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Abstract

In qualitative modelling, information is lost by abstractingfrom quantitative
formulae. We show that when the behaviourof two similar systemsis compared,
non-changingquantitiesfrom theseformulaecan have a significant influenceon
the qualitative prediction. We propose the addition of a new ontological primi-
tive for representingtheseinfluencesin qualitative models,andprovide a calculus
for exploiting this primitive in the reasoningprocess. Augmentationwith the new
primitive enhancesthe power of the qualitative simulator, resulting in a more ap-
propriateprediction of behaviour, and also improves the explanationcapacitiesof
the model. The latter feature is of major importancefor tutoring systemsusing
qualitative reasoning.



1 Introduction

A behaviourdescriptiongeneratedby qualitativesimulationconsistsof a setof statesmodelling
qualitativelydistinct behavioursofthesimulateddevice. Thenotionofchangeis thekeyconcept
for generatingsucha description. In qualitativereasoningbasically,two waysof dealingwith
changes have been investigated: values and (in-)equalities. In particular in the early days
of qualitativereasoningresearch,distinct statesof behaviourwere definedas having different
values for quantities and/or different values for their derivatives. Finding a statetransition
implied searching for a quantity whose derivative was plus or minus so that it would adopt
a higher or lower value in its quantityspace[3, 6]. In later publications,reasoningwith (in-
)equalitiesbecamemore important(seefor instance[9]). Looking for statetransitionsbecame
more complex andincluded reasoningstepssuchas

iIA = B and z~.A= plus and (~B= 0 or = minus)then A > B.

In the approach weareusing, both techniquesfor reasoningwith changescan be employed (cf.
[1]). Still we had severetrouble in modelling the behaviour of the balance system(seeFigure
1)1. Certain changesin the behaviour of this system cannot be represented adequately. This

Figure1: A Balance Problem

behaviourdependson ‘influences’ of quantitiesthat don’t changethemselves,but still havea
significanteffect on how the behaviourof the systemevolves. For example,if the heightsof
thewatercolumnsin bothcontainersareequal(andthereforealsothe pressuresat the bottom
and thus the flow rates)then the containerswill lose waterwith equalrates. If the widths of
the containersare alsoequal,both containerswill be empty at the sametime and theheight
of the water columns will stay equal while emptying. However, a problem occurs if thewidths
of the containersare unequal. In that case,thecontainerwith the smallestwatercolumn will
becomeemptyfirst. In order to reach that stateof behaviour the heights of the columns have to
becomeunequalfirst. Theheightof smallestcolumnwill becomelower (seeFigure2, transition
from State 3 to State4). In otherwords, the changein height depends,amongothers,on
the width of the column. The width has a significant effect on how the behaviourchanges,
eventhough it doesnot changeitself. This featurecannotbe modelledadequatelyby current

1The problemis to predict the behaviourof balanceswith containerson eachbalancearm. Both containers

are assumedto be equalin weight. Dependingon the differencein the massof the liquid contained by the
containers, one balance arm may be heavier than the other. Therefore, after releasing it from the starting
position the balance may change its position. Through outlets near the bottom of the containers the liquid
gradually Rowsout of the containers. Depending on the pressureat the bottom, the flow rates may be different.
As a result, the balance may move to a different position, becausethe difference in weight between the two
balance arms changes.Eventually, when both containersare empty, the balancewill reach an equilibrium.



techniques for qualitative reasoning that use influences and proportionalities as the basis for
determiningchanges,becausethe ‘influence’ of the non-changingquantity is not capturedby
thesedependencies.

We presenta techniquethat can be used for modelling the influenceof non-changingquan-
tities. After providing some background on our research in Section 2, the problem we are
facing is explained in more detail (Section 3). In Section 4, we discusshow the problem can be
solvedby using quantitative mathematics. Section 5 presentsa reformulation of the mathemat-
ically oriented solution in qualitative terms, such that it can be added to current approaches
to qualitative reasoning. Finally, in Section6 we briefly summariseour results and discuss the
consequencesof them for qualitative reasoning.

2 Teaching Qualitative Reasoning

It is widely recognisedthat for solving physics problemsa careful qualitativeanalysisof the
problemsituation is essential(cf. [8, 2, 7, 5]). A typical difference in the problem solving be-
haviour of experts and novicesis the large amount of time an expert spendson the qualitative
analysis. The novice is more likely to skip this phaseand start computing formulae right away.
Oneof the problems for physicstutors is to make sure that novicesstart with a qualitative anal-
ysis beforethey select mathematicalformulae. In other words, teaching qualitative reasoning
is an essentialstep in teaching physics.

The Balance Tutor [4] is our first realisation of a teaching environment that coachesstu-
dents in analysing the behaviour of physical devicesusing qualitative knowledge. The teaching
environment usesan on-line qualitative simulator (GARP) that implements a problem solv-
ing capacity similar to the traditional approaches to qualitative reasoning [1]. For teaching
qualitative reasoning, two requirements must be fulfilled by the simulator:

• The simulator must predict the behavioursthat are manifested by the real system. This
meansthat the simulator may not neglect any states of behaviour, but also that it may
not predict any spurious (non-existing) behaviours.

• The knowledgeused by the simulator for predicting the statesof behaviour should facil-
itate explanation of why certain behaviours occur whereas others do not. This implies
that the simulator must be able to provide a causal accountof why the behaviour evolves
in a certain direction.

The knowledge representation we use doesnot completely satisfy thesetwo constraints. The
shortcomings are not just weaknessesin our simulator, but result from lacking reasoning capa-
bilities in current qualitative reasoning techniques. In the next section we will first elaborate
on the knowledge representation that we use and then explain the problem of dealing with
non-changing quantities in more detail.

3 Knowledge Representation

For reasoningabout the balancesystemwe usethe notion of processesasthe prime causeof
changes (cf. [6]). The (direct) changesimposed on a systemby influences are propagated by
proportionalities (indirect changes). In addition to thesetwo causal relations, corresponding
valuesare defined betweenmagnitudesof specificquantities. Non-causaldependencies(<,�, =

�,>) may be used for representing inequalities betweenquantities. Note that inequalities are
not the sameas correspondences;two quantities can be equal but still have non-corresponding
qualitative values, or vice versa.



Similar to the componentoriented approach [3] and the processoriented approach [6], GARP
usesthe notion of modelfragmentsfor modelling the behaviour of somereal-world system. All
model fragments haveassociatedwith them a setof conditions under which they are applicable,
and a set of consequencesthat are given once their conditions hold. Typically, conditions
specify required objects, inequalities betweenquantities, and/or specificvaluesthat quantities
must have. Consequences,on the other hand, usually introduce influencesandproportionalities
between quantities, although inequalities can also be specified as a consequence.

In order to reason about the behaviour of the balance system,model fragments are needed
for the containers containing liquid, the liquid flow out of the containers, the position of the
balance (depending on the mass difference betweenleft and right), and the movement of the
balance (depending on the flow difference between left and right). In the scenario,or input
system,the balancesystemis, apart from its physicalstructure, defined by the quantities Height
(HL, HR), Volume (VL, VR), Width (WL, WR), and Flow (FL, FR). For purposes of clarity,
we will not discussthe fully correspondingquantities Amount and Mass (correspondingwith
Volume), Pressure(correspondingwith Height), Position (corresponding with VL — VR), and
Movement (corresponding with FL — FR ). Furthermore,we assumethat the containersare
rectangular,and for the moment ignore the depths of the containersby assumingthat they are
equal.

In the exampleshown in Figure 2, the following inequalities initially hold: HL > HR,
VL = VR and WL < WR. All quantitieshave the initial valueplus. When presentingthis

systemto the qualitativesimulator, a causalstructureis producedfor the different statesof
behaviour,as shown in Figure 3. The height of the column determinesthe flow rate. The
flow rateinfluencesthe volume. Changesin the volume propagateinto changesof the height.
Changesin thewidth alsopropagateinto changesin height. This causalstructureis applicable

S4.~.I SI.I. 2 Stat. 3
He~h~L~ H.çhtR Helr$~tI ~ Hei

1
ht R Hei~tI Hei~,tA

Vok,me I - Vok~neA Volume I Volume A Volume L <Volume A

Stat.4 91.1.5 StateS

Hol~I,t~<HeIghI 2 He~,tl <IleignI 2 Height I = Height 2

Volume I Volume 2 Volume I <Volume 2 Volume I Volume 2

Figure 2: BehaviouralDescriptionof a BalanceProblem



for the liquid columns on both sidesof the balance. However, this modelof the balance system

Proportionality

—e4i~.. Influence

I ~ Inequality

doesnot allow for the derivation of all required statesasshownin Figure 2. In particular the
transition from State2 to State3 can not be derived.

The transition from State 1 to State2 is derived becauseHL > HR yields FL > FR, and
consequentlyWL > t~VR. The volumes decreasewith different rates, and will thus become
unequal. The decreaserates of the heights,however,can not be derived. This is causedby the
way in which the effect of the width on the liquid is represented. The height of the liquid is
representedasproportional to the volume (which is decreasing)as well as to the width (which
is constant). Becausethe relation between Volume, Height and Width is divided into two
proportionalities, the effect of Width on the derivative of Height is lost.

The next section discussesthis problem in a mathematical manner, providing the basis for
introducing a new primitive relation type and its calculus.

4 Mathematical Solution

State transitions are induced by (in)equalities between the volumes V on each side of the
balance systemand betweenthe heights H of the liquid columns. The relation betweenV and
H is mediated by the area of the container. Sincewe assumerectangular containerswith equal
depths,only the width W is relevant:

V=WxH (1)

Theflow rateF is definedasthedecreaseof the volumeper second,thus F = ~ However,
to avoid theconfusioncausedby the negativederivative,we simplify this formula to

The relation between the flow and the height of the liquid column is

(2)

whereo~is determinedby variousquantitiesthat are assumedto be equal for both liquids,
like the viscosity, the areaof the outlet, and the gravitationalconstant.We thereforeomit n,
yielding

F~/ii

Figure 3: Causal Dependenciesand Inequalities for the BalanceProblem

(3)



The change of the volume is equal to the width of the liquid column times the change of its
height.

W=Wx5H

This can be rewritten as
1W (4)

Theseequationsallow us to infer the statesequencethat describesthe behaviour of the balance.
In eachstate,Equation 3 is used to deducethe ratio of the flow rates,and Equation 2 to deduce
the ratio of the volume derivatives. Equation 4 is used to derive the ratio of the derivatives
of the heights. The initial state is characterised by the inequalities VL = VR, HL > HR, and
WL <WR. We describe the first three statetransitions in detail. (seealso Figure 2).

State 1 —* State2 We use HL > HR to deduce FL > FR (Equation 3), and consequently
5VL > 6VR (Equation 2). Becausethe decreasesin the volumesare unequal, their ratio
changesfrom VL = VR to VL <VR in the next state.

State 2 —~State 3 SinceWL <WR and 5VL > ~VR, we derive that I5HL > bHR,usingEqua-
tion 4). State2 therefore terminates by the heights becoming equal. Another possibility
would be a termination in which the left container becomesempty: becauseSVL > I5VR,

and VL < VR, we can derive that VL may becomezero. However, this requires HL <HR,
and no direct transition is possiblefrom HL > HR to HL < HR (the intermediate ratio
HL = HR can not be skipped).

State 3 —~State 4 In State3, HL = HR holds,soFL = FR (Equation 3), and thus WL =

(Equation 2). BecauseWL < WR also holds, 1IHL > I~HRis derived using Equation 4,
causinga transition to State4.

Apparently, there areno problems in deriving the behaviour of the balancein the mathematical
model. However, as observed in Section 3, the transition from State 2 to State 3 cannot
be derived in the qualitative model, becausesomeof the required information is lost in the
abstraction process. A solution for this problem is presentedin the next section.

5 Qualitative Solution

The mathematicalsolution presentedin the previous sectionrevealsthe limitations of qual-
itative reasoningwith respectto the influencesof non-changingquantities. In quantitative
formulae, the relations betweendifferent variables as well as constants can easily be repre-
sented. But constant values are abstracted from in building qualitative models,becausethey
are not actively involved in the causal quantity interactions within the system,and hencedo
not directly influence the qualitative valuesof quantities. The ‘hidden’ constant in proportion-
alities and correspondencesinfluences the quantitativevalue of the resulting quantity, however,
and may becomerelevant in inequality reasoning, where the quantitative values of quantities
are compared.

5.1 Representation

Consider again the balance example,and the representation of the quantities as given in Fig-
ure 3. The reason why the quantitative model is capable of predicting the changein the height
equation while the qualitative model is not, can be attributed to the fact that in the latter
the relation between Volumeand Height is independent from the relation between Volumeand



Width. Moreover,the correspondencebetween the width and the height will not induce any
changein the height becausethe width hasa constantvalue. In the qualitative model, informa-
tion is lost on the interrelation betweenthe three quantities Width, Volume,and Height. This
loss of information can be compensatedby explicitly representing that Volumeis the product
of Width and Height.

One option is to define a qualitative version of the (quantitative) multiplication relation for
representing formulae in qualitative models. The formula V = W x H can now straightfor-
wardly be representedasmult(V,W,H)2. In order to support larger multiplications (for instance,
when the depth (D) is taken into account,the formula expandsto V = W x H x D), the repre-
sentationcanbe definedto allow embeddedmultiplication relations,or intermediatevariables
can be added. Incorporating the depth will then result in respectivelymult (V ,mult(W , H) ,D)

or mult(V,X,D), mult(X,W,H). We do not elaborate upon the exact representation of larger
multiplications here.

Another option is to enrich the ontology for qualitative reasoning with a new primitive
that we will call relation modification. This enablesus to expressexplicitly that the value of
a non-changing quantity affects another relation. Considering the balance example again, we
can now expressthat the width affects the influence of the volume on the height. This may be
representedas

prop_pos(Propl, Volume, Height)
mo&neg(Width, Prop 1)

The positive proportionality relation Prop 1 betweenVolumeand Height states that an increase
(decrease)in the volume causesan increase (decrease)in the height, whereas Width acts as a
negativemodifier of Propi: the larger Width, the smaller the influence of Volumeon Height.
Representingmore than one modifier for a proportionality is now easily represented by defining
more than one mod_posor mo&.neg relation for the sameproportionality.

For the purposeof incorporating the influence of non-changing quantities, there is no princi-
pal difference betweenthesetwo representations. A formula A = C x B, where C is a constant,
can equivalently be representedas mult(A,C,B) or as prop...pos(Propl, B, A), mod...neg(C,
Prop 1). The difference is in the explicit notion of causalitypresent in the latter representation,
as is discussedin Section6. In the remainder of this section,we adopt the latter representation
for presentingthe calculus.

5.2 Calculus

In designinga calculus for dealing with relation modifiers, it is important to keep in mind that
thesemodifiers are only relevant in situations where two similar processesare compared. As
long as a single causal sequenceof quantity dependenciesis considered (as is the case with
causal prediction of behaviour for a solitary system), thesemodifiers can be omitted. This is
exactlywhathappensin thecurrentdefinition of a proportionality: A = a x B is abstracted to
A x B. When comparing two similar processes,however, it is not always possible to abstract
from constant values. As soon as corresponding constant values are different, they may effect
the relation betweenother corresponding quantities in the system. Thus, our calculus assumes
the existenceof two similar processes. In qualitative reasoning terms, similar processesare
modelled by (sets of) instancesof the same generic model fragments. This fact is exploited
explicitly in our calculus.

2To stressthe fact that multiplications areonly relevant for (quantitative) inequality reasoning, the alternative

representationequal(V,mult(W,H)) could be used.



We start with the simplest case, in which there is a single proportionality with a single
modifier in eachof the systems.Let A1,B1,... be the quantities of one system,and A2,B2,...
the corresponding quantities in the other system. Let the following relations hold3:

prop_pos(Propi, A1, C1)
mod_neg(B1,Propi)
prop_pos(Prop2, A2, C2)
mod_neg(B2, Prop2)

Then the calculuspresentedin Table 1 is used to compute the effect of the modified correspon-
denceson the relation between ~5C1and 5C2

4. For reasonsof clarity, some boundarycasesare

- Combining prop_pos and mod_nag

B1 <B2 B1 = B2 B1 > B2 B1 ? B2
5A1 < öA~ ~C1 ? ~C2 öC1 <~C2 ~5C1<~C2 t5C1 ? 5C2

= öA2 ~C1<~C2 5C1 = ~5C2~5C1> ~C2 5C1 ? öC2
~5A1> 5A2 5C1 > ~C2 5C1 > 8C2 5C1 ? ~C2 öC1 ? 5C2

Table 1: A Calculusfor ProcessingModified Proportionalities

omitted(for instance,if oneallows modifiersto be zero). Thesecan be definedin a similar way.
By the sametoken, analogouscalculi are defined for prop..neg’s and mod_pos’s.

This calculus is sufficient only for computing the influence of a single modifier on a single
proportionality for C. Consequently,we have to expand our calculus to incorporate multiple
modifiers and multiple proportionalities. We do this by first combining multiple modifiers for
each proportionality, then computing the proportionalities one by one, and finally combining
the different proportionalities.

Al I4-Ra-4~~2I A I QuantitY ~Ra~ ~ [jJ~ ~ I

- ml Rm m2 - I A~j—~~~( c~ I~-1~ii—-I B]. I
~n1 Rn n2+ t t t

+ + Rn Rm Re Rn Rb
___ ___ 4 4, ___ 4, 4
I Ci ~I-RC-4 C2 A2 C2 B2

I II

Figure4: Multiple Proportionailties and Modifiers

This is bestexplainedby meansof examples.In Figure 4-I, a schematicrepresentationis
given of the following relations:

prop_pos(Propi, A1, Ci)
mod...nog(mi, Propi)

3Becausethe systemsare modelled by instancesof the samegeneric model fragments, the relations Prop, and
Prop2 are abstractions of the same quantitative formula.

4The column for B~? B2 is added becausecombined modifiers can be ambiguous, as will becomeclear below.
In subsequenttables, similar columns are omitted.



mo&pos(n1, Propi)
prop...pos(Prop2, A2, C2)
znod_neg(m2,Prop2)
mod_pos(n2, Prop2)

In addition there are inequalitydependenciesbetweenthe quantities(Ra, Rm, R~,and Re).
We now want to calculate the combined influence of the inequality relations Rm and R~on
R~.This is done by using a simple combination calculus, as depicted in Table 2. The right-
side table applies to our example, becausewe want to combine a mod..negwith a mod_pos.
Modifier pairs that have opposite inequality relations can be combined (e.g., ‘5.” and “<“

yields ‘5.”, where the resulting relation is one betweenmod..neg’s), and equal modifier pairs
can be omitted (e.g., “>“ and “=“ yields ‘5.”). For proportionality relations with more than

I— R~
< < < ?
= < = >
> ? > >

ii E[ ElI
< ? > >

= < = >
> < < ?

Similar relations (e.g., mod_pos with Opposite relations (e.g.,mod_pos with
mod...pos) mo&neg); resulting relation is of type

defined in the top row)

Table 2: Calculi for Combination

two modifiers, the calculus can be applied incrementally. The result of this addition is that
all proportionalities can be represented as having exactly one modifier, becausenon-modified
proportionalities canbe seenas having one modifier which is equal in both systems.Similarly,
the different proportionalities for one quantity can now be combined by adding the inequality
relations betweenmodifiers and quantities. Consider the relations in Figure 4-lI, illustrating
the relations

prop_pos(PropAl, A1, Ci)
mod_neg(m1,PropAl)

prop_pos(PropBl, B1, C1)

mod_neg(n1, PropBl)

prop_pos(PropA2, A2, C2)
mod_neg(m2,PropA2)
prop_pos(PropB2, B2, C2)
mod_neg(n2, Propp2)

The two proportionality relationsinfluencing C are calculatedseparatelyusing the calculus
from Table i5. This time, we do not calculate the actual inequality between 5C1 and ~5C2,
but we calculate the relative influence of each proportionality. For example, if the left side
proportionality relations in Figure 4-Il would have causedR~to change from “=“ to ‘5.”
provided it was the only proportionality affecting C, then we can say that the relative influence
on R~is “>“. When we have done this for all proportionalitiesaffecting C, then we can add
them conform the calculus in Table 2.

5When the subscripts for a quantity are omitted, the statement holds for both instances.



Summarising, modified proportionalities are dealt with by computing the effect of the modi-
fier on the proportionality using the calculus in Table 1. In the casethat multiple modifiers exist
for one proportionality, the inequality relations betweencorrespondingmodifiers are combined
by using the calculus in Table 2. If more than one proportionality affects the samequantity,
the relative influences of the inequalities involved are combined by the latter calculus.

5.3 The Balance Problem Revisited

Exploiting the augmentation we proposed in the previous section, we will now show that we can
predict the problematic state transition in the balance problem (Figure 2, State 2 to State 3).

In State 2, we have HL > HR, VL < VR, and WL < WR. The problem was that the
transition from HL > HR to HL = HR was not found. With our new primitive, this can be
modelled adequately. We redefine the proportionality relations between the volumes and the
heights as in Section5.1.

prop_pos(Prop_L, V.1, H_L), mod..nog(W_L, Prop_L)
prop_pos(Prop_R, V_FL, H_FL), mo&.neg(W_R, Prop_FL)

Given HL > HR, and thus WL > ~VR, we use WL < WR to derive that 6HL > I5HR (see
Table 1). I5HL > IIHR together with HL > HR yields the desired transition to HL = HR.

Now supposethe problem is extended by taking into account the depths (DL, DR) of the
containersas well. Again considering the samesituation as in State2, we can now derive that
if (for example)DL > DR, the resulting combinedmodification, and hencethe state transition,
is ambiguous:

ifWL<WRandDL>DRthenML? MR

Here ML, MR are the resulting combined modifiersfor both sides. Applying thesemodifierson
the proportionality relations between volumes and heights yields HL ? Hp (seeTable 1).

If, on the other hand, DL = DR or DL < DR, the sametransition to HL = HR is found
(seethe left table in Table 2):

if WL < WR and DL = DR then ML <MR
if WL < WR and DL <DR then ML < MR

Applying thesecombinedmodifiersyields

IIöVL > I5VR and ML <MR then öHL > 5HR

Although the balance problems may seemto be a toy domain, the observedproblem occurs
in many situations. On the one hand, processesmay be compared in real-life situations. Also,
comparisonsof predicted behaviourfor different valuesof relevant constantscanbe exploited for
tuning equipment. On the other hand, it is often found in teaching situations; a lot of physics
problems in text books are basedon the comparison of two similar processes.For example:

• “Two liquids with different heat capacitiesare heated; which one boils first?”

• “Two different massesslide down a hill. Compute the difference in friction.”

• “The front brakes of a car are unequally worn out. In what direction will the car turn if
you brake?”

By taking into account the influence of constant values,a better understandingof the process
is possible.



6 Discussion and Concluding Remarks

We showedthat non-changing quantities may have a significant influence on the prediction of
behaviour of physical systems. When comparing similar processes,which regularly occurs in
teachingsituations as well as in real-life applications, current QR techniques are not capable of
modelling the desired behaviour. We presenteda new ontological primitive that enlarges the
scopeof qualitative reasoningby modelling the changesin behaviour that result from influences
of non-changing quantities.

Two implementations have been discussed. They differ with respect to the explicit repre-
sentationof the multiplication and the addition of modifiers. The latter is explicit with respect
to its role in the prediction of causal behaviour, whereasthe multiplication relation canalso be
used for other (teaching) purposes,for instanceproviding generalbackground knowledgeabout
the relations between the different quantities. That is, it may be useful to teach a student the
multiplication relation explicitly, and not only its causal (more implicit) consequences.On the
other hand, knowing which quantity is the modifier (thus by explicit representation) simplifies
the realisation of causalexplanations for a teachingsystem.

The extension proposed here is a small, but neverthelessimportant step. In the develop-
ment of QR research, the power of qualitative reasoning has increasedby gradually lowering
the level,of abstraction. First, only (qualitative) quantity values were used. An important im-
provement wasthe introduction of inequality reasoning, which employsthe quantitative values
of quantities. We follow this line one step further by introducing the modified proportional-
ity, facilitating the exploitation of constants in the comparison of similar behaving systems.
When predicting the behaviour of solitary systemstheseconstants can be omitted, but when
comparing similar systemsthey can influence the behaviour significantly.

In the context of our current research project on teaching qualitative reasoning, the new
primitive will be employedto facilitate better explanation and cognitive diagnosis. Especially
in tutoring situations, comparison of similar systemsis very useful for bringing about a better
understandingof the relative influences of different quantities on a system.
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