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Abstract

Qualitative reasoning uses incomplete knowledge to com-
pute a description of the possible behaviors for dynamic
systems. For complex systems containing a large number
of variables and constraints, the simulation frequently is
intractable or results in a large, incomprehensible be-
havioral description. Abstraction and aggregation tech-
niques are required during the simulation to eliminate
irrelevant details and highlight the important character-
istics of the behavior. The total temporal ordering of
unrelated events provided by a traditional state-based
qualitative representation is one such irrelevant distinc-
tion. Model decomposition and simulation addresses this
problem.

Model decomposition uses a causal analysis of the model
to partition the variables into tightly connected com-
ponents. The components are simulated separately in
the order dictated by the causal analysis beginning with
causally upstream components. Information from the
simulation of causally upstream components is used to
constrain the behavior of downstream components. If a
feedback loop exists between components or a set of com-
ponents are acausally related, then a concurrent simula-
tion is performed for these components. A {ruth mainte-
nance system is used to record and retract assumptions
made during this concurrent simulation.

Model decomposition provides a general architecture
which separates the method of simulation from the model
decomposition algorithm. This architecture can be used
to introduce alternative abstraction techniques to elimi-
nate other irrelevant distinctions.

1 Introduction

Qualitative simulation derives a description of the
possible behaviors of a dynamic system from a struc-
tural representation. The structural representation
details the relationship between the variables within
the system through constraints. Traditionally, a

state-based approach [Forbus, 1984, Kuipers, 1986,
De Kleer and Brown, 1984] is used to describe the
device behavior by a set of qualitative states of
the system and the transitions between these states.
“ach qualitative state contains a complete descrip-
tion of the system at either a time point or over
a time interval. This level of description provides
a complete temporal ordering of events within each
behavior. An event occurs when a variable crosses
a landmark value or alters its direction of change.
The combinatoric complexity of providing a total
ordering of events is a general problem encountered
within artificial intelligence when trying to reason
about the physical world [Hayes, 1985].

For many qualitative reasoning tasks, this level of
detall is irrelevant. Branching on unrelated temporal
distinctions significantly increases the complexity of
the simulation. In addition, this branching makes it
more difficult to interpret the behavioral description
thus obscuring the relevant behavior.

Williams {1986] was the first to investigate meth-
ods of eliminating this complete temporal ordering of
events within a simulation with the Temporal Con-
straint Propagator (TCP). TCP forsakes the tradi-
tional state-based approach and independently de-
scribes the behavior of each variable over time as a
set. of variable histories. The relevant temporal re-
lations between events are described separately. A
temporal ordering of events is only provided when
their interaction affects the value of other quanti-
ties. Using TCP to reason about physical systems,
however, requires a significant amount of work by
the modeler. Furthermore, it is unclear how this
system can be extended to incorporate advances in
other qualitative reasoning paradigms.

Other  techniques  [Clancy and Kuipers, 1993,
Fouché and Kuipers, 1991} have eliminated the ir-
relevant temporal correlation of events by combin-




ing behaviors and states into a more abstract repre-
sentation. These abstraction techniques, however,
determine the relevance of a correlation between
events after the distinction is made in the simula-
tion (i.e. the abstraction is performed in a post-
processing fashion), and thus do not sufficiently ad-
dress the complexity problem. Coiera [1992] elimi-
nates these distinctions by superimposing qualita-
tive predictions from two causally-unrelated pro-
cesses on a single downstream variable. He does not
address how these techniques can be applied to more
complicated causal interactions.

Model decomposition bridges the gap between a
state-based simulation and a history-based ap-
proach. A causal analysis is used to partition the
variables into tightly connected components. Each
component is simulated separately using a standard
state-based simulation, providing a total ordering
only for the events within each component. Tem-
poral correlation between events in different compo-
nents is only provided when necessary to constrain
the resulting set of behaviors.

2 Model Decomposition - An
Overview

Model decomposition uses a divide and conquer ap-
proach to the simulation of a qualitative model. The
variables within the model are partitioned into com-
ponents so that closely related variables are con-
tained within the same partition. Each component
is simulated independently. The interaction between
components is modeled using shared, or boundary,
variables.

The variables are partitioned using a causal analy-
sis [Iwasakl and Simon, 1986, Iwasaki, 1988] of the
constraint network. A sub-model is created for
each partition containing the constraints between
these within-partition variables. Boundary variables
are causally upstream or acausally related variables
directly connected to a within-partition variable
through a constraint but not included in the parti-
tion. These variables are used to relate the behavior
of connected components and are handled specially
during the simulation of a sub-model. Constraints
connecting within-partition variables and boundary
variables are included in the sub-model.

Each sub-model is simulated independently, generat-
ing a behavioral description for the within-partition
variables. Information about the behavior of the
boundary variables is used to constrain the simula-
tion and is obtained from the behavioral description
generated by simulating the upstream components
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Figure 1: Simplified Glucose Insulin Regulatory Sys-
tem Model

A QSIM model of the human Glucose-Insulin Regulatory
System (GIR) which contains two connected feedback
loops corresponding to the glucose (a) and insulin (b)
regulatory systems.

¢ The nodes in the graph are variables and the links
are QSIM constraints. The arrows indicate the di-
rection of causality derived via a causal analysis of
the constraint network.

¢ The insulin and glucose production (I-In and G-
In respectively) are assumed to be constant in this
version of the model.

Model decomposition divides the model into two compo-
nents (identified by the boxes) related by the intermedi-
ate variable I-G. A sub-model is created for each compo-
nent. Each sub-model is simulated separately. Temporal
correlation of events is only provided for variables within
the same component.

¢ Since the insulin component is causally upstream, it
is simulated prior to and independent of the glucose
component. -G is dependent in this model. 1-G's
behavior is completely determined during this sim-
ulation.

¢ The glucose sub-model includes -G as an indepen-
dent variable. Its behavior is constrained by the re-
sults from the simulation of the insulin sub-model.
The behavioral description of the glucose compo-
nent is prevented from branching on distinctions in
the value of I-G.




containing these variables. This description guides
the behavior of the boundary variables during the
simulation of the downstream sub-model. The be-
havioral description generated during the simulation
of a sub-model branches only on distinctions in the
values of the within-partition variables. Distinctions
in the boundary variables are eliminated through ab-
straction.

The order of simulation for the individual sub-
models i1s determined by a causal analysis starting
with the causally upstream components. If a feed-
back loop exists between the components or two
components are acausally related, then a more com-
plicated simulation strategy must be employed in
which the components are simulated concurrently.

3 A Model of the Glucose Insulin
Regulatory System

Figure 1 shows a constraint network modeling the
human Glucose-Insulin Regulatory system (GIR).
This model was developed by Ironi and Stefanelli
[1993] using the Qualitative Compartmental Model-
ing Framework (QCMF) designed to assist the user
in formulating models of a pathophysiological sys-
tem and In analyzing their behaviors. The GIR
model contains two separate feedback loops. One
controls the amount of glucose (G) within the body
and the other controls the amount of insulin (I}. The
feedback loops are connected through the intermedi-
ate variable I-G which relates the amount of insulin
to the rate of glucose elimination.

Figure 2 shows the results from a simulation of the
GIR model using model decomposition. The GIR
model is divided into two separate sub-models cor-
responding to the two feedback loops related by the
intermediate variable I-G. This variable is included
in both sub-models; however, 1ts behavior 1s com-
pletely determined by the insulin feedback loop. 1-G
is a dependent variable in this system and an inde-
pendent variable in the glucose system.

Since the insulin sub-model is causally upstream, it
is simulated prior to the glucose component, deriv-
ing a complete behavioral description for the vari-
ables within the insulin feedback loop including the
variable I-G. Next, the glucose sub-model is simu-
lated. The behavior of I-G, determined during the
simulation of the insulin component, 1s used to con-
strain the possible values of I-G during this simula-
tion. Branches caused by distinctions in the value of
I-G are eliminated via abstraction during the simu-
lation of the glucose component.
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Figure 2: Simulation of the GIR Model

A normal QSIM simulation of the GIR model using chat-
ter box abstraction [Clancy and Kuipers, 1993] results
in 10 behaviors (a). Chatter box abstraction selectively
eliminates distinctions in the derivative of the chattering
variables thus making the simulation tractable. Chatter-
ing regions are identified by a square within the behavior
tree (e.g. states 29 and 53).

¢ Within the 10 behaviors generated, there are four
distinct behaviors for the amount of glucose and
only a single unique behavior for the amount of in-
sulin.

¢ The behavior tree provides a complete temporal or-
dering of the glucose component and the insulin
component events even though they are unrelated.
These distinctions add complexity to the simulation
and obscure the relevant behaviors of the individual
components.

Model decomposition generates a behavior tree for each
component (b & c) describing the same behaviors as the
standard QSIM simulation. No temporal correlation is
provided between these behaviors.

¢ The simulation of the insulin component is per-
formed first and results in a single unique behavior
in which the amount of insulin decreases from its
initial value and then reaches steady (d).

s Simulation of the glucose component results in four
unique behaviors (e). The behaviors are distin-
guished by the final amount of glucose with respect
to the amount at the beginning of the simulation.
The behavior is constrained by the results from the
simulation of the insulin component.
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Figure 3: More Complex Model of the Glucose-
Insulin Regulatory System

This version of the glucose-insulin regulatory system in-
cludes a feedback connection from the glucose compo-
nent to the insulin component. An S+ constraint relates
the amount of glucose to the insulin production rate.
[-In is no longer constant.
¢ The rate of insulin production (I-In} is now included
within the glucose sub-model since it is a dependent
variable with respect to this component.

¢ The simulation of the glucose component depends
upon the value of I-G while the insulin component
depends upon the value of G.

¢ Since neither component is causally upstream, they
must be simulated concurrently.

¢ During the concurrent simulation, the simulation
of the other component is assumed to be complete.
States are marked inconsistent if a state cannot be
found in the other behavior tree satisfying the con-
straints relating the components. If a state satisfy-
ing this constraint is created later, the inconsistent
state is then marked consistent and simulated.

3.1 A More Complex Model

Figure 3 contains a more complex model of the GIR
system. In this model, the rate of insulin production
depends upon the amount of glucose. Thus, a feed-
back loop exists between the two components. The
rate of insulin production is a dependent variable
with respect to the glucose component. No causal
ordering exists between the connected components,
so they must be simulated concurrently. The simu-
lation of each sub-model depends upon the behavior
of a variable in the other component. The glucose
component depends upon I-G and the insulin com-
ponent depends upon G.

A concurrent simulation alternates between extend-
ing the behavioral description of each component.
Since the components are simulated concurrently,
the behavior of the boundary variables is incomplete
during the simulation of an individual sub-model. A
truth maintenance system is used to address this
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Figure 4: Overview of the Model Decomposition Al-
gorithm

Variable Partitioning generates a causal analysis of
the model and partitions the variables based upon
this analysis. The partitioning identifies tightly
connected components within the model to mini-
mize irrelevant temporal correlations.

Sub-Model Creation takes the variable partitions as
input and generates a sub-model for each parti-
tion. The causal analysis is used to determine which
causally upstream variables affect each sub-model.

Partitioned Simulation determines the order of sim-
ulation for the sub-models from the causal analysis
and performs the simulation generating a behavior
tree for each sub-model.

problem. During the simulation of a sub-model, it is
assumed that the simulation of related components
is complete and the behavior of the boundary vari-
ables is known. If a state is marked inconsistent
because the boundary variables do not satisfy the
constraints relating the components, a dependency is
recorded. A dependency records information about
the inconsistent state and the condition not satis-
fied by the incomplete behavioral description of the
related component. If this condition is met as the
sitnulation is extended, then the state marked incon-
sistent is reinserted into the behavior tree and sim-
ulated. The details of this algorithm are addressed
in the next section.

4 The Algorithm

The model decomposition and simulation algorithm
is based on the QSIM [Kuipers, 1984, Kuipers, 1994]
qualitative reasoning paradigm. It can be adapted
to work with other qualitative simulators. It ac-
cepts a QSIM QDE as input and generates a set of
behavior trees. Each behavior tree corresponds to
one of the variable partitions. Figure 4 provides an
overview of the three main components of the al-
gorithm: variable partitioning, sub-model creation,
and model simulation.

4.1 Variable Partitioning

Model decomposition requires a partitioning of the
variables into components. In general, this parti-



tioning should combine variables which are tightly
connected within the constraint network and sepa-
rate variables whose behavior is unrelated. The abil-
ity to perform the simulation and eliminate tempo-
ral correlations is independent of the variable par-
titioning selected. Model decomposition and sim-
ulation provides the same soundness guarantees as
a standard QSIM simulation [Kuipers, 1986]. The
partition selected only affects the complexity of the
resulting simulation and the level of temporal corre-
lation provided.

We use an adaptation of Iwasaki and Simon’s
[Twasaki and Simon, 1986, Iwasaki, 1988] causal or-
dering algorithm to obtain a causal analysis of the
model. In certain situations, the partitioning can
be derived directly from the causal ordering as in
the model in figure 1. In other situations (like the
more complicated example in figure 3), selecting the
appropriate partitioning can be more difficult. A
set of heuristic rules may be required to guide the
selection of the partition. A general purpose algo-
rithm to automatically choose the best partitioning
is still being developed. Currently, the partition-
ing is performed by hand. Automatically identify-
ing an effective partitioning will facilitate the inte-
gration of these abstraction techniques with auto-

matic model building and query answering systems
[Rickel and Porter, 1994].

4.2 Creating Sub-Models

A sub-model is created for each variable partition
describing the relationships between the variables of
the partition. This sub-model, or sub-QDE, 1s used
to simulate the component. There are two types of
variables contained within each sub-model.

Within-partition variables are the variables be-
longing to the partition. These are the variables
of interest for this sub-QDE.

Boundary variables are non-partition variables
that are related to a within-partition variable
through a constraint and are causally upstream
or acausally related to that variable. These
variables are independent with respect to the
sub-QDE. Variables which are causally down-
stream from a within-partition variable are ex-
cluded because these variables act as dependent
variables.

A sub-QDE is comprised of the constraints within
the main QDE which contain only within-partition
and boundary variables. Since the sub-model is
concerned with the behavior of the within-partition
variables, only those constraints which restrict these
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Figure 5: Partitioning of the More Complex GIR

Model

The GIR model in figure 3 is partitioned into a sub-
model for the insulin feedback loop and one for the glu-
cose feedback loop. The simulation of each component
will derive the behaviors for the within-partition vari-
ables. The behavior of the boundary variable is obtained
from the simulation of the other component and used to
constrain the simulation.

¢ In the glucose sub-model, I-G is the only boundary
variable. It is related to G-Out through an ADD
constraint and is causally upstream from G-Out.
I-In is not included as a boundary variable since it
is causally downstream.

¢ [n the insulin sub-model, I-In is the only boundary
variable. It is related to I-Out and d/I through an
ADD constraint.

values are included. Figure 5 shows this parti-
tioning for the more complex example discussed
above. All constraints within the main QDE are
included in at least one sub-QDE. If there is any
causal ordering between variables from different par-
titions which share a constraint, then this constraint
is only included in the causally downstream sub-
model. Thus, constraints are included in multiple
sub-QDE’s only when the variables within the con-
straint are acausally related and belong to different
components.

4.3 Partitioned Simulation

A separate QSIM simulation is performed for each
sub-model. Each simulation generates a state-based
behavioral description for the within-partition vari-
ables of the sub-model. The description of a bound-
ary variable’s behavior generated by an upstream
sub-model is used to guide the simulation of a down-
stream component. Branches due to distinctions in
the values of the boundary variables are eliminated
through abstraction. Two or more sub-models must
be simulated concurrently when a feedback loop ex-
ists between these components. The following three
sections elaborate on each of these steps.




4.3.1 Boundary Variable Behavior Guide

During the simulation of a component, boundary
variables are viewed as exogenous variables whose
behavior is completely determined by the upstream
components to which they belong. The constraints
which restrict the behavior of these variables are
contained within these upstream sub-models. The
constraints which exist between the boundary vari-
ables and the within-partition variables in the cur-
rent sub-model serve to restrict the behavior of the
within-partition variables. By restricting the behav-
ior of the boundary variables to match the descrip-
tion provided by the upstream sub-models, no con-
straining power is lost with regards to the within-
partition variables. (i.e. The behaviors generated
for the within-partition variables are the same ones
produced by the standard QSIM algorithm.)

The boundary variables of a sub-model are grouped
into sets according to the components to which they
belong. A guide tree is provided for each set describ-
ing the behavior of the boundary variables within
the set. These trees are derived during the simula-
tion of the upstream components.

The guide trees are used to determine the valid suc-
cessor values for the boundary variables during the
simulation. A mapping is maintained between states
in the current simulation and matching states within
the guide trees. - A state Sy within a guide tree
matches a state S in the current simulation if and
only if:

o Sy includes S (defined below) with respect to
the boundary variables,! and

o the predecessor of S matches either S, or the
closest ancestor of Sy that differs from Sy in the
value of at least one current boundary variable.?

Sy includes S with respect to a set of boundary vari-
ables if the state space described by S for the bound-
ary variables is a subset of the space described by 5.
The following requirements must be met.

e Sy must be a time-interval state or S must be a

'These are the boundary variables for the sub-model
currently being simulated. They are within-partition
variables from the perspective of the upstream models
which were used to generate the guide trees.

2The guide trees provide a behavioral description for
a number of variables besides the current boundary vari-
ables. Branches may exist which do not reflect changes
in these boundary variables. Thus, the closest ancestor
that differs from S, in the value of at least one current
boundary variable is the predecessor of Sy from the per-
spective of these variables.

time-point state. A time-interval state within
the current simulation cannot be matched
against a time-point state in the guide tree.

¢ For each boundary variable b guided by Sy, the
region of the state space described by qval(b, S)
must be equal to or a subset of the region de-
scribed by gual(b, S;). Qual(b,s) is the qualita-
tive value of variable b in state s.

A new state is marked inconsistent if a valid match-
ing state cannot be identified within each guide tree.
This algorithm ensures that every behavior for a
boundary variable within the current behavior tree
matches a behavior in the appropriate guide tree.

This technique for restricting the behavior of a set
of variables based upon a predefined behavioral de-
scription has been generalized to allow a modeler
to control the behavior of any exogenous variable
within a QSIM simulation.

4.3.2 Abstracting Boundary Variable
Distinctions

A standard QSIM simulation provides a total order-
ing of events for all variables contained within the
model. In a partitioned simulation, each sub-model
contains both within-partition and boundary vari-
ables. Since each sub-model is only required to pro-
vide a behavioral description for the within-partition
variables, abstraction is used to eliminate branches
caused by distinctions in the values of the bound-
ary variables. This eliminates the temporal correla-
tions between within-partition variables and bound-
ary variables during the simulation of a sub-model.

The abstraction process is performed during the
simulation after the successors of a state are com-
puted. Equivalent successor states with respect to
the within-partition variables are combined to form
a single abstract state. There are two main steps in
the creation and simulation of abstract states:

e creating an abstract state from a set of detailed
(i.e. non-abstracted) successor states

e computing the successors of an abstract state.

Creating an Abstract State An abstract state
contains a unique value for each within-partition
variable.  Qualitative value information for the
boundary variables is maintained in the form of a
disjunctive list of sub-states. Each sub-state contains
a complete set of values for the boundary variables.
A sub-state Is created for each detailed state used to
create an abstract state. The information in the sub-
states is used to ensure that no constraining power
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Figure 6: Eliminating Branches through Abstraction

Branches due to distinctions in the boundary variable
values are eliminated by combining successors which are
equivalent with respect to the within-partition variables.
Abstract successors states are created as follows:

1. Create the standard QSIM successor states. The
consistency of these successors is determined using
the QSIM consistency filters.

2. Using only the consistent successors, create abstract
successor states by combining states with equivalent
values for the within-partition variables.

3. For each abstract state, create a set of sub-states
containing possible qualitative values for the bound-
ary variables. Each sub-state provides a unique set
of values for the boundary variables.

4. Replace the original successors with the abstract
successors within the behavior tree.

is lost when the successors of an abstract state are
created. Figure 6 provides additional information
about the state abstraction algorithm.

The boundary variable behavior guide described in
the previous section is actually applied to sub-states.
A sub-state is marked inconsistent if it cannot be
matched against a state within each of the bound-
ary variable guide trees. An abstract state is consid-
ered inconsistent if all of its sub-states are marked
inconsistent. A mapping 1s maintained between a
sub-state and the matching states within the guide
trees.

Creating Successors of an Abstract State
The abstraction process eliminates distinctions in
the boundary variables which are normally used by
QSIM when computing a state’s successors. The
algorithm used to create the successors of a state
during a simulation has been modified to handle
an abstract state. These modifications retain the

QSIM soundness guarantee as well as the constrain-
ing power of a standard QSIM simulation. The suc-
cessors of an abstract state are computed as follows:

1. Continuity is used to determine the possible
successor values for each variable within the
model.

e For within-partition variables, use the
unique qualitative value provided within
the abstract state to compute the set of
valid successor values. This is the normal
algorithm used by QSIM for all of the vari-
ables.

e For boundary variables, apply the normal
QSIM algorithm to each of the possible val-
ues included in the sub-states and then take
the union of these possible successor values.

2. Use the standard QSIM algorithm to create and
filter potential successor states from this set of
possible values. Each state will contain a sin-
gle qualitative value for each variable within
the sub-model (i.e. both within-partition and
boundary-variables).

3. For each successor state, perform a continuity
test to ensure that the boundary variable val-
ues can be reached from at least one sub-state
maintained by the abstract state.?

4. These successor states are then used to form
the abstract successor states as described in the
previous section.

The basic QSIM algorithm generates all possible be-
haviors of the modeled system. Step 1 in this algo-
rithm ensures that this guarantee is retained. The
set of possible successor values for each variable is
the union of the possible successor values of the in-
dividual non-abstracted successor states. Thus, all
of the successor states which would have been com-
puted by the standard QSIM algorithm for the non-
abstracted states are included in the set of successors
for the abstract state.

This abstraction technique also retains all of the con-
straining power of the standard QSIM algorithm. No
additional behaviors are generated due to the elimi-
nation of distinctions in the boundary variables via
abstraction. Figure 7 shows how each successor of

*Since the union of the possible successor values for
the boundary variables is used (in step 1), it is possible
that these successor values may combine in ways that
would not have been possible with the non-abstracted
states. This test ensures that a possible successor value
that is valid for only one of the sub-states does not com-
bine with a value from a different sub-state.
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Figure 7: Relationship between an abstract state’s
successors and the original states.

Original states S through S, were combined to form the
abstract successor Sq. A sub-state (ss; through ss,) was
formed for each of these original states. Sj through S,
are the successors of the abstract state.

e A one-to-one correspondence (the sub-state map-
ping) exists between the sub-states attached to an
abstract state and the original successors states
used to create the abstract state.

¢ A continuity check (the third step in the algorithm)
ensures that each successor of an abstract state can
be reached from at least one of the sub-states. One
abstract state successor can be a successor for mul-
tiple sub-states. This mapping information is not
retained during the simulation.

Each abstract state successor can be mapped back to
the original states which it would have succeeded if the
abstraction were not performed. Thus, no additional
successors are generated due to the abstraction process.

an abstract state would have followed from at least
one of the original non-abstracted states.

Problems may be encountered when applying exten-
sions of the QSIM algorithm to an abstract state.
Some constraining power may be lost due to the in-
ability to apply certain constraints such as the en-
ergy filter or some of the quantitative reasoning tech-
niques to the boundary variables. In most cases,
this information would have been incorporated into
the upstream sub-model that originally determined
the behavior of the boundary variable. Otherwise,
problems such as this can be addressed by the initial
variable partitioning.

4.3.3 Simulation Control and Concurrent
Simulation
£y
Simulation of a causally downstream component re-
quires information from the upstream sub-model
about the behavior of the boundary variables. Once

graph shows an idealization of how the decomposition of
a large model would be simulated.

¢ The nodes of the graph represent components (i.c.,
a set of variables and constraints) within the model
while the arcs are causally directed relationships be-
tween components.

¢ Model decomposition begins simulation with the
causally upstream components and then moves
through the graph. In this example, component
simulation would be performed in the following or-
der:
— component A
— component B
— components C and D (but they do not have to
be simulated concurrently)
— components E, F, G, and H are all simulated
concurrently since they form a feedback loop
—~ component [

the variables are partitioned, the causal analysis can
be used to create a component graph. The nodes in
this graph are the sub-models while the links show
the direction of causal influence relating these nodes.
Some components may be acausally related. The
sub-models are simulated in the order dictated by
this graph starting with the causally upstream com-
ponents. Figure 8 shows an idealization of this pro-
cess for a larger model.

If a feedback loop exists between components (as
in figure 3) or if components are acausally related,
it is not possible to sequentially order their simula-
tion since they require boundary variable informa-
tion from each other. In this case, these simulations
must be performed concurrently. Since the complete
behavior of the boundary variables is not available
during the simulation of a sub-model, a truth main-
tenance system is used to record information about
any assumptions which are made.

A concurrent simulation alternates among extending
the simulation of each of the related components.
A dependency is recorded when a state is marked




inconsistent due to the boundary variable behavior
guide and the behavior of the boundary variable is
incomplete. The dependency records information
about the condition required to satisfy the consis-
tency check. As the behavior of the related com-
ponent is extended, the dependencies are checked to
determine if any of the conditions are satisfied by the
additional behavioral information. If a dependency
is satisfied, then the state which had previously been
marked inconsistent is reinserted in the behavior tree
and simulated. A dependency is satisfied when a
state is created in a related tree fulfilling the condi-
tions which originally caused the dependency to be
created (i.e. providing the specified values for the
boundary variables).

The dependencies are checked to see if any viola-
tions have occurred after each sub-model has been
extended one time step. Dependencies are cross
checked apainst each other to ensure that a dead-
lock condition does not occur (i.e. two states in dif-
ferent components are marked inconsistent because
they are each waiting for the other to occur.) Some
of the details of the concurrent simulation algorithm
are still being developed to ensure that the desired
generality 1s provided.

5 Alternative Abstraction
Techniques

Model decomposition provides a general framework
for performing abstraction during the simulation of
alarge model. The decomposition of a model is inde-
pendent of the simulation. Furthermore, the behav-
ior of each component is reasoned about separately
from the interactions between components. This ar-
chitecture allows other decomposition methods to
be applied to provide alternative abstraction tech-
nigues.

Iwasaki and Bhandari [1988] build upon Simon’s
[1961] techniques for variable aggregation in dy-
namic structures. They provide a formal analysis of
how variables within a system of equations can be
partitioned and aggregated based upon a quantita-
tive analysis of the equations and their roots. Some
of these techniques could be extended to address the
partitioning and aggregation of variables in a quali-
tative model. This type of analysis could be used to
extend the partitioning techniques currently applied.

Raiman and Williams [1992] describe a method of
identifying dominant behaviors which are used to
divide the state space of a model into regions in
which different behaviors dominate. Order of mag-
nitude reasoning is used to simplify the analysis of

each region. A similar technique could be used when
partitioning the variables to simplify the constraint
network and minimize the interactions between com-
ponents. A separate simulation of the model would
be performed for each of the regions identified.

Kuipers’ [1987] time-scale abstraction groups vari-
ables based upon the relative speed of the mecha-
nisms controlling their values. Variables controlled
by slower mechanisms are considered constant when
simulating the faster mechanisms, while the faster
mechanisms are viewed as instantaneous with re-
spect to the slower mechanisms. Time scale infor-
mation could be used in partitioning the variables
to automate this abstraction technique.

6 Conclusions and Future Work

State-based qualitative reasoning techniques require
a total temporal ordering of events within the be-
havioral description. This can lead to irrelevant
temporal distinctions which increase the complex-
ity of the simulation and obscure the relevant be-
havior. Before developing heuristics to determine
which temporal correlations are relevant to the cur-
rent task, simulation techniques must be developed
to allow for a range of temporal distinctions. Model
decomposition and simulation provides an architec-
ture which does not require many of the temporal
orderings specified in a traditional qualitative simu-
lation.

Model decomposition has been applied successfully
to a number of examples. Two of these examples are
discussed in this paper. The simulation techniques
used are separate from the method used to decom-
pose the model. Our objective is to ensure that the
constraining power of a standard qualitative simu-
lation is retained by these simulation techniques re-
gardless of the variable partitioning selected. This
would allow the ‘decomposition algorithm to select
a partitioning which highlights distinctions relevant
to the current task. Due to the dependency infor-
mation which must be maintained during a concur-
rent simulation, model decomposition may increase
the computational complexity of a simulation if the
granularity of the partitioning is too small. This
information must also be taken into account when
decomposing a model.

Fxtensions to the model decomposition and simula-
tion technique are still required to provide the gener-
ality that is desired. In particular, this technique has
vet to be applied to large, multi-component models
with complicated interaction patterns. This research
is currently being extended in a number of ways.




o The details of the concurrent simulation algo-
rithm must be developed further to ensure that
the variable partitioning selected does not affect
the constraining power of the simulation.

e Model decomposition requires a partitioning of
the variables into components. This partition-
ing determines the temporal correlations which
are provided by the simulation. Techniques for
automatically selecting the optimal partitioning
for a given model and task are being investi-
gated.

e Model decomposition provides an architecture
which reasons about the behavior of each com-
ponent separately from the interactions between
the components. This architecture allows other
decomposition methods to be applied to pro-
vide alternative abstraction techniques. In par-
ticular, we are interested in incorporating order
of magnitude and time-scale information when
performing the variable partitioning.

e A complexity analysis of the simulation algo-
rithm must be performed and compared against
a standard QSIM simulation to evaluate its ef-
fectiveness at reducing the computational com-
plexity introduced by these irrelevant temporal
distinctions.
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