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Abstract

Abstractions transform the representation of a com-
plex problem into a simpler, more manageable form.
Many researchers have proposed methods of abstrac-
tion for various types of problems in specific prob-
lem areas, but it is difficult to compare these meth-
ods. The representation formalisms of the abstraction
methods vary widely, and even the definition of ab-
straction changes from one group to another.

In this paper, we present a framework for character-
izing various abstraction relations in the context of
compositional modeling. Our framework classifies ab-
stractions along two dimensions: the method used to
transform the representation and the representational
element to which the method is applied. We limit our
discussion to the model fragments used in composi-
tional modeling so that we may precisely define each
abstraction method and analyze their representational
and computational consequences. Such a framework is
an important step towards automatic model formula-
tion as well as automatic generation model fragments.

Introduction

Abstraction is an essential concept in modeling com-
plex phenomena. For a given phenomenon, there are
many possible abstraction levels at which it can be
modeled. There is no single “correct” level of abstrac-
tion, since any model is necessarily an abstraction and
the goodness of the abstraction depends on one’s goal,
l.e. the problem one is trying to solve by constructing
the model. For a model to be useful, it must be at the
appropriate level of abstraction, which means it must
contain enough information to answer the given ques-
tion with sufficient precision and accuracy but without
containing too much unnecessary detail.

A host of different methods of abstraction have
been proposed in many problem areas such as mod-
eling (Iwasaki & Simon 1994; Amador & Weld 1990;
Williams 1991), planning (Amarel 1981; Fikes, Hart, &
Nilsson 1972; Sacerdoti 1974; Knoblock 1989), learn-
g (T. M. Mitchell 1990; Minton 1988; Knoblock
1990; Giordana & Saitta 1990), and theorem-proving
(Giunchiglia & Walsh 1992; Plaisted 1981 1986). How-

ever, 1t 1s difficult to compare the computational and

representational implications of each abstraction tech-
nique. For one thing, the representation formalisms of
the methods vary widely. Furthermore, the abstrac-
tion methods themselves range from the simple act of
deleting elements from the representation to using a
completely different ontology, seeming to render the
term “abstraction” as a catch-all term for any trans-
formation of a representation. We note however, that
all transformation techniques deemed as abstraction
share a common goal of simplifying the problem repre-
sentation with the intention of simplifying the problem
solving process as a result with some metric of simplic-
ity.

Giunchiglia and Walsh introduced a theory of ab-
straction based on work in theorem-proving and plan-
ning (Giunchiglia & Walsh 1992), where they infor-
mally defined abstraction as “the process of transform-
ing the representation into another form that is simpler
to handle yet retains the desirable characteristics of the
original problem”. In this paper, we adopt this gen-
eral definition and consider various types of abstraction
transformations in the context of compositional mod-
eling. In particular, we present a framework for char-
acterizing various abstraction relations among model
fragments and their components.

Our motivation for this work is to extend our model
formulation algorithm to include all types of abstrac-
tion methods on model fragments. We have been work-
ing on a technique for automatically formulating a
model that is appropriate for answering a given query.
Iwasaki and Levy reported on an approach based on
the relevance and irrelevance of knowledge that char-
acterizes modeling assumptions underlying model frag-
ments and selects among them to formulate an ade-
quate model for a given query (Iwasaki & Levy 1994).
This relevance-based approach is appropriate when the
difference between model fragments can be adequately
characterized by the difference in the aspects of the
situation that are considered relevant (and are thus in-
cluded in the model fragment). We found that though
most cases of abstraction relations among models can
indeed be characterized by such differences, there are
cases where such differences are awkward to capture



in this manner. Such cases include situations where
a model fragment is abstracted using simpler math-
ematical relations and situations where one quantity
that is hard to measure accurately is approximated by
another whose value is easy to obtain. Thus, a broader
framework for characterizing relations among alterna-
tive descriptions is needed to determine how to extend
our current model formulation mechanism.

Our framework classifies abstractions along two di-
mensions: the method used to transform the represen-
tation and the aspect of the representation to which
the method is applied. The methods are aggregation,
elimination, and approximation. Generally speaking,
aggregation replaces a set of elements (of the same
type) in the representation by one aggregate eclement.
Elimination removes selected elements from the repre-
sentation. Approximation replaces an element by an-
other that is deemed “close” to the original by some
measure of closeness.

These three general methods are applied to different
types of representational elements. In the composi-
tional modeling paradigm, a model consists of model
fragments, which in turn consist of conditions and con-
sequences. Both conditions and consequences consist
of relations on quantities.! The three general methods
are applied to each of these representational elements
with various computational implications. Limiting our
discussion to model fragment abstraction allows us to
define each abstraction method precisely. It also allows
us to analyze their representational and computational
consequences in concrete terms.

Though many specific abstraction techniques have
been presented, only a few general theories of ab-
straction have been proposed. Giunchiglia and Walsh
classify abstractions into Theorem Decreasing (TD)
and Theorem Increasing (TI) abstractions based on
whether the abstract representation has less theorems
{and thus more interpretations) than the original rep-
resentation or vice versa (Giunchiglia & Walsh 1992).
Their framework examines the properties of logical
theories (which correspond to models in our context)
where one is an abstraction of the other. However,
the classification of all abstractions as TD or Tl is too
coarse to provide much insight into the effects of dif-
ferent abstraction models on the consequences of simu-
lation. Furthermore, we find that some common types
of model transformations that may be considered as
types of abstraction are not TD nor TI.

Our classification approach more closely resem-
bles the approach taken by Struss in his theory
of model simplification and abstraction. He for-

!By quantities, we mean any kind of attribute of a model
fragment. Quantities may be numerical or non-numerical
attributes. In this paper, we assume that the range of a
quantity forms some kind of a metric space, though this
restriction is not strictly necessary for application of most
of the abstraction methods discussed in the section on the
Abstraction Framework.

mally defined abstraction, approximation, and sim-
plification, and analyzed some representational conse-
quences of such transformations (Struss 1991). Our
three general methods—aggregation, elimination, and
approximation—generally correspond to his definitions
of abstraction, simplification, and approximation. One
important difference is that while Struss considers rela-
tions among (complete) models, we study abstraction
relations among model fragments, which must be com-
bined to compose a complete model. The fact that
a the problem of model fragment abstraction is much
less constrained than abstraction of complete models
makes it more difficult to prove general theorems about
the representational and computational implications of
performing abstractions on them.

This document is organized as follows: In the re-
mainder of this section, we briefly describe the compo-
sitional modeling paradigm and our approach to model
formulation. The second section presents our abstrac-
tion framework and a small example of a graph of
model fragments related by the abstraction relations
described in the framework. The final section discusses
the implications of our work.

Compositional Modeling and
Relevance-based Model Formulation

In this section, we briefly describe the compositional
modeling paradigm for representing physical knowl-
edge and predicting behavior (Falkenhainer & Forbus
1991), as well as our method for model formulation
based on relevance (Iwasaki & Levy 1994).

A physical situation is modeled as a collection of
model fragments ? Each model fragment represents
some aspect of a physical object or a physical phe-
nomenon. A model fragment is composed of conditions
and consequences. The conditions specify the individ-
uals that must exist and the requirements they must
satisfy for the phenomenon to occur. The consequences
specify the functional relations among the attributes of
the objects that are entailed by the phenomenon.

If there exists individuals ay, ..., a, that satisfy the
operating conditions of a model fragment M at time
t, we say that an instance of M is active at that
time. We will call ay,...,a, the participants of the
instance of M. We denote the particular instance by
M(ay, ..., an).

The prediction mechanism on model fragments
works generally as follows: For a given situation, the
system identifies the model fragments whose conditions
hold as the active model fragment instances. In each
state, this set of active model fragments forms the sim-
ulation model. The simulation model gives rise to equa-
tions that must hold among variables as a consequence
of the phenomenon taking place. The prediction mech-
anism uses the.equations to determine the next state

2We will use the definition of model fragments as given
in (Farquhar et al. 1993).




of the simulation. Each state has a simulation model
along with a set of variable values and predicates that
hold. The prediction mechanism outputs a sequence of
states. If prediction is performed qualitatively, the out-
put can be represented as a graph. Each path through
the graph from the initial state represents a possible
behavior of the system. Such a path is called a trajec-
tory.

Our model formulation approach described in
(Iwasaki & Levy 1994) consists of making two choices.
The first choice is deciding what phenomena to repre-
sent In the model. The second choice is selecting the
model fragment(s) to include in the model from the
set of all possible model fragments. The set of possible
mode] fragments includes different descriptions of the
modeled phenomena using different modeling assump-
tions. The first choice is made by backward chaining
through the possible causal influences on the variables
of interest to the user. The second is made by reasoning
about the modeling assumptions necessary to answer
the given query. To facilitate this choice, model frag-
ments in the knowledge base are organized into struc-
tures called assumption classes. An assumption class
is a graph of model fragments representing different
ways to describe the same phenomenon. The language
of relevance and irrelevance of knowledge (Levy 1993)
is the basic language used to represent the modeling
assumptions underlying different model fragments in
an assumption class. Our goals for developing the ab-
straction framework presented in this paper are (1)
to expand this language, especially in the direction of
being able to characterize a broader class of abstrac-
tion relations more precisely, and (2) to facilitate se-
lection among model fragments by enabling analysis of
the representational and computational implications of
using different abstract model fragments.

The following section presents our abstraction
framework, which provides a classification of ways to
operate on each type of representational element to
produce a more abstract version. We consider only
transformation techniques that do not add new in-
formation to the representation, since it is debatable
whether transformations that add information are ab-
stractions at all. Also, we do not consider cases where
the abstract representation employs a completely new
ontology of the domain unless such an ontology is actu-
ally a product of applying one of the abstraction meth-
ods discussed below.

Abstraction Framework

We classify all abstraction methods into three general

classes, namely elimination, approximation, and aggre-
gation.

¢ Elimination is the removal of all references to some
selected elements of the representation except in
cases where such removal results from applying ap-
proximation or aggregation.

¢ Approximation replaces an element by another el-
ement that is less accurate, but closely resembles the
original element. Approximation applies only to el-
ements in some metric space that can be used to
establish a measure of similarity.

e Aggregation involves grouping related elements
into aggregates and representing the problem in
terms of the aggregates.

The general abstraction methods can be applied to
the representational elements of the knowledge base
and predicted behaviors. Table 1 summarizes the ap-
plicability of the methods to each type of element.® A
table entry “s” indicates that the method applies to a
single element (i.e. a single quantity, a single model
fragment, etc.), while “m” indicates that the method
applies to multiple elements. As shown in the table,
aggregation requires more than one element of a partic-
ular type, while the other methods apply to individual
elements.

In the following, we provide detailed explanations
of each entry in the knowledge base part of the ta-
ble. As described in the previous section, a knowledge
base consists of model fragments composed of condi-
tions and consequences. Conditions and consequences
are defined in terms of relations among quantities. Al-
though we discuss abstraction of each type of represen-
tational element individually, we must note that ab-
stractions of different elements are not independent.
Abstraction of one type of element often necessitates
abstraction of another type of element as discussed be-
low.

Quantity Abstraction

A quantity Q; of a model fragment M F is formally
defined as a mapping from the set of all instances of
MF to a set of functions that map time to actual val-
ues. In other words, if M F 1s an instance of M F', then
QFyy 1s a function of @y and M Fy such that QFy,(t)
for some time { is the value of the quantity @} of the
model fragment M F; at the time {. We distinguish ab-
straction of the range of a quantity® and abstraction
of the quantity function (Q1) itself.

Range Abstraction. When abstracting the range
of a quantity, one changes the set of possible values for
the quantity. Elimination and approximation abstract
individual values in the range of a quantity. Aggrega-

3For the sake of completeness, the table includes be-
havior abstraction, since the general methods can also be
applied to the representation of behaviors. In this paper
however, we limit our discussion to the abstraction of model
fragments.

*We are actually referring to the range of the the func-
tion QFi, returned by the quantity function applied to a
model fragment instance. We will call it the range or value
range of the quantity for brevity unless the meaning is not
clear from the context.




Repr. Knowledge Base Behavior
Element Model Fragment
Abstr. Quantit State | Traj.
Method Range y Cond. |Conseq.
Elimination ] ] s s s s s
Approximation s s s s - - -
Aggregation m m m m m m m

Table 1: Applicability of Abstraction Methods to Elements of the Representation

tion partitions the range into subsets so that the values
are represented in terms of the subsets.

Range elimination removes an individual value or
a set of values from the range. The removal of se-
lected values is often motivated by knowledge that cer-
tain values are unattainable or highly unlikely for the
given quantity. For instance, in a model fragment rep-
resenting a thruster component of a jet propulsion sys-
tem, one may eliminate all negative values in the range
of pressure-differential, which is defined as the
difference between the input pressure and the output
pressure. Elimination of all negative values amounts
to making the assumption that there is no possibility
of reverse pressure. Such an abstraction can reduce
the computational effort of a prediction mechanism by
pruning unlikely behaviors.

Range approximation replaces a value (or a sub-
range of values) in the value range of a single quantity
with another value (or subrange of values) that is some-
how “good enough” for the given problem. Examples
of range approximation include changing the precision
for quantity values and idealization of quantities. If
one changes the precision of numerical values by round-
ing them all to the second decimal place, a set of values
is replaced by a single approximate value. Idealization
1s an extreme example of such an approximation where
one replaces the entire value range of a quantity with a
single extreme value. The approximation of the inter-
actions between solid objects as frictionless surfaces is
an example of idealization. Range approximation re-
sults in an abstract representation that produces less
accurate numerical predictions.

Range aggregation occurs by grouping elements
in the range into subsets and using the subsets to rep-
resent values. The grouping creates either regular or
uneven intervals. Discretization of a continuous range
of a quantity into intervals bounded by landmark val-
ues, as in qualitative calculus, is an example of range
aggregation. Range aggregation results in less precise
predictions. When the quantity abstracted is time,
range aggregation results in temporal abstraction.
Quantity Function Abstraction. We now con-
sider abstraction of quantity functions.

Quantity elimination removes a quantity from the
representation. For example, consider a model frag-
ment representing a tank with two pressure sensors
provided for redundancy. If the original model frag-
ment has two pressure quantities corresponding to each
of the sensor readings, one can abstract the model
{fragment by eliminating one of the pressure quanti-
ties. This generates a more compact model fragment;
however, as in this example, quantity elimination may
eliminate the redundancy present in the actual device
and result in a less robust model.

Quantity approximation replaces a quantity with
a similar quantity where the value of the new quan-
tity might be easier to obtain. For instance, consider
a detailed model fragment of a fuel tank including
the quantity amount-of-fuel. If the exact measure-
ment of the remaining amount is difficult to obtain due
to the structure of the tank, but the initial amount
and the history of the fuel consumption are avail-
able, one might create another model fragment that
contains the quantity computed-fuel-amount based
on these variables to replace amount-of-fuel. How-
ever, if the approximation is only good under some as-
sumptions, then a model consisting of the approximate
model fragment might fail to reflect reality when the
assumptions do not hold. For instance, in the case of
amount-of-fuel, il there exists a large leak between
the tank and the component that actually consumes
the fuel, computed~fuel-amount will not adequately
approximate amount-of-fuel.

Quantity aggregation replaces a set of quan-
tities with a new representative quantity. There
are a variety of ways to define the representa-
tive, including summing and averaging. For a
tank having two pressure sensors that monitor the
pressure within the tank, one may replace the
quantities pressure-reading-from-sensor-a and
pressure-reading-from-sensor-b with an
average-pressure-reading quantity whose value is
the average of the original two quantities. Quantity ag-
gregation reduces the number of quantities, but it may
or may not affect the prediction accuracy depending
on the other equations in the simulation model.

Since quantitics are used to state the conditions




and consequences of model fragments, abstraction of
a quantity necessitates the modification of conditions
and consequences that reference the abstracted quan-
tity. In ABSTRIPS, abstraction layers are defined in
this manner (Sacerdoti 1974). The planning opera-
tors in STRIPS are comparable to model fragments
with the applicability conditions and the consequences
(consisting of ADD and DELETE lists) of the opera-
tors corresponding to the conditions and consequences
of model fragments. ABSTRIPS ranks the predicates
used 1n specifying the conditions and consequences of
the planning operators according to their criticality.
To define an abstract planning space, abstract opera-
tors are defined by ignoring less critical predicates in
the conditions and consequences of the original opera-
tors.

Condition Abstraction

The conditions part of a model fragment is a list of
atomic formulae, which is an implicit conjunction of
the conditions.

Condition elimination removes selected condi-
tions from the list of conditions in a model {ragment.
Condition elimination may occur as a necessary conse-
quence of quantity abstraction, but it is also performed
independently when a condition is deemed uncritical
for some purpose. Statistical information may moti-
vate such elimination. If a condition is known almost
never to fail, one may decide to eliminate the condi-
tion to produce a simpler model. We also include in
this category replacement of a condition C by another
condition Cy that is strictly weaker than Cy, since C)
is logically equivalent to C; A Cy if C; — C5.

Condition approximation replaces a condition
with another similar condition, which is simpler in
some respect. For instance, the activation condi-
tion for a tank model fragment may require that
(> pressure-differential 1e-5). In an abstract
model, we might replace this condition with (>
pressure-differential 0). Such replacement might
occur as a necessary result of range approximation, or
it might result as an independent decision.

Condition aggregation replaces a set of condi-
tions with an aggregate condition. For instance, one
may replace the conditions (= inflow-1 outflow-1)
and (= inflow-2 outflow-2) with (= (+ inflow-1
inflow-2) (+ outflow-1 outflow-2). Condition
aggregation reduces the number of conditions in a
model fragment, but the new conditions may be more
complex syntactically. The aggregate condition is of-
ten weaker than the conjunction of the original set of
conditions.

Consequence Abstraction

The consequences part of a model fragment is & list
of atomic formulae, which is interpreted as an implicit
conjunction. Consequences cannot contain embedded
conditions.

Consequence elimination removes selected con-
sequences from model fragments. As with condition
elimination, consequence elimination may occur as a
necessary result of quantity elimination. This category
includes replacement of a consequence by another that
is strictly weaker than the original.

Consequence approximation replaces a relation
in the consequence of a model fragment with a simpler
relation. For instance, one might replace a complex
equation with a simpler, approximate equation. Ex-
amples of such approximations include equilibration,
exogenization (Iwasaki & Simon 1994), and piecewise
linear approximation.

Equilibration is applicable to the consequence equa-
tions of one model fragment representing some mecha-
nism that restores equilibrium much quicker than other
mechanisms in the system. In this situation, one can
regard the fast mechanism as acting instantaneously.
The equilibration operation replaces a dynamic equa-
tion representing a fast mechanism by its respective
equilibrium equation. For example, using a model
fragment for a pressure sensor, one might assume
that (= sensed-pressure pressure-reading). This
assumption treats the reading of the pressure on
the sensor as an instantaneous process, giving the
pressure at the current instant. Determining the
pressure-reading is considered a fast mechanism
compared to other processes in the model. Similarly,
exogenization—replacement of a slow mechanism by a
constant equation—is also a type of consequence ap-
proximation.

Piecewise linear approximation may be used to sim-
plify complex equations given in the consequences of
a model fragment. In piecewise linear approximation,
one approximates a non-linear equation by pieces each
of which can be approximated by a linear equation. ®

Consequence aggregation combines a set of con-
sequences into an aggregate. For instance, two con-
sequences of the model fragment representing a heat
exchanger are the conservation of mass equations for
the hot and cold flows. In an abstract model, one might
combine them into a single conservation of mass equa-
tion. Consequence aggregation decreases the number
of equations in a model fragment, but the new con-
sequences may be weaker than the conjunction of the
original consequences.

Model Fragment Abstraction

Methods of abstracting model fragments include elimi-
nating selected model fragments and aggregating a set
of model fragments into one model fragment. Model
fragment abstraction is often motivated by knowledge

®If the formal definition of a model fragment does not
allow conditional consequences as it is not in CML, each
linear piece will have to be represented by separate model
fragments. This is a rare case where abstraction of one
model fragment results in a set of model fragments.




of their structural, functional, or statistical relation-
ships.

Model fragment elimination removes the model
fragments representing certain elements in the prob-
lem description. Often, functional or statistical knowl-
edge motivates model fragment elimination. For in-
stance, consider a device which contains a secondary
valve as a backup in cases of failure of its primary
valve. One may choose to eliminate the model frag-
ment for the secondary valve, based on the knowledge
that the secondary valve functions solely as a backup.
Statistical knowledge about a population of individuals
may also motivate model fragment elimination. If it is
known that 99.9% of a certain population of carbon
molecules have the molecular weight of 24, one may
choose to eliminate all model fragments representing
carbon molecules having other weights.

Model fragment aggregation replaces a set of
model fragments with an aggregate model fragment.
Again, functions and population statistics are common
bases for performing such an abstraction. Aggregation
reduces the total number of model fragments and al-
lows one to ignore the unnecessary details.

Structural or functional aggregation replaces a set, of
model fragments representing components by a model
fragment that represents their structural or functional
super-component. Aggregation of a nearly decompos-
able dynamic system (Simon & Ando 1961) is an ex-
ample of model fragment aggregation if we view each
mechanism represented by an equation in the original
system as a model fragment.

Amador and Weld discuss population abstraction in
(Amador & Weld 1990). Amador and Weld model pop-
ulation systems on three levels: the individual level,
the aggregate level, and the macro level. The aggre-
gate level contains a collective description of individual
level properties. Applying statistical operators, such as
Summation, Mean, Max, and Min, to the attribute values
of individuals in the population generates probabilis-
tic descriptions of the individuals. The modeler uses
these statistical operators on all the attributes of all
the members of a population to create a representative
model fragment. For instance, the attribute values of a
representative may be the summation of the attribute
values for its individual members.

Example

We illustrate our abstraction framework with a sim-
ple example of model fragments representing a hot air
balloon. Figure 1 gives the formal specification for the
model fragment hot-air-balloon.

The hot air balloon is composed of an envelope
(the balloon), burner (to heat the alr in
the envelope), basket, temperature-sensori,
temperature-sensor?2, pressure-sensorl, and
pressure-sensor?2. The sensors measure the
conditions within the envelope. The quanti-
ties temperaturel, temperature2, pressurel, and

(defModelFragment hot-air-balloon
:quantities
(temperaturel, temperature2,
pressurel, pressure2,
balloon-temp, balloon-pres,
balloon-vol, balloon-mass,
compressibility-factor,
universal-gas-const)
:conditions
({< (Abs (- temperaturel 373K))
1e-5)
(< (Aabs (- temperature2 373K))
1e~5)
(< pressurel 101.3kPa)
(< pressure2 101.3kPa))
iconsequences
((= valloon-temp
(Avg temperaturel temperature2))
(= balloon-pres
(Avg pressurel pressure2))
= balloon-vol
(/ (¥ compressibility-factor
universal-gas-const
balloon-temp
balloon-mass)
balloon-pres))))

Figure 1: The hot-air-balloon Model Fragment

pressure2 indicate the readings from the respective
sensors. Table 2 specifies abstraction methods that
are performed on hot-air-balloon and the abstracted
representational element. For each abstraction, the ta-
ble indicates the portion of the original representation
that is abstracted and specifies its abstract representa-
tion. The abstract model fragments are named to cor-
respond with the graph of model fragments in Figure 2.
The graph illustrates the relationship between the orig-
inal and abstract representations of hot-air-balloon.
The hot-air-balloon is an aggregate model frag-
ment, representing the collection of its component
model fragments.

Discussion

The framework categorizes abstraction relations
among model fragments according to the type of trans-
formation performed on one model fragment to pro-
duce another model fragment.

It would be ideal if one could make general state-
ments about the representational consequences of ap-
plying these transformations on model fragments using
such general theories of abstraction as the one pro-
posed by Giunchiglia and Walsh or the one proposed
by Struss. Unfortunately, it i1s impossible to simply ap-
ply either of these general theories to abstractions of




Original Abstract Abstract
Abstraction Representional Representational Model Fragment
Type Elements Elements Name
Quantity temperaturel temperaturel balloon-with-
Elimination temperature? single-temp-sensor
Quantity temperaturel avg-temp balloon-with-
Aggregation temperature? sensor-averager
Condition (< pressurel 101.3kPa) (< pressurel 101.3kPa) balloon-with-
Elimination (< pressureZ 101.3kPa) single-pres-cond
Condition (< (Abs (= temperaturel 373K) balloon-with-
Approximation (- temperaturel 373K) approx-temp-cond
le=3))

temperature-sensor-tl
temperature-sensor-t2
pressure-sensor-pl
pressure-sensor—-p2

Condition (< pressurel 101.3kPa) (< (+ pressurel balloon-with-
Aggregation {< pressure2 101.3kPa} pressure?) agg-pres-cond
202.6kPa)
Consequence (= balloon-vol (= balloon-vol balloon-
Approximation (* compressibility-factor] (* quantity-contained assuming -
universal-gas-const ideal-gas-~const ideal-gas
balloon~temp balloon-temp
balloon-mass (inv balloon-pres)}})
(inv balloon-pres)})
Model Fragment envelope hot-air-balloon original-
Aggregation burner hot-air-baltoon
basket

Table 2: Abstraction of the hot-air~balloon Model Fragment

model fragments. Giunchigliaand Walsh’s theory com-
pares two logical theories and does not easily extend
to comparisons among model fragments. Performing
the types of transformations discussed in this paper on
a model fragment produces a new set of model frag-
ments. A knowledge base in the compositional mod-
eling framework is a set of model fragments and does
not constitute a consistent logical theory. A knowl-
edge base can contain logically inconsistent model frag-
ments though different subsets of the knowledge base
may give rise to logically consistent models that are
useful in different situations. Struss’ theory also does
not serve our purpose since his theory presumes a com-
plete model, and in our case, we need a way to charac-
terize differences among potentially relevant fragments
of models before they are assembled into a complete
model.

Nevertheless, if we changed our problem and made
strong assumptions that (1) we are starting from a
set of model fragments that constitute a complete and

logically consistent model, and (2) an abstraction op-
eration performed on one model fragment will be per-
formed consistently throughout the set, we could make
the following general observations:

e Elimination generally results in TD abstraction. It
falls in the category of simplification as defined
by Struss but is not necessarily a representational
transformation® since the result may no longer be a
model (Struss 1991).

e Approximation is neither TD nor TL It is a repre-
sentational transformation, and is a type of simpl-
fication as defined by Struss.

e Aggregation is TD. It is a representational transfor-
mation.

SIntuitively, a transformation is a representational
transformation if it results in a model that covers all the
situations covered by the original model; however, it may
make different kinds of distinctions from the original.
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Our immediate motivation for this work is to expand
our model formulation method by using this framework
to precisely characterize a broader class of abstraction
relations among model fragments. Qur next step Is to
analyze various types of assumptions underlying the
transformations discussed in this paper. We must then
decide how to represent such assumptions, what addi-
tional information can be specified about the query,
and how to reason with them in order to choose an ap-
propriate level of abstraction for each model fragment.

Further work is needed to predict the computational
consequences of abstraction in terms of the effects they
have on the results of behavior prediction. One ob-
servation that can be made is that abstraction of the
representation as discussed in this paper does not nec-
essarily result in a simpler prediction. In particular,
condition abstraction generally results in a weaker con-
dition, which could result in more model fragments be-
coming activated during simulation.

Though our immediate goal is to incorporate the ab-
straction framework into the model formulation mech-
anism and use further analysis results to guide model
fragment selection, this framework is an important step
towards the automatic generation of abstract model
fragments. The proposed framework has the advan-
tage of being easy to operationalize once one selects
the aspect of the representation to abstract. We plan
to explore this possibility of automatic abstraction of
model fragments in the future.
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