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Abstract

Abstractions transformthe representationof a com-
plex problem into a simpler, more manageableform.
Many researchershaveproposedmethodsof abstrac-
tion for various types of problems in specific prob-
lem areas,but it is difficult to comparethesemeth-
ods. The representationformalismsof theabstraction
methodsvary widely, and even the definition of ab-
stractionchangesfrom one groupto another.
In this paper, we present a framework for character-
izing various abstractionrelations in the context of
compositionalmodeling. Our frameworkclassifiesab-
stractionsalong two dimensions: the methodused to
transformtherepresentationand the representational
elementto which themethodis applied. We limit our
discussionto the model fragmentsused in composi-
tional modeling so that we may precisely define each
abstractionmethodand analyzetheir representational
and computational consequences. Such a framework is
an importantsteptowardsautomatic model formula-
tion as well as automaticgenerationmodel fragments.

Introduction
Abstraction is an essential concept in modeling com-
plex phenomena. For a given phenomenon, there are
many possible abstraction levels at which it can be
modeled. There is no single “correct” level of abstrac-
tion, since any model is necessarilyan abstractionand
the goodness of the abstraction depends on one’s goal,
i.e. the problem one is trying to solve by constructing
the model. For a model to be useful, it must be at the
appropriate level of abstraction, which means it must
contain enough information to answer the given ques-
tion with sufficient precisionand accuracybut without
containingtoo much unnecessarydetail.

A host of different methods of abstraction have
been proposedin many problem areassuch as mod-
eling (Iwasaki & Simon 1994; Amador & Weld 1990;
Williams 1991), planning (Arnarel 1981;Fikes, lIart; &
Nilsson 1972; Sacei~doti1974; Knoblock 1989), learn-
ing (T. M. Mitchell 1990; Minton 1988; Knohlock
1990; Giordana & Saitta 1990), and theorem-proving
(Giurichiglia& Walsh 1992;Plaisted1981; 1986). Ilow-
ever, it is difficult to comparethe computationalarid

representationalimplicationsof eachabstractiontech-
nique. For onething, the representationformalismsof
the methods vary widely. Furthermore,the abstrac-
tion methodsthemselvesrangefrom the simpleact of
deleting elementsfrom the representationto using a
completely different ontology, seemingto render the
term “abstraction” asa catch-all term for any trans-
formation of a representation.We note however, that
all transformation techniquesdeemedas abstraction
shareacommongoalof simplifying theproblemrepre-
sentationwith the intention of simplifying the problem
solvingprocessasa resultwith somemetricof simplic-
i ty.

Giunchiglia and Walsh introduced a theory of ab-
stractionbasedon work in theorem-provingandplan-
ning (Giunchiglia & Walsh 1992), where they infor-
mally definedabstractionas “the processof transform-
ing the representationinto anotherform that is simpler
to handleyet retainsthe desirablecharacteristicsof the
original problem”. In this paper, we adopt this gen-
eraldefinition andconsidervarioustypesof abstraction
transformationsin the contextof compositionalmod-
eling. In particular, we presenta framework for char-
acterizing various abstractionrelations amongmodel
fragmentsand their components.

Ourmotivation for this work is to extendour model
formulation algorithm to include all types of abstrac-
tion methodson model fragments.We havebeenwork-
ing on a technique for automatically formulating a
model that is appropriatefor answeringagiven query.
Iwasaki and Levy reportedon an approachbasedon
the relevanceand irrelevanceof knowledgethat char-
acterizesmodelingassumptionsunderlyingmodelfrag-
ments and selectsamong them to formulate an ade-
quatemodel for agiven query (Iwasaki & Levy 1994).
This relevance-basedapproachis appropriatewhenthe
difference between model fragments can be adequately
characterizedby the difference in the aspects of the
situation that areconsideredrelevant(andarethus in-
cluded in the model fragment). We found that though
most casesof abstractionrelationsamong modelscan
indeedbe characterizedby such differences, there are
caseswhere such differencesare awkward to capture



in this manner. Such casesinclude situations where
a model fragment is abstractedusing simpler math-
ematical relations and situations where one quantity
that is hard to measureaccuratelyis approximatedby
anotherwhosevalue is easyto obtain. Thus, a broader
framework for characterizingrelationsamongalterna-
tive descriptionsis neededto determinehow to extend
our current model formulation mechanism.

Our framework classifiesabstractionsalong two di-
mensions: the method used to transformthe represen-
tation and the aspectof the representationto which
the method is applied. The methodsare aggregation,
elimination, and approximation. Generally speaking,
aggregation replacesa set of elements(of the same
type) in the representationby one aggregateelement.
Elimination removesselectedelementsfrom the repre-
sentation. Approximation replacesan elementby an-
other that is deemed“close” to the original by some
measureof closeness.

Thesethreegeneral methodsareapplied to different
types of representationalelements. In the composi-
tional modeling paradigm, a model consistsof model
fragments,which in turn consistof conditionsand con-
sequences. Both conditions and consequencesconsist
of relationson quantities.’ The threegeneralmethods
are applied to eachof theserepresentationalelements
with variouscomputationalimplications. Limiting our
discussionto model fragment abstractionallows us to
define eachabstractionmethodprecisely. It alsoallows
us to analyzetheir representationaland computational
consequencesin concreteterms.

Though many specific abstraction techniqueshave
been presented, only a few general theories of ab-
straction havebeen proposed. Giunchiglia andWalsh
classify abstractionsinto Theorem Decreasing (TD)
and Theorem Increasing (TI) abstractionsbasedon
whether the abstractrepresentationhas lesstheorems
(and thus more interpretations)than the original rep-
resentationor vice versa(Giunchiglia & Walsh 1992).
Their framework examinesthe properties of logical
theories(which correspondto models in our context)
where one is an abstraction of the other. However,
the classificationof all abstractionsasTD or TI is too
coarseto provide much insight into the effectsof dif-
ferentabstractionmodelson the consequencesof simu-
lation. Furthermore,we find that somecommontypes
of model transformationsthat may be consideredas
types of abstraction are not TD nor TI.

Our classification approach more closely resem-
bles the approach taken by Struss in his theory
of model simplification and abstraction. He for-

‘By quant~tzes,we meanany kind of attribute of a model
fragment. Quantities may be numerical or non-numerical
attributes. In this paper, we assumethat the rangeof a
quantity forms somekind of a metric space,though this
restriction is not strictly necessaryfor application of most
of the abstraction methods discussed in thesection on the
Abstraction Framework.

mally defined abstraction, approximation, and sim-
plification, and analyzedsomerepresentationalconse-
quencesof such transformations(Struss 1991). Our
three generalmethods—aggregation,elimination, and
approximation—generallycorrespondto his definitions
of abstraction,simplification, andapproximation.One
important differenceis thatwhile Strussconsidersrela-
tions among (complete)models, we study abstraction
relationsamongmodelfragments,which must be com-
bined to composea complete model. The fact that
a the problem of model fragmentabstraction is much
less constrainedthan abstractionof completemodels
makesit moredifficult to provegeneraltheoremsabout
the representationalandcomputationalimplicationsof
performing abstractionson them.

This documentis organizedas follows: In the re-
mainderof this section,we briefly describethe compo-
sitional modelingparadigmandour approachto model
formulation. The secondsection presentsour abstrac-
tion framework and a small example of a graph of
model fragmentsrelated by the abstraction relations
described in the framework. The final section discusses
the implications of our work.

Compositional Modeling and
Relevance-basedModel Formulation
In this section, we briefly describethe compositional
modeling paradigm for representingphysical knowl-
edgeand predicting behavior(Falkenhainer& Forbus
1991), as well as our method for model formulation
basedon relevance(Iwasaki & Levy 1994).

A physical situation is modeled as a collection of
model fragments 2 Each model fragment represents
some aspect of a physical object or a physical phe-
nomenon.A model fragmentis composedof conditions
and consequences.The conditions specify the individ-
uals that must exist and the requirementsthey must
satisfyfor thephenomenonto occur. The consequences
specify thefunctional relationsamongthe attributesof
theobjects that areentailed by the phenomenon.

If thereexists individuals a1, . . . , a0 that satisfy the
operatingconditions of a model fragment M at time
1, we say that an instance of M is active at that
time. We will call a1 a0 the participants of the
instanceof M. We denotethe particular instanceby
M(ai,. . a

0
).

Tile prediction mechanism on model fragments
works generally as follows: For a given situation, the
system identifies the model fragmentswhoseconditions
hold as the active model fragment instances. In each
state, this set of active model fragments forms the szm-
ulation model. The simulation model gives rise to equa-
tions thatmust hold amongvariablesasaconsequence
of the phenomenontaking place. The prediction mech-
anisin uses the equations to determine the next state

2
We will use the definition of model fragments as given

in (Farquhar et al. 1993).



of the simulation. Each state has asimulation model • Approximation replaces an element by anotherci-
along with a set of variable values and predicatesthat
hold. The prediction mechanismoutputsasequenceof
states. If prediction is performedqualitatively, theout-
put can be representedasagraph. Eachpath through
the graph from the initial state representsa possible
behavior of the system. Such a path is called a trajec-
tory.

Our model formulation approach described in
(Iwasaki & Levy 1994) consists of making two choices.
The first choice is deciding what phenomena to repre-
sent in the model. The second choice is selecting the
model fragment(s) to include in the model from the
set of all possible model fragments. The set of possible
model fragments includes different descriptions of the
modeled phenomena using different modeling assump-
tions. The first choice is madeby backward chaining
throughthe possiblecausalinfluenceson thevariables
of interest to the user. The second is made by reasoning
about the modeling assumptions necessary to answer

the given query. To facilitate this choice, model frag-
ments in the knowledge base are organized into struc-
tures called assumptionclasses. An assumption class
is a graph of model fragments representing different
ways to describe the same phenomenon. The language
of relevance and irrelevance of knowledge (Levy 1993)

is the basic languageused to representthe modeling
assumptionsunderlying different model fragmentsin
an assumptionclass. Our goals for developingthe ab-
straction framework presentedin this paper are (1)
to expandthis language,especiallyin the direction of
being able to characterizea broaderclass of abstrac-
tion relations more precisely, and (2) to facilitate se-
lection amongmodel fragmentsby enablinganalysisof
the representational and computational implications of
using different abstractmodel fragments.

The following section presents our abstraction
framework, which provides a classification of ways to
operate on each type of representationalelement to
produce a more abstract version. We consider only
transformation techniques that do not add new in-
formation to the representation, since it is debatable
whether transformations that add information are ab-
stractionsat all. Also, we do not considercaseswhere
the abstractrepresentationemploys a coin pletely new
ontologyof thedomain unlesssuch an ontology is actu-
ally a productof applying oneof theabstractionmneth-
ods discussedbelow.

Abstraction Framework

We classify all abstractionmethodsinto threegeneral
classes,namelyelimination, approximation,and aggre-
gation.

• Elimination is the removalof all referencesto some
selected elementsof the representation except in
caseswhere such removal results from applying ap—
proximnationor aggregation.

ementthat is lessaccurate,but closely resemblesthe
original element. Approximation applies only to el-
ements in somemetric space that can be used to
establishameasureof similarity.

Aggregation involves grouping related elements
into aggregatesand representing the problem in
termsof the aggregates.

The generalabstractionmethodscan be applied to
the representationalelementsof the knowledge base
and predictedbehaviors. Table 1 summarizesthe ap-
plicability of the methodsto eachtype of element.3A
table entry “s” indicatesthat the method applies to a
single element (i.e. a single quantity, a single model
fragment,etc.), while “m” indicatesthat the method
applies to multiple elements. As shown in the table,
aggregationrequiresmorethan oneelementof apartic-
ular type, while the othermethodsapplyto individual
elemnents.

In the following, we provide detailed explanations
of each entry in the knowledge basepart of the ta-
ble. As describedin the previoussection,a knowledge
baseconsistsof model fragmentscomposedof condi-
tions and consequences.Conditionsandconsequences
aredefined in termsof relationsamongquantities. Al-
though we discussabstractionof eachtypeof represen-
tational element individually, we must note that ab-
stractions of different elementsare not independent.
Abstraction of one type of elementoften necessitates
abstractionof anothertype of elementa.s discussedbe-
low.

Quantity Abstraction

A quantity Q~of a model fragment MF is formally
defined as a mapping from the set of all instancesof
ME to asetof functions that map time to actual val-
ties. In otherwords, if MF

1
is an instanceof MF, then

QF’
1

, is a function of Qi and ME
1

such that QF
11

(t)
for sometime t is the value of the quantity Qi of the
nodel fragmentMF

1
at the time t. We distinguishab-

straction of the rangeof a quantity4 and abstraction
of thequantity function (Qi) itself.

Range Abstraction. When abstractingthe range
of a quantity, onechangesthe setof possiblevaluesfor
the quantity. Elimination and approximationabstract
individual valuesin the rangeof a quantity. Aggrega-

3For the sakeof completeness,the table includes be-
havior abstraction,since thegeneral methodscan also be
applied to the representationof behaviors. In this paper
however,we limit our discussionto theabstractionof model
fragments.4We areactually referring to the rangeof the thefunc-
tion QF,, returnedby the quantity function applied to a
model fragmentinstance.We will call it the rangeor value
i~az~geof the quantity for brevity unlessthemeaningis not
clear from thecontext.



Element

Abstr.
Method

Knowledge Base Behavior
Model Fragment

State Traj.Quantity
Range i Cond. Conseq.

Elimination s I S 5 S S S S

Approximation s I s s s - - -

Aggregation m m m m m m m

Table 1: Applicability of Abstraction Methods to Elementsof the Representation

tion partitions the rangeinto subsetsso that thevalues
are representedin termsof thesubsets.

Rangeelimination removesan individual value or
a set of valuesfrom the range. The removal of se-
lected valuesis often motivated by knowledgethat cer-
tain, valuesare unattainableor highly unlikely for the
given quantity. For instance,in a model fragmentrep-
resentingathruster componentof ajet propulsionsys-
tern, onemayeliminate all negativevaluesin the range
of pressure—differential, which is defined as the
difference betweenthe input pressureand the output.
pressure. Elimination of all negativevalues amounts
to making the assumption that there is no possibility
of reverse pressure. Such an abstraction can reduce
thecomputationaleffort of a prediction mechanismby
pruning unlikely behaviors.

Rangeapproximation replacesa value (or a sub-
rangeof values)in the value rangeof a single quantity
with anothervalue (or subrangeof values)that is some-
how “good enough” for the given problem. Examples
of rangeapproximationinclude changingthe precision
for quantity values and idealization of quantities. If
onechangestheprecisionof numericalvaluesby round-
ing them all to theseconddecimalplace,a setof values
is replacedby a singleapproximatevalue. Idealization
is an extremeexampleof suchan approximationwhere
onereplacesthe emitire value ramigeof a quantity with a
single extremevalue. The approximationof the inter-
actions betweensolid objects as frictionless surfacesis
an exampleof idealization. Rangeapproximation re-
sults in an abstractrepresentationthat producesless
accuratenumericalPredictions.

Range aggregation occurs by groupingelements
in the rangeinto subsetsand usingthe subsetsto rep-
resent values. The grouping createseither regular or
unevenintervals. Discretization of a continuousrange
of a quantity into intervals boundedby landmark val-
ues, as in qualitativecalculus, is an examupleof range
aggregation. Rangeaggregationresults in less precise
predictions. When the quantity abstracted is time,
rangeaggregationresults in temporalabstraction.
Quantity Function Abstraction. We now con-

sider abstractionof quantity functions.

Quantity elimination removesaquantity from the
representation. For example, consider a model frag-
mnent representinga tank with two pressuresensors

provided for redundancy. If the original model frag-
mnenthastwo pressurequantitiescorrespondingto each
of the sensor readings, one can abstract the model
fragment by eliminating one of the pressurequanti-
ties. This generatesa more compactmodel fragment;
however, as in this example,quantity elimination may
eliminate the redundancypresentin the actual device
and result in a lessrobust model.

Quantity approximation replacesaquantity with
a similar quantity where the value of the new quan-
tity might be easierto obtain. For instance,consider
a detailed model fragment of a fuel tank including
the quantity amount—of—fuel. If the exact measure-
merit of the remainingamountis difficult to obtain due
to the structure of the tank, but the initial amount
amid the history of the fuel consumptionare avail-
able, one might create another model fragment that
contaimis the quantity computed—fuel—amountbased
on thesevariablesto replaceamount—of—fuel. How-
ever,if the approximationis only good undersomeas-
sumnptions,then amodel consistingof theapproximate
model fragment might fail to reflect reality when the
assumptionsdo not hold. For instance,in the caseof
amount—of—fuel, if there exists a large leak between
the tank arid the componentthat actually consumes
the fuel, computed—fuel—amountwill not adequately
approximateamount—of—fuel.

Quantity aggregation replaces a set of quan-
tities with a new representativequantity. There
are a variety of ways to define the representa-
tive, including summing and averaging. For a
tank having two pressuresensors that monitor the
pressure within the tank, one may replace the
quantities pressure—reading—from—sensor—aand
pres sure—reading—from—sensor—b with an
average—pressure—readingquantity whose value is
theaverageof theoriginal two quantities. Quantity ag-
gregationreducesthe numberof quantities,but it may
or may not affect the prediction accuracydepending
on the other equationsin the simulation model.

Since quantities are used to state the conditions



and consequencesof model fragments, abstractionof
a quantity necessitatesthe modification of conditions
and consequencesthat referencethe abstractedquan-
tity. In ABSTRIPS, abstraction layers are defined in
this manner (Sacerdoti 1974). The planning opera-
tors in STRIPS are comparableto model fragments
with the applicability conditionsandthe consequences
(consistingof ADD and DELETE lists) of the opera-
tors correspondingto the conditionsand consequences
of model fragments. ABSTRIPS ranks the predicates
used in specifying the conditionsand consequencesof
the planning operators according to their criticality.
To define an abstractplanning space,abstractopera-
tors are defined by ignoring less critical predicatesin
the conditionsandconsequencesof theoriginal opera-
tors.

Condition Abstraction
The conditionspart of a model fragment is a list of
atomic formulae, which is an implicit conjunction of
the conditions.

Condition elimination removes selected condi-
tions from the list of conditions in a model fragment.
Condition elimination may occurasa necessaryconse-
quenceof quantity abstraction,but it is alsoperformed
independentlywhen a condition is deemeduncritical
for some purpose. Statistical information may moti-
vate such elimination. If a condition is known almost
never to fail, one may decide to eliminate the condi-
tion to produce a simpler model. We also include in
this categoryreplacementof acondition C1 by another
condition C2 that is strictly weakerthan C1, since Ci
is logically equivalent to C, A C2 if C1 — C2.

Condition approximation replaces a condition
with another similar condition, which is simpler in
some respect. For instance, the activation condi-
tion for a tank model fragment may require that
(> pressure—differential le—5). In an abstract
model, we might replace this condition with (>
pressure—differential 0). Such replacementmight
occur as anecessaryresultof rangeapproximation,or
it might result asan independentdecision.

Condition aggregation replaces a set of condi-
tions with an aggregatecondition. For instance,one
may replace the conditions (~inflow—i outflow—i)
and (= inflow—2 outflow—2) with ( (+ inflow—i
inflow—2) (+ outflow—i outflow—2). Condition
aggregation reduces the number of conditions in a
model fragment,but the new conditions may be more
complex syntactically. The aggregatecondition is of-
ten weakerthan the conjunction of the original set of
conditions.

ConsequenceAbstraction

The consequencespart of a model fragment is a list
of atomicformulae,which is interpretedasan implicit
conjunction. Consequencescannotcontain embedded
conditions.

Consequenceelimination removesselectedcon-
sequencesfrom model fragments. As with condition
elimination, consequenceelimination may occur as a
necessaryresultof quantity elimination. This category
includesreplacementof a consequenceby anotherthat
is strictly weakerthan the original.

Consequenceapproximationreplacesa relation
in the consequenceof a model fragmentwith asimpler
relation. For instance,one might replacea complex
equation with a simpler, approximateequation. Ex-
amplesof such approximationsinclude equilibration,
exogenization(Iwasaki & Simon 1994), and piecewise
linear approximation.

Equilibration is applicableto theconsequenceequa-
tionsof one model fragmentrepresentingsomemecha-
nism that restoresequilibrium muchquickerthanother
mechanismsin the system. In this situation, one can
regard the fast mechanismas acting instantaneously.
The equilibration operationreplacesa dynamicequa-
tion representinga fast mechanismby its respective
equilibrium equation. For example, using a model
fragment for a pressure sensor, one might assume
that ( sensed—pressurepressure—reading).This
assumption treats the reading of the pressure on
the sensor as an instantaneousprocess, giving the
pressureat the current instant. Determining the
pressure—readingis considered a fast mechanism
comparedto other processesin the model. Similarly,
exogenization—replacementof a slow mechanismby a
constantequation—is also a type of consequenceap-
proximation.

Piecewiselinear approximationmay be usedto sim-
plify complex equationsgiven in the consequencesof
a model fragment. In piecewiselinear approximation,
oneapproximatesa non-linearequationby pieceseach
of which can be approximatedby a linear equation. ~

Consequenceaggregationcombinesa setof con-
sequencesinto an aggregate. For instance,two con-
sequencesof the model fragment representinga heat
exchangerare the conservationof massequationsfor
thehot andcold flows. In an abstractmodel,onemight
combinethem into asingle conservationof massequa-
tion. Consequenceaggregationdecreasesthe number
of equations in a model fragment, but the new con-
sequencesmay be weakerthan the conjunctionof the
original consequences.

Model Fragment Abstraction

Methodsof abstractingmodel fragmentsincludeelimi-
natingselectedmodel fragmentsandaggregatingaset
of model fragmentsinto one model fragment. Model
fragment abstractionis often motivatedby knowledge

51f the formal definition of a model fragmentdoesnot
allow conditional consequencesas it is not in CML, each
linear piece will haveto be representedby separatemodel
fragments. This is a rare casewhereabstractionof one
model fragment resultsin a set of model fragments.



of their structural, functional, or statistical relation-
ships.

Model fragment elimination removesthe model
fragmentsrepresentingcertain elementsin the prob-
lem description. Often, functionalor statistical knowl-
edge motivates model fragment elimination. For in-
stance,considera device which containsa secondary
valve as a backup in casesof failure of its primary
valve. One may chooseto eliminate the model frag-
ment for the secondaryvalve,basedon, theknowledge
that the secondaryvalve functions solely asa backup.
Statistical knowledgeaboutapopulationof individuals
may also motivate model fragmentelimination. If it is
known that 99.9% of a certain population of carbon
moleculeshave the molecular weight of 24, one may
chooseto eliminate all model fragmentsrepresenting
carbon moleculeshaving other weights.

Model fragment aggregation replacesa set of
model fragmentswith an aggregatemodel fragment.
Again, functions and populationstatistics arecommon,
basesfor performing suchan abstraction.Aggregation
reducesthe total number of model fragmentsand al-
lows one to ignorethe unnecessarydetails.

Structuralor functional aggregationreplacesasetof
model fragmentsrepresentingcomponentsby a model
fragmentthat representstheir structuralor functional
super-component.Aggregationof a nearly decompos-
able dynamicsystem (Simon & Ando 1961) is an ex-
ampleof model fragment aggregationif we view each
mechanismrepresentedby an equationin, the original
systemasa model fragment.

Amador andWeld discusspopulationabstractionin
(Amador& Weld 1990). AmadorandWeld modelpop-
ulation systemson three levels: the individual level,
the aggregatelevel, and the macro level. The aggre-
gatelevel containsacollectivedescriptionof individual
level properties. Applying statistical operators,suchas
Summation,Mean, Max, andMm, to theattribute values
of individuals in the population generatesprobabilis-
tic descriptionsof the individuals. The modeler uses
these statistical operatorson all the attributes of all
the memnbersof a population to createarepresentative
model fragment. For instance,the attributevaluesof a
representativemay be the summationof the attribtite
valuesfor its individual members.

Example

We illustrate our abstraction frannework with a sini-
pIe exampleof model fragmnentsrepresentinga hot air
balloon. Figure 1 givesthe formal specificationfor the
model fragmenthot—air—balloon.

The hot air balloon is composedof an envelope
(the balloon), burner (to heat the air in
the envelope), basket, temperature—sensori,
temperature—sensor2, pressure—sensorl, and
pressure—sensor2. The sensors measure the
conditions within the envelope. The quanti-
ties temperaturel, temperature2,pressurei, and

(defModelFragmenthot-air—balloon
quantities

(temperaturel, temperature2,
pressurel, pressure2,
balloon—temp, balloon—pres,
balloon—vol, balloon—mass,
compressibility—factor,
universal—gas—const)

conditions
((< (Abs (— temperaturel 373K))

le—5)
(< (Abs (— temperature2 373K))

le—5)
(< pressurel 101.3kPa)
(< pressure2 iOi.3kPa))

consequences
((= balloon—temp

(Avg temperaturel temperature2))

(= balloon-pres
(Avg pressurei pressure2))

(= balloon—vol
(I (* compressibility—factor

universal—gas—const
balloon—temp
balloon—mass)
balloon—pres))))

Figure 1: Thehot—air—balloonModel Fragment

pressure2 indicate the readingsfrom the respective
sensors. Table 2 specifies abstraction methods that
areperformedon hot—air—balloonandtheabstracted
representationalelement.For eachabstraction,the ta-
ble indicatesthe portion of the original representation
that is abstractedand specifiesits abstractrepresenta-
tion. The abstractmodel fragmentsarenamedto cor-
respondwith thegraphof modelfragmentsin Figure2.
The graphillustratestherelationshipbetweentheorig-
inal and abstractrepresentationsof hot—air—balloon.
The hot—air—balloon is an aggregatemodel frag-
nnent, representing the collection of its component
model fragments.

Discussion

The framework categorizes abstraction relations
amongmodelfragmentsaccordingto the typeof trans-
formation performed on one model fragment to pro-
duce anothermodel fragment.

It would be ideal if one could make generalstate-
mentsabout the representationalconsequencesof ap-
plying thesetransformationson modelfragmentsusing
such general theories of abstraction as the one pro-

posedby Giunchigliaand Walsh or the one proposed
by Struss. Unfortunately, it is impossibleto simply ap-
ply either of thesegeneral theories to abstractionsof



Abstraction
Type

Original
Representional

Elements

Abstract
Representational

Elements

Abstract
Model Fragment

Name

Quantity
Elimination

t emperar. u rel

tompe rat ore
2 temperat urel balloon-with-

single-temp-senso

Quanmity
Aggregation

temperaturel

temperat r el

avg—temp balloon-with-
sensor-averager

Condition
Elimination

(< pressurel lOl.3kPal
(< pressure2 101 . 3kPa)

(K pressurel l0l.3kPa( balloon-with-
singte-pres-cond

Condition
Approximation

(K (Abs

(— temperaturel 3 735)

le—3( I

(- temperaturel 3735) balloon-with-
approx-temp-cond

Condition
Aggregation

(K pressurel 101. 3kPa)

(K pressure2 101.3kPa)
(K (-f pressurel

pressure2)

202. 6kPa)

balloon-with-
agg-pres-cond

Consequence
Approximation

(- balloon—vol
(* compressibi lity—lactor

universal—gas—cons t

balloon—temp

balloon—mass

(inc balloon—pres) I

(- balloon—vol

(* quantity—contained
ideal —gas—cons t

balloon—temp

(inC balloon—pres)((

balloon-
assuming -

ideal-gas

Model Fragment
Aggregation

envelope

burner

basket

temperature—sensor—ti

temperat ure—sensor—t2

press u r e 505 SO r —p1

press or e — sen nor — p2

hot—al r—balloon original-
hot-air-balloon

‘I’able 2: Abstraction of the hot—air—balloonModel Fragment

model fragments. GiunchigliaandWalsh’stheorycom-
pares two logical theoriesand does not ea.sily extend
to comparisonsamong n3odel fragments. Performing
the typesof transfornnationsdiscussedin this paperon
a model fragnnentproducesa new set of model frag-
rrtents. A knowledge basein the compositionalmood-
cling framework is a set. of model fragmentsand does
not constitute a consistent logical theory. A knowl-
edgebasecan contaimi logically inconsistentmodel frag-
nnemits though different subsetsof the knowledgebase
may give rise to logically consistent models that are
useful in differen,t situations. Struss’ theory also does
not serveour purposesinceIns theorypresumesa coin-
plete model,and mi ourcase,we needa way to charac-
terizedifferencesamongpotentially relevantfragments
of models before they are assemnbledinto a complete
model.

Nevertheless,if we changedour problem and made
strong assumptionsthat (I) we are starting from a
set of model fragmentsthat. constitute a completeand

logically conisistentmodel,and (2) an abstractionop-
eration performedon one model fragment will be per-
formedconsistentlythroughout theset, we could make
tile following generalobservations:

• Elimination generally results in TD abstraction. It
falls in the category of simplification as defined
by Struss but is not necessarilya representational
transformation6since the result mayno longer be a
model (Struss 1991).

• Approximation is neither TD nor TI. It is a repre-
sentational transformation, and is a type of simpli-
fication asdefined by Stmuss.

• Aggregationis TD. It is a representationaltransfor-
moation.
6lntuitively a transformation is a representational

transforniationif it results in a model that covers all the
situations coveredby theoriginal model; however, it mnay
makedifferent kinds of distinctions from the original.
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Our immediatemotivation for this work is to expand
our modelformulation methodby usingthis framework
to preciselycharacterizea broaderclassof abstraction
relationsamongmodel fragnnents.Our next step is to
analyze various types of assumptionsunderlying the
transformationsdiscussedin this paper. We must then
decidehow to representsuchassumptions,what addi-
tional information can be specified about the query,
and how to reasonwith them in order to choosean ap-
propriate level of abstractionfor eachmodel fragment.

Furtherwork is neededto predict the computational
consequencesof abstractionin termsof theeffects they
have on the results of behavior prediction. One ob-
servationthat can be made is that abstractionof the
representationasdiscussedin this paperdoesnot nec-
essarily result in a simpler prediction. In partictilar,
conditionabstractiongenerally resultsin a weakercon-
di t ion, which could resuIt in moremodel fragmentsbe-
coming activated during simulation.

Thoughour immediategoal is to incorporatetheab-
stractionframework into the model formulation mech-
anism and use further analysisresults to guide model
fragmentselection, this frameworkis an important step
towards the automatic generation of abstract model
fragments. The proposedframework has the advan-
tage of beingeasy to operationalizeomice one selects
the aspectof the representationto abstract. We plan
to explore this possibility of automatic abstractionof
model fragmentsin the future.
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