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Abstract

Sometimes inferences made at some specific time are valid
at other times, too. In model-based diagnosis and monitoring
as well as qualitative simulation inferences are often re-done
although they have been performed previously. We propose
a new method for sharing predictions done at different times,
thus mutnally cutting down prediction costs incurring at
different times. Furthermore, we generalize the technique
from ‘sharing predictions across time’ to ‘sharing
predictions across time and logical contexts’. Assumption-
based truth maintenance is a form of sharing predictions
across logical contexts. Because of the close connections to
the ATMS we were able to use it as a means for
implementation. We report empirical results on monitoring
different configurations of ballast water tanks as used on
offshore platforms and ships.

1. Introduction

Successfully deploying model-based diagnosis systems
for complex technical devices ultimately requires an on-
line coupling with the artifacts via sensors and actuators. In
the field, instead of being manually activated when a mal-
function occurs, as a first task an automatic on-line diagno-
sis system has to decide whether there actually is a
diagnosis problem. Does the behavior deviate from the
specified normal operation? Only then the diagnosis pro-
cess will start. A preceding monitoring phase is required.

Once the faulty components have been identified, an in-
tegrated monitoring and diagnosis system may be allowed
to switch back to monitoring mode interpreting the mea-
surements coming from the sensors under the hypotheses
that the identified components are broken. Monitoring and
diagnosis may thus be interleaved.

Consider the application from (Dressler et al. 1993) de-
picted in figure 1. A collection of ballast tanks of various
sizes is placed at different locations on a ship or offshore
platform (the complete system comprises 40 tanks). De-
pending on load, wind and sea motion, water is pumped
into or out of some of the tanks or the sea. This can be a
rather time consuming process. For example, in our appli-
cation on a crane ship, filling three tanks as shown in figure
1 can last up to 1.5 hours. At any time failures may occur
potentially causing catastrophic damage. A broken pressure

Figure 1. A ballast tank system

sensor, for instance, may enable or disable the. automatic
closing of a valve, thus causing an overflow or critical un-
balance'.

A stream of data coming from the system gives us values
for pressures, valve status, float switch status and pump ac-
tivity. This data is processed in a conventional way, such
that we can assume to have derivatives for these values,
too.

When observed behavior is to be classified as normal or
faulty, a model is an invaluable asset. It allows predicting
values for system variables, hence generating expectations
about behavior when data, even if incomplete, becomes
available.

But the purpose of models for monitoring and diagnosis
is substantially different. While the former are only needed
to detect malfunctions, the latter must have enough detail
for localizing malfunctioning components. Diagnosis sys-
tems like DP (Struss 1992) and Magellan (Boéttcher,
Dressler 1993), however, can use multiple models of differ-
ent granularity during one and the same diagnosis session.
Their diagnosis process starts with coarser models that are
suitable for monitoring, too.

In this paper we focus on the prediction task from the
viewpoint of dependency-based diagnosis. Dependencies

1. The shipwreck of the polish ferry ‘Jan Heweliusz’ in January
1993 is suspected to be caused by an incorrect filling of ballast
tanks.




are necessary for tracing back contradictory derivations to

their origins. This allows diagnosis engines such as GDE

(de Kleer, Williams 1987), GDE' (Struss, Dressler 1989),

Sherlock (de Kleer, Williams 1989), (de Kleer 1991) and

others to first identify conflicting assumption sets and then

to generate diagnoses.

We use qualitative models for both, diagnosis and moni-
toring:
¢ For consistency-based diagnosis engines they prove to

be especially useful; more detailed models become
obsolete, when a qualitative abstraction of them has
been refuted (Struss 1992). There often is no need to
explore further details.

«  For monitoring only significant deviations from normal
operation are of interest. Using a qualitative model for
the normal mode one can capture the complete set of
good behaviors instead of just a single one.

When no discrepancies between observed and expected
behavior are detected, the empty diagnosis is computed
meaning that every component is working correctly. With
this in mind, we can view monitoring as ‘diagnosis without
discrepancies’.

For on-line coupling prediction is necessary at the rate of
incoming data. Speed is of prime interest. Allowing a fault
to go undetected potentially leads to catastrophe. Ideally,
the consistency check, i.e. prediction, should be carried out
at the sampling rate of the sensors, say every 10 seconds.

Suppose we are monitoring the process of filling the
tanks. Incoming real values are first mapped to their qualita-
tive abstractions, and then fed into the prediction machin-
ery. This we can afford to do every, say two minutes,
depending on the cost for running the model. Using qualita-
tive models, most of the time nothing changes in qualitative
terms, since different real values are mapped to the same
qualitative value. Therefore, we end up making more or less
the same predictions every two minutes while we would
like a higher sampling rate and do prediction with new val-
ues only.

We propose a new technique for caching and generaliz-
ing previously made predictions. It allows carrying over
predictions from one time to another. An inference made at
a specific time in the past “generalizes” to the same infer-
ence made at all possible times. There is no need to ever
make an inference twice. Consequently, prediction can be
much faster when relevant previous inferences have been
made. Due to the use of qualitative models this happens all
of the time. Intuitively, only when a monitored variable
changes its qualitative value, new predictions have to be
made. In the ballast tanks application (Dressler et al. 1993),
the sampling rate during the monitoring phase went down
from 2 minutes to 2 seconds !

In the next section we introduce the key concept of ‘pre-
diction sharing across time’. Section 3 generalizes our re-

sults by combination with another popular concept called
‘prediction sharing across contexts’, commonly known as
ATMS (de Kleer 1986). In section 4 delayed consequences
of inferences are considered and built into the framework.
Finally, in section 5, we discuss empirical results we ob-
tained for different configurations of ballast tanks.

2. Prediction Sharing Across Time

2.1. Temporally Generic Formulae

The system description SD is temporally generic in the
sense that it describes behavior independent of the specific
time at which, for example, a filling process takes place. For
example, the model for the normal mode of a valve looks
like follows:
ok (valve)—> valve status = valve.cmd
ok (valve)— valve [i;] = - valve.[i5]
ok (valve)— (valve.status = close = valve.[i;] = valve.[i;] = 0 )
ok (valve)— (valve.[i;] # 0 — valve.status = valve.cmd = open )

The meaning of the variables is: valve.cmd: control input,
valve.status: valve’s state output, valve.il: flow into the left/
top end, valve.i2: flow into the right/bottom end. Square
brackets [.] indicate qualitative variables. The complete
models can be found in (Dressler et al. 1993).

In general, inferences made from such descriptions have
the form

o, () Aoao, () - B(A(D)

where o, and B are propositional atoms, temporal index ¢
refers to some specific time and A () denotes another tem-
poral index. We call A a delay function, but allow for nega-
tive delays. Therefore, we may draw conclusions about past
system variable values, too.

A component ¢ operating in mode m{c) is assumed to ex-
hibit the same behavior at every specific time index given
that the same values are fed into it. This includes that the
delay function is also independent of the specific time. As-
suming linear time, we can depict the situation in figure 2.

Figure 2. A time-independent delay-function
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More generally, assuming arbitrary delay functions A
and A,, ‘independence of an inference of the specific time’
is expressed as:

VA VAV ] Ay (A (1) = Ay (Ay (1) T A

[ lo(tg) Ao A0y (1) = BlA(1) ]

10Dy 1g)) A oo A Oy (Ag(ty)) = B(A(Agfi))) 1]

A formula of the form o, (1) A ... A0, (1) = B(A(1))



with propositional atoms o , ..., & and B indexed by time
t and A(t) where the delay function A adheres to this restric-
tion is called temporally generic (or t-generic). Without loss
of generality we assume the system description to be a set
of t-generic formulae. Please note, that we are not commit-
ted to a specific ontology of time like time points or inter-
vals.

For the rest of section 2 and section 3 the delay function
considered is identity, i.e. no delays. In section 4 we show
how delay is built into the framework.

2.2. Temporal Generalization of Single Instance
Inferences

From the discussion so far it is clear that some inferences
made at a specific time will be valid at other times, too.
Thus, there is no need to re-do them when we employ an
appropriate caching scheme.

We start from statements like proposition ¢ holding at
time 1;, @1, called temporally indexed statements.

In consistency-based diagnosis we are given a set of
them, usually the observations OBS made at certain times
and the assumptions I1 that the corresponding components
are working in a specific mode at a certain time. The task is
to check the consistency of SD U OBS w11 where SD is
independent of time in the sense discussed before.

In qualitative simulation we are given a set of such state-
ments for some initial time #;. The task there is to enumer-
ate possible evolutions of the system from this point on.
Again, we are dealing with a system description SD which
is independent of time and observations at a specific time #,.

When we predict a value ¢ to hold at t;, 0 @t,, the under-
lying support consists of a set of t-generic formulae
SD' ¢ SD and a set of sentences S holding at specific times
I oon 1t SD'US |E O

Since we have restricted the delay functions to identity,
all of these temporal indices are identical to 1, i.e. t; =1 = ...
= t,. It follows immediately that the derivation of ¢ can be
generalized from the single time index ¢; to sets of time in-
dices.

Definition: The temporal extent of o, TE (), denotes the
set {t;| o holds at t;}.

The t-generic formulae in the system description hold at
all times, but propositions about observed values etc. are
only available at certain times.

Definition: A set GS of non-universally holding formulae is

called ground support for ¢ iff there exists SD' < SD such

that SD" UGS = ¢.

Lemma: If GS is a ground support for ¢ then
M TE (o) c TE (9)

oe G

This means we can generalize a derivation of ¢ at a spe-
cific time 1; to the intersection of temporal extents of ¢’s
support. Whenever all the propositions in GS hold at some

time 1;#1; we know without re-deriving ¢ that it holds at 1
t00.

2.3. Symbolic Computation of Temporal Extents

For derived formulae ¢ which do not occur in temporally
indexed statements, like e.g. @15, the temporal extent can
be computed symbolically by considering all ground sup-
port sets for 0, GS (0).

Lemma: Let no explicit temporal statements about ¢ be
available. Then

TE(®) = U NTE(w).

Se GS(poe s
If explicit temporal statements about ¢ are available, we
have to add these times.
Lemma: If explicit temporal statements about ¢ at times
ti» ..., 1, are available, then
TEW) = U NTE(w) v {n, . 1},

Se GS(doe S

For the propositions « that may occur in the ground sup-
port of derived formulae we introduce symbols TE, to rep-
resent TE (o). These propositions o are exactly the
propositions for which we have temporally indexed state-
ments. The symbols TE,, are called temporal base symbols.
In model-based diagnosis this means we are creating these
symbols for the observable values and for the modes of
components. In qualitative simulation the qualitative values
of the initial state are treated in this way.

Using these symbols each atom is labelled with a unique
symbolic representation of its temporal extent.
Definition: Temporal Label

A set of symbol sets, { {TE%, - TEul"} R
{TE(XM, cen TE(XM} }, is called remporal label of o,
TL (§), iff
[Correctness]

Each set { TE%, . TE%} is a ground support for ¢.
[Completeness]

If S is a ground support for ¢, then there exists

{TE(x”’ TE%} in TL (¢) such that

{TE%, TE(XU} cS.
[Minimality)

Fornoiandj, i#], {TE%’

{TE%, TE%} .
[Consistency]

Forno i, {TE%.

TE, k} is a subset of

, ’I‘E(x’k} is a ground support for L.

2.4. Implementation

The similarities to logical labels as used in the ATMS (de
Kleer 1986) are apparent and our implementation makes
use of this fact. Simply defining the newly introduced sym-
bols TE, to be assumptions (in ATMS terminology) suffic-
es. The ATMS will then compute the temporal labels as
defined. The relation to the ATMS is very close as we shall
see in the next section.




3. Prediction Sharing Across Time and
Contexts

In section 2 we have seen how from statements such as
e.g. 0@, and 0@1, the temporal information is factored
out and handled separately from the proposition o's con-
tent: we compute o's temporal label. In systems like TCP
(Williams 1986), HEART (Joubel, Raiman 1990), EEP
(Guckenbiehl 1991) and TARMS (Holizblatt et al. 1991)
the above statements would be handled as two separate enti-
ties. This not only prevents these systems from sharing pre-
dictions across time as described in section 2. When these
approaches are combined with assumption-based truth
maintenance for the purpose of dependency-recording, they
are hit by a multiplied exponential blowup: since the two
statements are two separate entities, both of them have their
own ATMS-label.

Qur approach allows for a smooth integration with the
ATMS. Actually, we have used the ATMS to implement it.
After a brief review of the ATMS, we sketch how ‘predic-
tion sharing ‘across time’ is done. Then we extend the
scheme to cover the usual prediction sharing across logical
ATMS contexts.

3.1. Prediction Sharing Across Logical Contexts

The language of the ATMS (de Kleer 1986) consists of

propositional horn clauses called justifications
o A A0, B

A distinguished subset ASSM of the occurring proposi-
tional atoms PROP is called assumptions: ASSM < PROP.
The set of atoms derivable from a set of assumptions {(envi-
ronment) E is called (logical) context of E and denoted by
cxt(E). All environments which allow deriving the constant
L are considered inconsistent.

Reasoning in multiple contexts then can be characterized
as considering all consistent contexts cxt(E) of all subsets
E c ASSM of the given assumptions. All propositions are
labelled with the complete set of minimal (w.r.t. set inclu-
sion) consistent environments from which they are deriv-
able. Le. for a proposition p its (logical) label is defined as

LL(p)={E c ASSM| E consistent A p € cxt (E)
AVE cEpecxt(E)}

Justifications are used to record the inferences as per-
formed by a problem solver, in our case a predictive engine.
The label of a proposition is computed by propagating la-
bels in the network of justifications using basic set opera-
tions. By caching inferences as justifications an inference is
done once for some context and the results are shared by
contexts characterized by superset environments, thus
avoiding expensive re~computations.

The labels the ATMS must compute can grow big and
hamper larger applications. Focusing on interesting con-
texts (Dressler, Farquhar 1990) avoids this problem while

maintaining the essential properties of assumption-based
truth maintenance.

3.2. The ATMS as a Mechanism for Maintaining
Temporal Labels

As usual we use the ATMS for recording the inferences
made by the problem solver, i.e. the predictive engine.
When the antecedents 0.,...,04, simultaneously hold at some
time 1;, the predictive engine will conclude that B holds, too,
given the t-generic formula

o, (1) A...aa () —>PB()

in SD. A justification o) A ... A 0y, = B is then submitted
to the ATMS, and for temporal base symbols ATMS as-
sumptions are created. The following theorem shows that
this suffices to compute temporal labels.

Theorem: Let TBS be the set of temporal base symbols,
TBS-ASSM < ASSM be the subset of ATMS assumptions
corresponding to temporal base symbols, and ¥: TBS-
ASSM — TBS be the bijective mapping that associates as-
sumptions with their corresponding symbols. Then
TLo)={{elec Ene’ =Y(e)} | E€ LL(}) }.

All that remains to be done is to record temporally in-
dexed statements. To this end, we create symbols
EXT-TE, that denote the enumeration of times where o
holds. Each' temporal index t; actually occurring in an ob-
servation like X=15@y, is treated as an assumption, too.
Then justifying EXT —TE_, by temporal indices at which
o, holds like e.g. '

iy — EXT - TEa and tigz = EXT - TEa
guarantees that the logical label of EXT — TE, enumerates
the appropriate times: '

LI(EXT - TEa,.) ={{f17}, {r1a3}, - }.

Please note that the possibly large number of assump-
tions for times ¢; does not cause an exponential growth of
label sizes. LL(EXT-TE,) grows linearly and from
EXT - TE, no further propagation is possible.

Querying the system about the temporal extent of an
atom ¢ proceeds in two stages. First, a lookup of ¢’s tempo-
ral label is done. Then the union of intersections of the enu-
merated temporal extents EXT — TE gives the answer. In
a similar way queries about a specific time are processed.
Lemma:

p@r;iff {1,} € LL(EXT-TE)

O M
tenve TL($)TE, € teny
Please, note that if temporally indexed statements about ¢
are available, then {TE} is an element of TL($).

3.3. Combining Prediction Sharing Across Time
with Assumption-based Truth Maintenance

Logical and temporal contexts are orthogonal concepts in
the sense that they ought to be combinable without restric-
tion. For example, we might want to state that ¢ holds at 1
but only under (logical) assumptions A and B. There are



two principal entry points for this type of statements with
logical context qualifications. On the level of temporally in-
dexed statements we need to capture conditions like the one
above. On the level of recorded inferences we must be able
to express that
o, () A.Aaa () =B

holds regardless of the time ¢ as before, but only under (log-
ical) assumptions, say A and B.

Temporally indexed statements can be qualified with log-
ical context information by using justifications like

AABAt,— EXT-TE, instead of

tj7— EXT-TE, .

Consequently, the logical label LILEXT~TE_)is {{t)7, A,
B}, ...}. Each environment contains exactly one temporal
index assumption while the rest of its assumptions provides
the desired logical context. Note, that the usual minimiza-
tion and consistency maintenance done by the ATMS takes
care of redundant and inconsistent information in
LL(EXT-TE,).

On the level of recorded inferences the solution is equally
simple. Logical assumptions, say A and B, are added to the
antecedents:

AABAO A AL =B
The temporal labels then are relative to the logical context.
Definition: Temporal Label under Assumptions
A set of symbol sets, { {TEa“, TE%}
{ TEO‘,,”’ . TE“,,,k} }, is called temporal label of ¢ under

logical assumptions ©, TL(¢, ©) iff
[Correctness]

Each set {TE%, e TE%} w © is a ground

support for ¢.
[Completeness]

If S w ® is a ground support for ¢ with temporal base

symbols S, then there exists { TEa“, TE%} in TL(¢)

such that {TE, , ..., TE%} cS.

[Minimality]
Fornoiandj, i #j, {TE%, TEa'k} is a subset of
{TE%, TE%} .

[Consistency]

For no |, {TE%, s TEa,k} v O is a ground support

for 1.

Given this relative notion of temporal label the theorem
from 3.2 changes, too.
Theorem: Let TBS be the set of temporal base symbols,
TBS-ASSM < ASSM the subset of ATMS assumptions cor-
responding to temporal base symbols, ¥: TBS-ASSM —
TBS the bijective mapping that associates assumptions with
their corresponding symbols and © a set of logical assump-
tions. Then
TL(0,©) = {{e'le€ ENTBS-ASSM n e’ =¥(e)} |

Ee LL(O) A (E\TBS-ASSM) € O}

The two stage approach to answering queries remains.
The evaluation, however, is done relative to the logical con-
text specified as part of the query.

Lemma: ¢ @1, under assumptions 0 iff
{ttt uSe LL(EXT-TE,)

U M
tenve TL(0.0)TE, € teny

ASCH

4. Delayed Consequences

Delayed consequences are required to model a compo-
nent such as a valve which receives e.g. an ‘open’ command
and then changes to state ‘open’ after some time. Generally,
in qualitative simulation (Kuipers 1986) the interstate be-
havior, i.e. P- and I-transitions, requires delay. An inference
with delayed consequent

a, () A...Aa,(t) =B (AD))

is handled specially. No direct translation into a justification
is possible. Instead, for the atom [} in the delayed conse-
quent a temporal base symbol TEjy is introduced and han-
dled as before: an assumption is created and also a symbol
EXT-TEg to denote the extensional description of times and
logical contexts where B holds. A simple demon mecha-
nism guarantees that, whenever the conjunction of ¢ holds
at some 7; under assumptions ©, {A(Ij)} O is recorded by
EXT-TEB, 1.e. an assumption A(tj) and the justification

O A .. A Oy A A EXT-TER with Oy, ..., ©, €0
are created.

5. Empirical Results

We experimented with a variety of ballast tank configura-
tions to provide evidence that we have actually met our goal
of reducing prediction costs when relevant inferences have
been made previously. In the figures below we show run
time and number of necessary new predictive inferences (y-
axis) as they develop over time (x-axis). As a measure for
new predictive inferences we have chosen the increment of
the number of justifications submitted to the system. This,
however, can only be an approximation of the really neces-
sary efforts since a single justification may cause a huge
amount of label propagation. In the figures the dashed curve
shows the new justifications while the solid line indicates
prediction time.

The correlation between run time and number of neces-
sary new predictions is apparent. All our experiments on
different configurations of ballast tanks show the same pat-
tern: In the beginning the prediction cost (run time) is sub-
stantial. No previous predictions have been cached and
every possible derivation has to be done explicitly. Later on
when a number of variables change their qualitative value,
prediction cost increases but does not reach the initial cost.
Without prediction sharing run time is in the range of the
initial cost all of the time !
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Figure 3. Monitoring the 3-Tank system from figure 1, considering
10 different test vectors occuring at most 10 times. Prediction time
for first timepoint: 3.04s, average for additional timepoints: 0.21s
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Figure 4. Monitoring a 20-Tank system, considering 10 different
test vectors occuring at most 10 times. Prediction time for first
timepoint: 36.3s, average for additional timepoints: 3.8s
Currently we attribute the slow, seemingly linear increase
of runtime to the monotonically increasing number of justi-
fications and assumptions. Simply handling these structures
requires some time. For example, after 57 timepoints the
systems maintains 12792 justifications and 405 assumptions
for the 20 tanks system. This suggests that we reduce the
amount of recorded past data by introducing a time window
for relevant data.
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