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Abstract
Sometimesinferencesmadeat somespecific time are valid
at othertimes,too. In model-baseddiagnosisand monitoring
aswell asqualitative simulationinferencesareoften re-done
althoughthey havebeenperformedpreviously.We propose
a newmethodfor sharingpredictionsdoneat different times,
thus mutually cutting down prediction costs incurring at
different times. Furthermore,we generalizethe technique
from ‘sharing predictions across time’ to sharing
predictionsacrosstime and logical contexts’.Assumption-
basedtruth maintenanceis a form of sharing predictions
acrosslogical contexts.Becauseof the closeconnectionsto
the ATMS we were able to use it as a means for
implementation.We reportempirical resultson monitoring
different configurationsof ballast water tanks as used on
offshoreplatformsand ships.

1. Introduction
Successfullydeploying model-baseddiagnosissystems

for complex technicaldevicesultimately requiresan on-
line coupling with the artifactsvia sensorsandactuators.In
the field, insteadof being manually activatedwhena mal-
function occurs,as a first taskanautomaticon-linediagno-
sis system has to decide whether there actually is a
diagnosisproblem. Does the behavior deviate from the
specifiednormal operation?Only then the diagnosispro-
cesswill start.A precedingmonitoringphaseis required.

Once thefaulty componentshavebeenidentified,anin-
tegratedmonitoringanddiagnosissystemmay be allowed
to switch back to monitoringmode interpretingthe mea-
surementscoming from the sensorsunder the hypotheses
that the identified componentsare broken.Monitoring and
diagnosismay thusbeinterleaved.

Considerthe applicationfrom (Dressieret al. 1993)de-
picted in figure 1. A collectionof ballast tanksof various
sizes is placed at different locationson a ship or offshore
platform (the completesystemcomprises40 tanks). De-
pending on load, wind and seamotion, water is pumped
into or out of someof the tanks or the sea. This can be a
rathertime consumingprocess.For example,in our appli-
cationon a craneship, filling threetanks as shown in figure
1 canlast up to 1 .5 hours.At any time failuresmay occur
potentiallycausingcatastrophicdamage.A brokenpressure

Figure1. A ballasttanksystem

sensor, for instance,may enableor disablethe. automatic
closingof a valve, thuscausingan overflow or critical un-
balance’.

A streamof datacomingfrom thesystemgivesus values
forpressures,valve status,float switch statusandpumpac-
tivity. This datais processedin a conventionalway, such
that we can assumeto havederivativesfor thesevalues,
too.

Whenobservedbehavioris to be classifiedas normal or
faulty, a model is an invaluableasset.It allows predicting
valuesfor systemvariables,hencegeneratingexpectations
about behaviorwhen data, even if incomplete,becomes
available.

But thepurposeof modelsfor monitoringand diagnosis
is substantiallydifferent.While the formerareonly needed
to detectmalfunctions,the latter must haveenoughdetail
for localizing malfunctioning components.Diagnosissys-
tems like DP (Struss 1992) and Magellan (Böttcher,
Dressler1993),however,canUse multiple modelsof differ-
ent granularityduring oneand the samediagnosissession.
Theirdiagnosisprocessstartswith coarsermodelsthat are
suitablefor monitoring,too.

In this paperwe focus on the predictiontask from the
viewpoint of dependency-baseddiagnosis.Dependencies

1. The shipwreckof the polish ferry ‘Jan Heweliusz’ in January
1993 is suspectedto he causedby an incorrect filling of ballast
tanks.



are necessaryfor tracingbackcontradictoryderivationsto
their origins. This allows diagnosisenginessuch as GDE
(de Kleer, Williams 1987), GDE~(Struss,DressIer1989),
Sherlock (de Kleer, Williams 1989), (de Kleer 1991) and
others tofirst identify conflicting assumptionsetsand then
to generatediagnoses.

We usequalitativemodelsfor both, diagnosisand moni-
toring:
• For consistency-baseddiagnosisenginesthey proveto

be especially useful; more detailed models become
obsolete, when a qualitative abstractionof them has
beenrefuted (Struss 1992). Thereoften is no needto
explorefurtherdetails.

• For monitoringonly significantdeviationsfrom normal
operationare of interest.Using a qualitativemodel for
the normal mode onecancapturethe completeset of
goodbehaviorsinsteadofjusta singleone.

Whenno discrepanciesbetweenobservedandexpected
behavior are detected,the empty diagnosisis computed
meaningthat every componentis working correctly. With
this in mind, we canview monitoringas ‘diagnosiswithout
discrepancie.s’.

Foron-linecoupling predictionis necessaryat the rateof
incomingdata. Speedis of prime interest.Allowing a fault
to go undetectedpotentially leads to catastrophe.Ideally,
the consistencycheck,i.e. prediction,shouldbe carriedout
at the samplingrateof the sensors,say every 10 seconds.

Supposewe are monitoring the processof filling the
tanks.Incomingreal valuesarefirst mappedto theirqualita-
tive abstractions,and then fed into the prediction machin-
ery. This we can afford to do every, say two minutes,
dependingon thecost for running themodel.Usingqualita-
tive models,mostof the timenothingchangesin qualitative
terms,sincedifferent real values are mappedto the same
qualitativevalue. Therefore,we endup making moreor less
the same predictionsevery two minuteswhile we would
like a highersamplingrate and do predictionwith newval-
tiesonly.

We proposea new techniquefor cachingandgeneraliz-
ing previously madepredictions. It allows carrying over
predictionsfrom one timeto another.An inferencemadeat
a specific time in the past “generalizes”to thesameinfer-
encemadeat all possibletimes. Thereis no needto ever
make an inferencetwice. Consequently,prediction can be
much fasterwhen relevant previous inferenceshavebeen
made.Dueto theuseof qualitativemodelsthis happensall
of the time. Intuitively, only when a monitored variable
changesits qualitative value, new predictionshave to be
made.In the ballast tanksapplication(Dressleretal. 1993),
the samplingrate during the monitoringphasewent down
from 2 minutesto 2 seconds

In the next sectionwe introducethe key conceptof ‘pre-
diction sharingacross ti/ne’. Section 3 generalizesour re-

stilts by combinationwith anotherpopularconceptcalled
‘prediction sharing acrosscontexts’,commonly known as
ATMS (de Kleer 1986). In section4 delayedconsequences
of inferencesare consideredandbuilt into the framework.
Finally, in section 5, we discussempirical results we ob-
tainedfor different configurationsof ballast tanks.

2. Prediction Sharing AcrossTime

2.1. Temporally Generic Formulae
The systemdescriptionSD is temporally generic in the

sensethat it describesbehaviorindependentof the specific
timeat which, for example,a filling processtakesplace. For
example,the model for the normal mode of a valve looks
like follows:
ok (valve)—~valve.status= valve.cmd
ok (valve)—~valve/i

1
] = - valve/i

2
]

ok (valve)—.> (valve.statu.v= close —~ valve/i
1

! = valve/i
2

]= 0
ok (valve)—> ( valve/i

1
]� 0—> valve.stat~~s= valve.crnd= open

Themeaningof thevariablesis: valve.cmd:control input,
valve.status:valve’s stateoutput, val veil: flow into the left!
top end, valve,i2: flow into the right/bottom end. Square
brackets [.] indicate qualitative variables. The complete
modelscanbefound in (Dressleret al. 1993).

In general,inferencesmadefrom suchdescriptionshave
the form

a~(t)A...Aa
2

(t) ~(A(t))
where a. and f3 are propositionalatoms, temporal index
refersto somespecific time and A (t) denotesanothertem-
poral index. Wecall A adelayfunction,butallow for nega-
tive delays.Therefore,wemaydrawconclusionsaboutpast
systemvariablevalues,too.
A componentc. operatingin mode m(c) is assumedto ex-
hibit the samebehaviorat every specific time index given
that the samevalues are fed into it. This includes that the
delayfunction is also independentof the specific time. As-
suminglineartime, wecandepictthesituationin figure 2.
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Figure 2. A time-independentdelay-function
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More generally, assumingarbitrary delay functions A1

and A2, ‘independenceof an inferenceof the specific time’
is expressedas:

VA1 VA2 V t.I A2 (A1 (t)) = A1 (A2 (t)) A

Ia1(t0) A ... A a,
1

(t
0

) —.> WA
1

(to)) I
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A formulaof theform a1 (t) A ... A a
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with propositionalatomsa
1

a~and13 indexedby time
andA(t) wherethedelayfunction A adheresto this restric-

tion is calledtemporal/vgeneric(or t-generic).Without loss
of generalitywe assumethe systemdescriptionto be a set
of t-generic formulae.Pleasenote,that weare not commit-
ted to a specific ontologyof time like time points or inter-
vals.

For the restof section2 andsection3 thedelay function
consideredis identity, i.e. no delays.In section4 we show
how delay is built into theframework.

2.2. Temporal Generalizationof SingleInstance
Inferences

Fromthediscussionso far it is clearthat someinferences
madeat a specific time will be valid at other times, too.
Thus, thereis no needto re-do them whenwe employ an
appropriatecachingscheme.

We start from statementslike proposition4) holding at
time t~,4)@t~,calledtemporallyindexedstatements.

In consistency-baseddiagnosiswe are given a set of
them, usuallythe observationsOBSmadeat certain times
and the assumptionsfl that the correspondingcomponents
are working in a specific modeat a certaintime. Thetask is
to checkthe consistencyof SDu OBSu Fl whereSD is
independentof time in thesensediscussedbefore.

In qualitativesimulationweare given a set of suchstate-
rnentsfor someinitial time t0. The task thereis to enumer-
ate possibleevolutionsof the systemfrom this point on.
Again, we aredealingwith a systemdescriptionSD which
is independentof timeandobservationsata specifictime t

0
.

Whenwepredicta value4) to hold at t~,4)@t~,theunder-
lying support consists of a set of t-generic formulae
SD’ ~ SD anda set of sentencesS holdingat specific times
t
1

,..., t~:SD’uS~4)
Sincewe haverestrictedthe delayfunctions to identity,

all of thesetemporalindicesareidentical to t~,i.e. t = t
1

=

= t
11

. It follows immediatelythat the derivationof 4) canbe
generalizedfrom the singletime index t~to setsof time in-
dices.
Definition: The temporalextentof a, TE (a), denotesthe
set {t~I a holdsat t

1
}.

The t-genericformulae in the systemdescriptionhold at
all times, but propositionsabout observedvalues etc. are
only availableatcertaintimes.
Definition: A setGS of non-universallyholding formulaeis
calledgroundsupportftr 4 iff thereexists SD’ ç SD such
that SD’ uGS ~ 4).
Lemma: If GS is a ground support for 4) then

~ TE(a)cTE(4))
(XE GS

This meanswe cangeneralizea derivationof 4) at a spe-
cific time t

1
to the intersectionof temporalextents of 4)’s

support.Wheneverall the propositionsin CShold at some

time t
1
� t, weknow without re-deriving4) that it holdsat

too.

2.3. Symbolic Computation of Temporal Extents

Forderivedformulae4) which do not occurin temporally
indexedstatements,like e.g. 4)@t13, the temporalextentcan
be computedsymbolically by consideringall ground sup-
port setsfor 4), CS(4)).
Lemma: Let no explicit temporalstatementsabout 4) be
available.Then

TE(4)) = ~ flTE(a).
So GS(~)(XE 5

If explicit temporalstatementsabout4) are available,we
haveto addthesetimes.
Lemma: If explicit temporal statementsabout 4) at times

areavailable,then
TE(4)) = ~ TE(a) u {t

1
,..., t,,}

So G5(~)(XE S

Forthepropositionsa that may occurin the ground sup-
port of derivedformulaewe introducesymbolsTE~to rep-
resent TE(a) . These propositions a are exactly the
propositionsfor which we have temporally indexedstate-
ments.The symbolsTEaare calledtemporalbasesymbols.
In model-baseddiagnosisthis meanswe are creatingthese
symbols for the observablevalues and for the modesof
components.In qualitativesimulationthe qualitativevalues
of the initial statearetreatedin this way.

Using thesesymbolseachatom is labelledwith a unique
symbolic representationof its temporalextent.
Definition: TemporalLabel

A set of symbol sets, ( { TE~,..., TE0 }
TE(X~...~ TE~~k~ ~‘ is called temporal label of 4),

TL (4)), iff
[Correctness]

Eachset TE~ TE(2 } is a groundsupportfor 4).
[Completeness]

IfS is a ground supportfor 4), then thereexists
{ TE~ TE~ in TL (4)) such that
{ TE~’ TE(X’~}C S.

[!vlinimalitv]

Forno i andj, i �j, TE0 TE(X} is a subsetof

{TEa TE(1 }.
[Consistei~cv]

Forno i~{ TE~ TE(X} is agroundsupportfor I.

2.4. Implementation
The similarities to logical labelsas usedin the ATMS (de

Kleer 1986) are apparentand our implementationmakes
useof this fact. Simply defining the newly introducedsym-
bols TE~to be assumptions(in ATMS terminology)suffic-
es. The ATMS will then compute the temporal labels as
defined.Therelation to the ATMS is very closeas we shall
seein the next section.



3. Prediction Sharing AcrossTime and

Contexts

In section 2 we haveseenhow from statementssuchas
e.g. a@t1 anda@t

2
the temporal information is factored

out andhandledseparatelyfrom the propositiona’s con-
tent: we computea’s temporal label. In systemslike TCP
(Williams 1986), HEART (Joubel, Raiman 1990), EEP
(Guckenbiehl 1991) andTARMS (Holtzblatt et al. 1991)
the abovestatementswould behandledas two separateenti-
ties. Thisnotonly preventsthesesystemsfrom sharingpre-
dictionsacrosstime as describedin section 2. Whenthese
approachesare combined with assumption-basedtruth
maintenancefor thepurposeof dependency-recording,they
are hit by a multiplied exponentialblowup: since the two
statementsaretwo separateentities,bothof themhavetheir
own ATMS-label.

Our approachallows for a smooth integration with the
ATMS. Actually, we haveusedthe ATMS to implementit.
After a briefreview of theATMS, we sketchhow ‘predic-
tion sharing across time’ is done. Then we extend the
schemeto coverthe usualpredictionsharingacrosslogical
ATMS contexts.

3.1. Prediction Sharing AcrossLogical Contexts
The languageof the ATMS (de Kleer 1986) consistsof

propositionalhornclausescalledjustifications

A distinguishedsubsetASSMof the occurring proposi-
tionalatomsPROP is calledassumptions:ASSMc PROP.
The setof atomsderivablefrom a set of assumptions(envi-
ronment)E is called(logical) contextof E anddenotedby
cxt(E). All environmentswhich allow derivingthe constant
I are consideredinconsistent.

Reasoningin multiple contextsthen canbe characterized
as consideringall consistentcontextscxt(E) of all subsets
E c ASSMof the givenassumptions.All propositionsare
labelledwith thecompleteset of minimal (w.r.t. set inclu-
sion) consistentenvironmentsfrom which they are deriv-
able. I.e. for a propositionp its (logical) label is definedas

LL(p) = (E ~ ASSMIE consistentA p a cxt (E)
AVE’CEp~cxt(E’)}

Justificationsare usedto record the inferencesas per-
formedby aproblemsolver,in ourcasea predictiveengine.
The label of a propositionis computedby propagatingla-
bels in the networkof justifications usingbasicset opera-
tions. By cachinginferencesasjustificationsan inferenceis
done oncefor some contextand the results are sharedby
contexts characterizedby superset environments, thus
avoidingexpensivere.~omputations.

The labels the ATMS mustcomputecangrow big and
hamperlarger applications.Focusingon interesting con-
texts (Dressier,Farquhar 1990) avoids this problem while

maintaining the essentialpropertiesof assumption-based
truthmaintenance.

3.2. The ATMS asa Mechanism for Maintaining
Temporal Labels

As usual we usethe ATMS for recordingthe inferences
made by the problem solver, i.e. the predictive engine.
Whenthe antecedentsal,...,ansimultaneouslyholdat some
time t~,thepredictiveenginewill concludethat 13 holds,too,
given the t-genericformula

a1(t)A...Aa0(r)—>13(t)
in SD. A justificationa1 A ... A a0 —.> 13 is then submitted

to the ATMS, and for temporal basesymbols ATMS as-
sumptionsare created.The following theoremshowsthat
this sufficesto computetemporallabels.
Theorem: Let TBS be the set of temporalbasesymbols,
TBS-ASSMcASSMbe the subsetof ATMS assumptions
correspondingto temporal base symbols, and P. TBS-
ASSM—> TBSbe thebijective mappingthat associatesas-
sumptionswith their correspondingsymbols.Then

TL(4))= {{e’I e~EA e’ =P(e)) I Ea LL(4)) }.

All that remainsto be doneis to record temporally in-
dexed statements. To this end, we create symbols
EXT— TEa thatdenotethe enumerationof timeswherea
holds. Each’temporal index t~actuallyoccurring in an ob-
servation like X=l5@t~is treatedas an assumption,too.
Thenjustifying EXT—TEa by temporalindices at which
a, holds like e.g.

t~.
7
—> EXT- TEa and t

143
—> EXT—TE0

guaranteesthat thelogi~allabel of EXT— TEa ~numerates
theappropriatetimes:

LL(EXT—TEa) = {{t
17

}, {t
143

}, ...

Pleasenote tht~tthe possibly large numberof assump-
tions for times t~does not causean exponentialgrowth of
label sizes. LL(EXT—TE0) grows linearly and from
EXT— TEa no furtherpropt~gationis possible.

Querying’ the systemabout the temporalextent of an
atom 4) proceedsin two stages.First, a lookupof 4)’s tempo-
ral label is done.Thentheunion of intersectionsof theenu-
meratedtemporalextentsEXT— TE0 gives the answer.In
a similarwayqueriesabout a specific‘time areprocessed.
Lemma:
4)@t1iff {t

1
} a fl LL(EXT—TE0)U

tenvE TL(4) TE,~o Ien

Please,notethat if temporallyindexedstatementsabout4)
areavailable,then { TE~}is anelementof TL(4)).

3.3. Combining Prediction SharingAcrossTime
with Assumption-basedTruth Maintenance

Logical andtemporalcontextsareorthogonalconceptsin
the sensethat they ought to be combinablewithout restric-
tion. Forexample,wemight wantto statethat aholdsat t

1
-,’

but on/v under (logical) assumptionsA and B. There are



two principal entry points for this typeof statementswith
logical contextqualifications.On thelevel of temporallyin-
dexedstatementsweneedto captureconditionslike the one
above.On the level of recordedinferenceswe mustbeable
to expressthat

a1 (t) A ... A a0 (t) 13(t)
holds regardlessof the time t as before,hutonly under(log-
ical) assumptions,sayA andB.

Temporallyindexedstatementscanbequalifiedwith log-
i~alcontextinformation by usingjustificationslike

A A B A t
17

—* EXT— TEa insteadof
—* EXT- TEa.

Consequently,the logical labeiLL(EXT—TEa) is ({t
17

, A,
B), ...}. Eachenvironmentcontains exactly 6ne temporal
index assumptionwhile therestof its assumptionsprovides
the desiredlogical context.Note, that theusual minimiza-
tion andconsistencymaintenancedoneby the ATMS takes
care of redundant and inconsistent information in
LL(EXT—TEa).

On the level ~f recordedinferencesthesolution is equally
simple. Logical assumptions,say A andB, are addedto the
antecedents:

AABAa
1

A...Aa
0

—*13
Thetemporal labelsthen arerelativeto the logical context.
Definition: TemporalLabelunderAssumptions
A set of symbol sets, { { TE~ TEa }

TE0 TEa } }, is called temporal label of 4) under
logical assumptions0, TL(4), 0) if
[Correctness]

Eachset{TEa , ..., TE~} u0isaground
supportfor 4). ‘~

[Completeness]

If S u 0 is a groundsupportfor 4) with temporalbase
symbolsS. then thereexists { TE~ TE~} in TL(4))
suchthat{TEa TE0 } ~S.

[fvuinimality] ‘

Forno i andj, i �j, TE1~ TEa} is a subsetof
{TE0 TE0 }.

[Consist~Jicy] ~‘“

Forno i, { TE~, ..., TE~k~ u 0 is a groundsupport
forl.

Given this relative notion of temporal label the theorem
from 3.2changes,too.

Theorem:Let TBS be the set of temporalbasesymbols,
TBS-ASSMc ASSMthe subsetof ATMS assumptionscor-
respondingto temporalbasesymbols,P: TBS-ASSM—*

lBS thebijective mappingthat associatesassumptionswith
their correspondingsymbolsand0 a set of logical assump-
tions,Then
TL(4),0)={(e’Iea EnTBS-ASSMAe’=P(e)}I

E a LL(4)) A (E \ TBS-ASSM)c 0}

The two stageapproachto answeringqueriesremains.
The evaluation,however,is donerelativeto the logical con-
text specifiedas part of thequery.
Lemma: 4)@t~underassumptions0 if
~t~} uSe ~ LL(EXT—TE0)

A ScO

U
(enr E ii. (~,~t)SE o leEr

4. DelayedConsequences

Delayed consequencesare requiredto model a compo-
nent suchasa valvewhichreceivese.g. an ‘open’ command
andthenchangesto state‘open’ aftersometime, Generally,
in qualitative simulation(Kuipers 1986) the interstatebe-
havior, i.e. P-andI-transitions,requiresdelay. An inference
with delayedconsequent

a
1

(t)A...Aa
2

(t)13(A(t))
is handledspecially.No directtranslationinto a justification
is possible.Instead,for the atom 3 in the delayedconse-
quenta temporalbasesymbol TE~is introducedand han-
dled as before:an assumptionis createdandalso a symbol
EXT-TE~to denotetheextensionaldescriptionof timesand
logical contexts where 13 holds. A simple demon mecha-
nismguaranteesthat, wheneverthe conjunction of a~holds
at some t

1
tinderassumptions0, (A(t~)}u 0 is recordedby

EXT-TE~,i.e. an assumptionA(t1) andthejustification
01 A ... A 0~AA(t1)—*EXT-TE~withO1 00e0

arecreated.

S. Empirical Results

Weexperimentedwith a varietyof ballast tankconfigura-
tions to provideevidencethat wehaveactuallymet our goal
of reducingpredictioncostswhenrelevantinferenceshave
been madepreviously. In the figures below we show run
time andnumberof necessarynewpredictiveinferences(y-
axis) as they developovertime (x-axis). As a measurefor
newpredictiveinferenceswe havechosentheincrementof
the numberof justifications submittedto the system.This,
however,canonly bean approximationof the really neces-
sary efforts since a singlejustification may causea huge
amountof label propagation.In the figuresthedashedcurve
shows the new justificationswhile the solid line indicates
predictiontime.

The correlationbetweenrun time andnumberof neces-
sary new predictionsis apparent.All our experimentson
differentconfigurationsof ballast tanksshow the samepat-
tern: In the beginningthepredictioncost (run time) is sub-
stantial. No previous predictions have beencachedand
every possiblederivationhasto bedoneexplicitly. Lateron
whena numberof variableschangetheir qualitative value,
predictioncost increasesbut doesnot reachthe initial cost.
Without prediction sharingrun time is in the rangeof the
initial cost all of thetime
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Figure 3. Monitoring the3-Tanksystemfrom figure 1,considering
0differenttestvectorsoccuringat most10 times.Predictiontime

for first. timepoint: 3.04s,averagefor additional timepoints:0.2 Is
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Figure4. Monitoring a20-Tanksystem,considering10different
test vectorsoccuringat most 10 times.Predictiontime for first
tJrnepoint: 36.3s,averagefor additionaltimepoints:3.8s

Currently weattributethe slow, seeminglylinearincrease
of runtime to the monotonically increasingnumberofjusti-
fications and assumptions.Simply handling thesestructures
requires sometime. For example,after 57 timepoints the
systemsmaintains12792justificationsand405 assumptions
for the 20 tanks system.This suggeststhat we reducethe
amountof recordedpastdataby introducinga time window
for relevantdata.
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