussion and Concluding Remarks

We showed that non-changing quantities may have a significant influence on the prediction of
behaviour of physical systems. When comparing similar processes, which regularly occurs in
teaching situations as well as in real-life applications, current QR techniques are not capable of
modelling the desired behaviour. We presented a new ontological primitive that enlarges the
scope of qualitative reasoning by modelling the changes in behaviour that result from influences
of non-changing quantities.

Two implementations have been discussed. They differ with respect to the explicit repre-
sentation of the multiplication and the addition of modifiers. The latter is explicit with respect
to its role in the prediction of causal behaviour, whereas the multiplication relation can also be
used for other (teaching) purposes, for instance providing general background knowledge about
the relations between the different quantities. That is, it may be useful to teach a student the
multiplication relation explicitly, and not only its causal (more implicit) consequences. On the
other hand, knowing which quantity is the modifier (thus by explicit representation) simplifies
the realisation of causal explanations for a teaching system.

The extension proposed here is a small, but nevertheless important step. In the develop-
ment of QR research, the power of qualitative reasoning has increased by gradually lowering
the level of abstraction. First, only (qualitative) quantity values were used. An important im-
provement was the introduction of inequality reasoning, which employs the quantitative values
of quantities. We follow this line one step further by introducing the modified proportional-
ity, facilitating the exploitation of constants in the comparison of similar behaving systems.
When predicting the behaviour of solitary systems these constants can be omitted, but when
comparing similar systems they can influence the behaviour significantly.

In the context of our current research project on teaching qualitative reasoning, the new
primitive will be employed to facilitate better explanation and cognitive diagnosis. Especially
in tutoring situations, comparison of similar systems is very useful for bringing about a better
understanding of the relative influences of different quantities on a system.
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