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Abstract

Any attemptto introduceautomationinto themoni-
toringof complexphysicalsystemsmust startfrom
a robust anomalydetectioncapability. This task
is far from straightforward,for a singledefinition
of what constitutesan anomalyis difficult to come
by. In addition, to makethe monitoringprocess
efficient, andto avoid thepotentialfor information
overloadon human operators,attention focusing
must alsobeaddressed.When an anomaly occurs,
moreoftenthannotseveralsensorsareaffected,and
thepartiallyredundantinformationtheyprovidecan
beconfusing,particularlyin acrisis situationwhere
aresponseis neededquickly.
Thefocusof this paperis a new techniquefor at-
tentionfocusing.Thetechniqueinvolvesreasoning
aboutthe distancebetweentwo frequencydistri-
butions,andis usedto detectboth anomaloussys-
tem parametersand“broken” causaldependencies.
Thesetwo formsof informationtogetherisolatethe
locus of anomalousbehaviorin the systembeing
monitored.

1 Introduction
Mission Operationspersonnelat NASA havethetask of de-
termining, from momentto moment,whether a spaceplat-
form is exhibiting behaviorwhich is in any way anomalous,
which coulddisrupt theoperationof theplatform,andin the
worstcase,couldrepresenta lossof ability to achievemission
goals. A traditionaltechniquefor assistingmissionoperators
in spaceplatformhealthanalysisis theestablishmentof alarm
thresholdsfor sensors,typically indexedby operatingmode,
which summarizewhich rangesof sensorvalues imply the
existenceof anomalies. Anotherestablishedtechniquefor
anomalydetectionis thecomparisonof predictedvaluesfrom
a simulationto actualvaluesreceivedin telemetry.However,
experiencedmissionoperatorsreasonaboutmorethanalarm
threshold crossings anddiscrepanciesbetweenpredictedand
actual to detectanomalies:they may ask whethera sensoris
behavingdifferently thanit has in thepast,or whetheracur-
rentbehaviormayheadto—theparticularbaneof operators—a
rapidly developingalarmsequence.

Ourapproachto introducingautomationinto real-timesys-
tems monitoring is basedon two observations: 1) mission

operatorsemploy multiple methodsfor recognizinganoma-
lies,and2) missionoperatorsdo not andshould not interpret
all sensordataall of thetime. Weseekan approachfordeter-
miningfrom momentto momentwhichof theavailablesensor
datais mostinformativeaboutthepresenceof anomaliesoc-
cuffing within a system.The workreportedhereextendsthe
anomalydetectioncapabilityin Doyle’s SELMON monitoring
system[4, 5] by addingan attentionfocusingcapability.

Othermodel-basedmonitoringsystemsincludeDvorak’s
MIMIC, whichperformsrobustdiscrepancydetectionforcon-
tinuousdynamicsystems[6], andDeCoste’sDATMI , which
infers systemstatesfrom incompletesensordata [3]. This
workalsocomplementsotherwork within NASA on empiri-
cal and model-basedmethodsfor faultdiagnosisof aerospace
platforms[1,7, 8, 10].

2 Background: The SELMON Approach
How doesa humanoperatoror a machineobservingacom-
plex physicalsystemdecidewhensomethingis goingwrong?
Abnormal behavioris alwaysdefinedas somekind of depar-
turefromnormalbehavior.Unfortunately,thereappearsto be
no single, crisp definitionof “normal” behavior. In thetradi-
tionalmonitoringtechniqueof limit sensing,normalbehavior
is predefinedby nominalvaluerangesfor sensors.A funda-
mental limitation of this approachis the lackof sensitivity
to context. In the other traditionalmonitoring techniqueof
discrepancydetection,normal behavioris obtainedby simu-
latinga modelof thesystembeingmonitored.Thisapproach,
while avoiding theinsensitivityto contextof the limit sens-
ing approach,has its own limitations. The approachis only
as good as the systemmodel. In addition, normal system
behavior typically changeswith time, andthe model must
continueto evolve. Given theselimitations,it canbedifficult
to distinguishgenuineanomaliesfromerrorsin themodel.

Noting the limitations of the existing monitoring tech-
niques,we havedevelopedan approachto monitoringwhich
is designedto maketheanomalydetectionprocessmorero-
bust, to reduce the numberof undetectedanomalies(false
negatives).Towardsthis end,we introducemultipleanomaly
models,eachemployinga different notion of “normal” be-
havior.

2.1 Empirical Anomaly DetectionMethods
In this section,we briefly describethe empirical methods
that we use to determine,from a local viewpoint, when a



sensoris reportinganomalousbehavior. Thesemeasuresuse
knowledgeabouteach individualsensor,withoutknowledge
of anyrelationsamongsensors.

Surprise
An appealingway to assesswhether current behavioris

anomalousor not is via comparisonto past behavior. This
is the essenceof the surprise measure. It is designedto
highlightasensorwhichbehavesotherthanit hashistorically.
Specifically,surpriseusesthehistorical frequencydistribution
for the sensorin two ways: To determinethe likelihood of
the given current valueof the sensor(unusualness),and to
examinethe relative likelihoods of different values of the
sensor(informativeness). It is thosesensorswhich display
unlikely values when other values of the sensorare more
likely which get a high ,s-urprisescore. Surpriseis not high
if theonly reasona sensor’svalue is unlikely is that thereare
many possiblevaluesfor thesensor,all equallyunlikely.

Alarm
Alarm thresholdsfor sensors,indexedby operatingmode,

typically areestablishedthroughanoff-line analysisof system
design.Thenotionof alarm in SELMON extendstheusualone
bit of information(thesensoris inalarmor it isnot),andalso
reportshow muchof thealarmrangehasbeentraversed.Thus
a sensorwhich hasgonedeepinto alarm getsa higherscore
thanonewhich hasjustcrossedoverthealarmthreshold.

Alarm Anticipation
The alarm anticipation measurein SELMON performs a

simpleformof trendanalysistodecidewhetherornotasensor
is expectedto be in alarm in thefuture. A straightforward
curvefit is usedto projectwhenthe sensorwill next crossan
alarmthreshold,in eitherdirection. A high scoremeansthe
sensorwill soonenteralarmorwill remainthere. A low score
meansthesensorwill remainin thenominalrangeoremerge
from alarmsoon.

Value Change
A changein thevalueof a sensormay be indicativeof an

anomaly. In order to betterassesssuch an event, the value
changemeasurein SELMONcomparesa givenvaluechange
to historical valuechangesseenon that sensor. The score
reportedis basedon theproportionof previousvaluechanges
which were lessthanthegivenvaluechange.It is maximum
when thegivenvaluechangeis thegreatestvaluechangeseen
to dateon that sensor. It is minimum when no valuechange
hasoccurredin that sensor.

2.2 Model-BasedAnomalyDetectionMethods

Although many anomalies can be detected by applying
anomalymodelstothebehaviorreportedat individualsensors,
robustmonitoringalso requiresreasoningaboutinteractions
occurring in a system anddetectinganomaliesin behavior
reportedby severalsensors.

Deviation
The deviationmeasureis our extensionof the traditional

methodof discrepancydetection. As in discrepancydetec-
tion,comparisonsaremadebetweenpredictedandacttmal sen-
sorvalues,anddifferencesare interpretedto be indicationsof

anomalies.This raw discrepancyis enteredinto anormaliza-
tion processidentical to thatusedfor thevalue changescore,
and it is this representationof relativediscrepancywhich is
reported.Thedeviationscorefora sensoris mini mtmmif there
is no discrepancyand maximumif thediscrepancybetween
predictedandactual is thegreatestseento dateon thatsensor.

Deviationonly requiresthata simulationbeavailablein any
form for generatingsensorvaluepredictions. However, the
remainingsensitivityand cascadingalarm.v measuresrequire
theability to simulateand reasonwith a causalmodel of the
systembeing monitored.

Sensitivity and CascadingAlarms
Sensitivitymeasturesthe potential for a large global per-

turbationto developfrom current state. Cascadingalarms
measuresthepotentialfor an alarmsequenceto developfrom
currentstate. Both of theseanomalymeasuresusean event-
driven causalsimulator [2, 9] to generatepredictionsabout
futurestatesof thesystem,givencurrent state.Currentstate
is taken to be definedby both the current valuesof system
parameters(not all of which maybesensed)andthepending
eventsalready residenton thesimulator agenda. The mea-
suresassignscoresto individual sensorsaccordingto how the
system parametercorrespondingto a sensorparticipatesin,
or influences,the predictedglobal behavior. A sensorwill
haveits highestsensitivityscore when behavior originating at

that sensorcausesall sensorscausallydownstreamto exhibit
their maximumvaluechangeto date. A sensorwill haveits
highestcascadingalarmsscorewhenbehaviororiginatingat
that sensorcausesall sensorscausallydownstreamto go into
analarmstate.

2.3 PreviousResults

In orderto assesswhetherSELMONincreasedtherobnustness
of theanomalydetectionprocess,weperformedthefollowing
experiment:We comparedSELMONperformanceto the per-
formanceof thetraditionallimit sensingtechniqueinselecting
critical sensorsubsetsspecifiedby a SpaceStationEnviron-
mental Control and Life SupportSystem(ECLSS) domain
expert, sensors seen by that expert as usefulin understanding
episodesof anomalousbehaviorin actualhistoricaldatafrom
ECLSS testbedoperations.

Theexperimentaskedthefollowingspecificquestion:How
oftendid SELMONplacea “critical” sensorin thetophalfof
its sensororderingbasedon theanomalydetectionmeasures?

The performanceof a randomsensorselectionalgorithm
would be expectedto be about 50%; any particularsensor
would appearin the top halfof the sensororderingabouthalf
thetime. Limit sensingdetectedthe anomalies76.3% of the
time, SELMONdetectedtheanomalies95.1% of thetime.

Theseresults showSELMON performingconsiderablybet-
ter than the traditionalpracticeof limit sensing. They lend
credibility to ourpremisethat themosteffective monitoring
system is onewhich incorporatesseveralmodelsof anoma-
lous behavior. Our aim is to offer a morecomplete,robust
setof techniquesfor anomalydetectionto makehumanoper-
atorsmoreeffective,or to providethebasisfor an automated
monitoringcapability.

The following is a specificexampleof thevalueaddedof
SELMON. During an episodein which theECLSS pre-heater
failed, systempressure(which normally oscillateswithin a



known range)becamestable. This“abnormallynormal” be-
havioris notdetectedby traditional monitoringmethodsbe-
causethesystempressureremainsfirmly in thenominalrange
wherelimit sensingfails to trigger. Furthermore,thefluctuat-
ingbehaviorof thesensoris notmodeled;thepredictedvalue
is an averagedstablevaluewhich fails to triggerdiscrepancy
detection.See[4, 5] for moredetailson thesepreviousresults
in evaluatingtheSELMONapproach.

3 Attention Focusing

A robust anomaly detection capability provides the core for
monitoring,butonly when this capabilityis combinedwith
attentionfocusingdoesmonitoringbecomeboth robustand
efficient. Otherwise,thepotentialproblemsof information
overloadandtoo many falsepositivesmay defeattheutility
of themonitoringsystem.

The attentionfocusingtechniquedevelopedhereusestwo
sourcesof information: historical data describingnominal
systembehavior, and causal information describingwhich
pairs of sensorsare constrainedto be correlated,dueto the
presenceof adependency.Theintuitionis that theorigin and
extentof an anomalycanbe determinedif the misbehaving
systemparametersand themisbehavingcausaldependencies
canbedetermined.Suchinformationalso supportsreasoning
to distinguishwhethersensors,systemparametersor mech-
anismsare misbehavingdueto the fact that the signatureof
“broken” nodesandarcsin thecausalgrapharedistinguuish-
able. SeeFigure 1.

For example, the expectedsignature of an anomaloussen-
sor includesthenodeof thesensoritself andtheimmediately
adjacentarcs correspondingto the causaldependenciesthat
thesensorparticipatesindirectly. Theintuitionis that theac-
tualsystemis behavingnormallysothelocusof “brokenness”
is isolatedto thesensorandtheset of adjacentcausaldepen-
dencieswhich attemptto reconcilethebogusvaluereported
by the sensor.

Theexpectedsignatureof an anomaloussystemparameter
also includesnodesand arcs which are downstreamin the
causalgraphfrom thenodecorrespondingto the systempa-
rameter. The intuition hereis that themisbehavior,beingin
theactualsystem,will propagate.

Theexpectedsignatureof an anomalousmechanismalso
includesarcs andnodescausally downstreamfrom thearc
correspondingto themechanism.Onceagain,the intuitionis
that the misbehavioris in the systemitself, and it will prop-
agate.The way to distinguishthis casefrom theanomalous
systemparametercaseis to examineall input arcs (assuming
therearemorethanone)to themostcausallyprior nodein the
“broken” subgraph.

3.1 Two Additional Measures
While SELMONruns,it computesincrementalfrequencydis-
tributions for all sensorsbeing monitored. Thesefrequmency
distributionscanbe savedas a methodfor capturingbehav-
ior from any episodeof interest. Of particular interestare
historicaldistributionswhich correspondto nominal system
behavior.

To identify ananomaloussensor,weapply adistancemea-
sure,definedbelow, to the frequencydistributionwhichrep-
resentsrecentbehaviorto thehistoricalfrequencydistribution
representingnominal behavior. We call themeasuresimply

Signature 01 Anomatous System Parameter

Signature of Anomatous Sensor

Slgnotu,e ot Anomalous Mechanism

Figure 1: AnomalousSystemParameters,SensorsandMech-
anisms.

distance. To identify a“broken” causaldependency,we first
apply the samedistancemeasureto thehistorical frequency
distribtitionsfor thecausesensorand the effect sensor.This
referencedistanceis aweakrepresentationof thecorrelation
that existsbetweenthevaluesof the two sensorsdue to the
causaldependency.Thisreferencedistanceis thencompared
to thedistancebetweenthe frequencydistributionsbasedon
recentdataof thesamecausesensorandeffectsensor.Thedif-
ferencebetweenthereferencedistanceandtherecentdistance
is themeasureof the“brokenness”of thecausaldependency.
We call this measurecausaldistance.

3.2 Desired Propertiesof the DistanceMeasure

Definea distribution1) asthevectord~suchthat

and

Vi,0 <d~< I

ri—I

d, =

i =0

Fora sensor5, weassumethat therangeof valuesfor the
sensorhasbeenpartitionedinto um contiguoussubrangeswhich
exhaustthisrange.Weconstructa frequencydistributionasa
vector l)~of length mm, wherethevalueof d~is the frequency
with whichS has displayed a value in the ith subrange.

If otur aim wasonly to comparedifferent frequencydistri-
butionsof the samesensor,wecoulduseadistancemeasure
which requmiredthe numberof partitions,or bins in the two
distributionsto beequal, and therangeof valuescoveredby
thedistributionsto be the same. However,sinceour aim is
to be ableto comparethefrequencydistributionsof different
sensors,theseconditionsmustberelaxed.

Beforedefiningtheotherdesiredpropertiesof thedistance
measure,we define two specialtypes of frequencydistri-
btmtion. Let 1’ be the random, or flat distribution where
Vi, d~= ~. Let S~be the set of “spike” distributionswhere
d~=landVj ~ i,dj = 0.

We seekadistancemeasurefor frequencydistributionswith
thefollowing properties:
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This propertymerely definesthe measureas a distance
measure.
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We do not wish to emphasizewhetherwe are comparing
recentdatato historical dataor viceversa, or causedatato
effectdataor viceversa.
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Thedistancemeasureshoulddistinguishdistinctfrequency
distributions.

SpikeDistinctness
Vi ~ j,A(S~,S~) >0
We wishtheset of S~to be distinguishable.

SpikeOrdering
Vi,A(Sj,Sj+m)<A(S~,S1+2)
Thedistancemeasureshouldpreservethefactthat thereis

anorderingon thebins.

SpikeEquidistance
Vi�j,A(Sj,Sj+m)=A(S~,S~+1)
Thereshouldbe no differencein weighting of the spike

distributions.

Spike/FlatEquidistance
Vi � j,A(S~,F)= A(S~,F)
The differencebetweenany spike distributionandtheflat

distributionis tobe thesame.

ExtremaVDmD2Vi,A(Dm, 1112) <A(S~,F)
Any spike distribution and the flat distribution are to be

consideredthemostdifferent. All otherdistributionsfall in
between.

3.3 The DistanceMeasure
Thedistancemeasureis computedby projectingthe two dis-
tributionsinto thetwo-dimensionalspace[f, s] in polarcoor-
dinatesandtaking theeuclidiandistancebetweentheprojec-
tions.

Define the“flatness” componentf(i)) of a distributionas
follows:

— d,

This is simply the sum of the bin-by-bin differencesbe-
tweenthegivendistributionandP. NotethatO < f(D) < 1.
Also, f(Sj) —f 1 as rm —+ x.

Define the “spikeness”components(D) of a distribution
as:

n—u

This is simply the centroidvaluecalculationfor thedistri-
bution. Theweightingfactor~will beexplainedina moment.
Onceagain,0< s(1)) < 1.

F

Figure2: ThefunctionA(D
1

, D
2
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Now take [f, s] to be polar coordinates [r, 0]. This maps
F to the origin andthe Si to points along an arc on the unit
circle. SeeFigure2.

By inspection,theSpikeDistinctness,SpikeOrdering and
Spike/FlatEquidistancepropertiesare satisfied. The Spike
Equidistanceproperty is satisfied becausethere is no un-
equalweightingappliedin the centroidcalculation.TheDis-
tance,Identity andSymmetrypropertiesfollow from taking
the euchidiandistancebetweenthe projectionsof thedistri-
butions. The Extremapropertyis satisfiedby taking q~=

This choiceof ql guaranteesthat A(So, ~ = A(F, So) =

A( F, Sn_u)= 1 andall otherdistancesin theregionwhich is
therangeof A areby inspection< 1.

The Distinctnessproperty is not satisfied by the func-
tion A(D1, D2). This is not surprisingbecausethe multi-
dimensionalspacearisingfrom thenumberof binsin adistri-
butionis collapsedto a two-dimensionalspace[f, s]. (Con-
sideranytwo distributionsD1, ‘~2with thesameevennumber
of bins such that the frequenciesin thefirst ~ bins andthe
frequenciesin the second~ bins both sum to 0.5 in both
i)m and D2. Thesetwo frequency sets within each distri-
bution may beexchangedand/orpermutedwithoutviolating
A(D1, 11)2) = 0). Thoughtson how to addressthis limitation
appearbelow.

Insensitivityto thenumberof bins in the two distributions
andtherangeof valuesencodedin thedistributionsis provided
by the [f, s] projectionfunction,which abstractsawayfrom
thesepropertiesof thedistributions.

Wemay note in passing that the distance measure described

heremaybe easily modified to apply to continuousdistribu-
tions,whentheoretical modelsof the behaviorof a system
areavailable.Thecentroidcalculationof thes componentis
easilyaccomplished,andthe f componentinvolves merely
the integralof a difference,which may be accomplishednu-
merically if necessary.

1=1 so
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Figure 3: The ForwardReactiveControl System(FRCS) of
the SpaceShuttle.

3.4 Results
In this section, we report on the results of applying the dis-
tribution distance measure to the task of focusing attention
in monitoring. The distribution distancemeasureis usedto
identify misbehavingnodes(distance)andarcs (causal dis-
tance)in thecausalgraphof thesystembeing monitored,or
equivalently,detectandisolate theextentof anomaliesin the
systembeing monitored.

3.4.1 A SpaceShuttle Propulsion Subsystem
Figure4 showsa causalgraphfor aportionof theForward

ReactiveControlSystem(FRCS)of theSpaceShuttle.A full
causalgraphfor theReactiveControlSystem,comprisingthe
Forward, Leftand Right RCS,was developedwith thedomain
expert.

3.4.2 Attention FocusingExamples
SELMON was run on sevenepisodesdescribingnominal

behaviorof theFRCS.The frequencydistributionscollected
during theseruns weremerged. Referencedistanceswere
computedfor sensorsparticipatingin causaldependencies.

SELMON was thenrun on 13 differentfault episodes,rep-
resentingfaults suchas leaks, sensorfailuresand regulator
failures. Two of theseepisodeswill be examinedhere; re-
sults were similar for all episodes. In each fault episode,
and for eachsensor, the distribution distancemeasurewas
applied to the incrementalfrequencydistribution collected

He V L
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Figure 4: Causal Graphfor the ForwardReactiveControl
System(FRCS)of the SpaceShuttle.

during the episodeandthe historical frequencydistribution
from themergednominalepisodes.Thesedistanceswerea
measureof the“brokenness”of nodesin thecausalgraph;i.e.,
instantiationsof thedistancemeasure.

New distanceswere computedbetweenthe distributions
correspondingto sensorsparticipatingincausaldependencies.
Thedifferencesbetweenthenew distancesandthereference
distancesfor the dependencieswere a measureof the“bro-
kenness”of arcs in thecausalgraph;i.e., instantiationsof the
causaldistancemeasure.

The first episodeinvolves a leak affecting the first and
secondmanifolds (jets) on the oxidizer side of the FRCS.
Thepressuresat thesetwo manifoldsdropto vaporpressure.
Thedependencybetweenthesepressuresandthepressurein
thepropellanttank is severedbecausethevalvebetweenthe
propellanttank and the manifoldsis closed. Thus thereare
two anomaloussystemparameters(the manifold pressures)
and two anomalousmechanisms(theagreementbetweenthe
propellantandmanifoldpressureswhenthevalve is open).

The distanceand causal distancemeasurescomputedfor
nodesandarcs in the FRCS causalgraphreflect this faulty
behavior. See Figure 5. (To visualize how the distribution
distancemeasurecircumscribestheextentof anomalies,the
coloring of nodesand the width of arcs in the figure are
correlatedwith themagnitudesof theassociateddistanceand
causal distancescores). An explanationfor the apparent
helium tanktemperatureanomalyis not available.However,
we notethat this behaviorwas presentin thedatafor all six
leakepisodes.

Thesecondepisodeinvolvesan overpressurizationof the
propellanttank dueto a regulatorfailure. Onboardsoftware
automaticallyattemptsto chosethe valveswhich isolate the
heliumtank fromthepropellanttank. Oneof thevalvessticks
and remains open.

He V L Cl He V R Cl
He yR ci

Pr Tank 0
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FigureS:A leakfault.
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The distanceand causal distancemeasuresisolate both
the misbehavingsystemparameters(propellantpressureand
valve statusindicators)andthealteredrelationshipsbetween
theheliumandpropellanttankpressuresandbetweenthepro-
pellant tank pressureand the valve statusindicators. Over-
pressurizationof thepropellanttankalsoalterstheusualrela-
tion betweenpropellanttankpressureandmanifoldpressures.
SeeFigure6.

4 Discussion

Thedistanceandcausaldistancemeasuresbasedon thedis-
tribution distancemeasurecombinetwo concepts: 1) empir-
ical dataalonecan bean effectivemodel of behavior,and 2)
the existenceof a causaldependencybetweentwo parame-
ters implies that their valuesare somehowcorrelated. The
causaldistancemeasureconstructsa model of the correla-
tion betweentwo causallyrelatedparameters,capturingthe
generalnotionof constraintin anadmittedlyabstractmanner.
Nonetheless,thesemodelsof constraintarising from causal-
ity providesurprisingdiscriminatorypowerfor determining
whichcausaldependencies(andcorrespondingsystemmech
anisms)aremisbehaving.(In thedistancemeasurefordetect-
ing misbehavingsystemparameters,we are simply usingthe
degenerateconstraintof expectedequalitybetweenhistorical
andrecentbehavior.)

Theapproachdescribedin this paperhasusability advan-
tagesover other forms of model-basedreasoning.The over-
headinvolved in constructingthecausalandbehavioralmodel
of the system is minimal. The behavioral model is derived
directly from actual data; no offline modeling is required.
Thecausalmodelis of thesimplestform,describingonly the
existenceof dependencies.For theShuttleRCS,a 198-node
causalgraphwasconstructedina singleoneandonehalfhour
sessionbetweentheauthorandthedomain expert.

Figure 6: A pressure regulator fault.

4.1 Monitoring Architecture
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Theattentionfocusingcapabilityprovidedby thedistanceand
causaldistancemeasurescanbe combinedwith themultiple-
viewpointanomalydetectioncapabilityalreadydevelopedin
SELMONto constructa generalmonitoringarchitecture.

The multiple anomaly measures (includingthedistanceand
causaldistancemeasures,which are anomalydetectionmea-
suresin their ownright) providecontinuousanomalydetection
capability. All of thesemeasuresarenormalizedto therange
[0, 1] so their sensitivity, individually or collectively, can be
fine-tunedfor the behaviorof particular monitoredsystems.
Whenevera detectedanomalyis announced,theextentof the
anomalyis isolatedby applyingtheresultsof thedistanceand
causaldistancemeasuresto thecausalgraphof the system.
If SELMON is supportinga humanoperator,the operator’sat-
tentionis foctusedon the locusof theanomaly,ratherthanthe
potentiallylong and confusinglist of the individual manifes-
tationsof theanomaly.

Once ananomalyis detectedandcircumscribed,theopera-
tor canonceagainusethesetof anomalydetectionmeasuresto
gathersupplementary,multiple-viewpointinformationabout
thedetectedanomalyat multipleprobepoints.

4.2 Anomaly Characterization

Most model-based reasoningwork has focusedon diagnosis,
treatingmonitoringas a “front-end”, withdiscrepancydetec-
tion usuallychosenas the monitoring technique. Ourwork
suggests modifications to this view.

Monitoring is a complex,subtleandimportanttask in its
own right. The most sophisticateddiagnosisengineis of
limited utility if it is unrehiablyinvokedby a weak anomaly
detectionmodule.

The monitoring/diagnosisdistinctionactuallydefinestwo
polesof acontinuum. At oneend is anomalydetection.The
goalofanomalydetectionis simplyto determineif ananomaly
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exists. Generalmodels of what constitutes an anomalyare
utilized, with limited referenceto explicit behaviormodels.
Reasoningis local ratherthan global.

Next in the continuumis anomaly characterization. The
goal here is to describethe extent of anomalousbehavior.
Again, the use of explicit behaviormodelsis limited,butrea-
soningnow encompassesa global view of the system. The
anomalydetectioncapabilityof SELMONand the attention fo-
cusingcapabilitywhichis thesubjectof this papercorrespond
to anomalydetectionandanomalycharacterizationas defined
here.

Next comes fault isolation. Reasoning now is refined from
anomaly extent to anomaly source. Explicit behvaior models
may be used, but not explicit fault models.

Finally comesfull-fledgedfault diagnosis,which includes
anexplanationof how theproposedfaultproducedtheanoma-
lous behavior. Explicit fault modelsmay be referencedto
verify hypotheses.

In actualreal-timemonitoringpractice,operatorsperform
anomaly detection and characterization routinely, and fault
isolation when enoughinformation is availableto support
their reasoning.Faultdiagnosisis typically doneoff-line.

5 Future Work
Several issues need to be examinedto continuetheevaluation
of the attention focusing technique based on the distribution
distancemeasureand its utility in monitoring.

Weneedto understand the sensitivity of the technique to
how sensor valuerangesarepartitioned.Clearlythe discrim-
inatory powerof thedistribution distancemeasureis related
to the resolutionprovidedby thenumberof binsand thebin
boundaries.Theresultsreportedhereareencouragingfor the
numberof FRCS sensorbins were in many casesas how as
threeand in no casesmorethan eight.

We needto understandthesuitability of thetechniquefor
systemswhichhavemanymodesorconfigurations.Wewould
expectthat the discriminatorypowerof thetechniquewould
becompromisedif thedistributionsdescribingbehaviorsfrom
different modeswere merged. Thus the techniquerequires
that historicaldatarepresentingnominalbehavioris separable
foreachmode. If therearemanymodes,atthevery leastthere
is a datamanagementtask. A capabilityfor trackingmode
transitionsis also required. An unsupervisedlearning sys-
tem whichcanenumeratesystemmodesfrom historical data
andenableautomatedclassificationwould solvethis problem
nicely.

We needto understandconsequencesof the Distinctness
propertynotbeingsatisfiedby thedistributiondistancemea-
sure. Somedistinctdistributionsarenot beingdistinguished;
of more relevantconcernis whetheror not distributionswe
wish to distinguisharein fact beingdistinguished.Thejudi-
cial introductionof additional components(e.g., thenumber
of local maximain afrequencydistribution)tothedistribution
projectionspace[f, .s] may be requiredto enhancediscrim-
inability.

Thediscriminatory powerof the causaldistancemeasure
mightbeenhancedby retainingtheflatness/spikenessdistinc-
tion. For many linear functions,different input distributions
may map to value-shiftedbut similarly shapedoutput distri-
butions. In otherwords, thespikenesscomponentmay vary
while the flatnesscomponentmay be relatively invariant. It

maybe possibleto distinguishthe casewheremisbehavior
is the result of bogusvaluesbeing propagatedthroughstill
correctly functioningmechanisms.

It shouldbepossibleto describethetemporal(alongwith
thecausal/spatial)extentof anomaliesby incrementallycom-
paring recentsensorfrequencydistributionscalculatedfrom
a “moving window” of constantlength with staticreference
frequencydistributions.

6 Towards Applications
SELMON is being appliedat theNASA JohnsonSpaceCen-
ter as a monitoring tool for SpaceShuttleOperationsand
SpaceStationOperations.Currentapplicationefforts include
the one for thePropulsion(PROP)flight control discipline
reportedon here,andone for theThermal (EECOM) flight
control discipline. EECOM wishes in particularto be able
to know and reasonabout how actual orbiter thermal per-
formancediffers from predictionsgeneratedby an available
mathematicalmodel of orbiter thermalperformance.An op-
erationalSELMON prototype,available startingwith the re-
centHubbleRepairmissionis availablefor evaluationby all
flight controldisciplines,only requiringthat a list of sensors
“owned” by that disciplinebeprovided.

At the Jet PropulsionLaboratory,we are looking at the
problemof onboarddownlinkdeterminationfor thePlutoFast
Flyby project,now in itsearlyplanningphase.Thespacecraft
will havelimited communicationsbandwidthandit will notbe
possibleto transmitall onboard-collectedsensordata. Only
eight hoursof coveragefromtheDeepSpaceNetworkwill be
availableperweek. The challengeis to devisea methodfor
constructinga suitablesummaryof a week’s worth of sensor
dataguaranteedto reporton any anomalieswhich occurred.
The anomalydetectionand attentionfocusingcapabilitiesof
SELMONmaybewell-matchedto this task.

7 Summary
We havedescribedthepropertiesandperformanceof adis-
tance measureusedto identify misbehaviorat sensorloca-
tions andacrossmechanismsin a systembeingmonitored.
The techniqueenablesthe locus of an anomalyto be deter-
mined.This attentionfocusingcapabilityis combinedwith a
previouslyreportedanomalydetectioncapability in a robust,
efficient andinformativemonitoring system,which is being
appliedin missionoperationsat NASA.
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