
A Semi-Quantitative Physics Compiler

Adam Farquhar
KnowledgeSystemsLaboratory

StanfordUniversity
Palo Alto, CA, USA

Ph: +001 415-723-9770
Fax: +001 415-725-5850

Adam_Farquhar©kslstanford.edu

Abstract

Incompleteinformation is presentin manyengineering
domains, hindering traditional and non—traditional
simulation techniques. This paperdescribesSQPC
(semi—quantitativephysicscompiler), an implemented
approachto modelling andsimulation that can predict
thebehaviorof incompletelyspecifiedsystems,suchas
thosethat arise in the watercontrol domain. SQPC
is the first system that unifies compositional model-
ing techniqueswith semi—quantitativerepresentations.
We describeSQPC’s foundations, QS1M and QPC,
and how it extendsthem. We demonstrateSQPC us-
ing an examplefrom thewater supply domain.

1 Introduction
Considerthe problemof water supply control. A lake
hasadam with floodgatesthatcan beopenedor closed
to regulatethe water flow through power generating
turbines, the water level (stage) of the lake, and the
downstreamflow. The goal of a controller is to pro-
vide adequatereservoircapacityfor power generation,
consumption,industrial use, and recreation, aswell as
downstreamflow. In exceptional circumstances,the
controller must also work to minimize or avoid flood-
ing both above and below the dam. This task is both
difficult arid vitally important to the residentsof sur-
rounding areas.The work of controllers could besub-
stantially easedby soundautomaticmodelingand sim-
ulation tools.

There are several forms of incomplete information
that appearin this domain. The preciseshapeand ca-
pacity of lakesor reservoirsis rarely known; theoutflow
from openinga dam’sfloodgatesis only crudely mea-
sured;empirical dataon the level/flow—rate curve for
riversbecomeslessandlessaccuratewhen flood condi-
tions approach;few quantitiesare measured(e.g. flow
ratesof mirioi tributaries arenot measuredat all); the
amountof runoff to be expectedfrom a given rainfall
dependson difficult to measuresurfacecharacteristics
such as saturation; the amount of rainfall that actu-
ally falls on a lake and surrounding areasis difficult
to predict and is impreciselymeasured. Nonetheless,
both mathematicalanalysisand observationsdo pro-
vide rough bounds on the quantities involved. Often,
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roughaccurateboundssuffice to selectappropriateac-
tions.

This domain is challengingfor existingapproachesto
modeling andsimulation. Pure qualitative reasoning
techniques(Forbus1984;Kuipers 1986) do not exploit
thepartial informationavailableandconsequentlypro-
vide insufficiently strong predictions. Traditional nu-
rneric methodsrequiremuch morepreciseinformation
than is available, forcing modelersto make assump-
tions which may invalidate results andwhich may be
difficult to evaluate.

Fortunately, recent advancesin semi-quanUlaiive
simulation techniquesprovide a methodfor predicting
the behaviorof such systems. This work extendsthe
purely qualitative representation(Kuipers 1986) with
meansfor representingsemi—quantitativeinformation
(Berleant & Kuipers 1988; Kuipers & Berleant 1992;
Kay & Kuipers 1993). In this work, semi-quantitative
information is representedin two forms: bounds on
variable valuesand functional bounds (envelopes)on
otherwiseunspecifiedmonotonicfunctions. This is ex-
actly the kind of information that is availablein the
water supply and manyengineeringdomains.

Several systems (Forbus & Falkenhainer 1990;
Iwasaki & Low 1991; Amador, Finkelstein, & Weld
1993) have been developed that use compositional
modellingtechniquesandexploit qualitativemodels to
provide explanationsof numericsimulations.Theyare
unableto representor usesemi-quantitativeinforma-
tion. In order to provide a numericsimulation, they
all requirecompletepreciseinitial conditionsand alge-
braic equations.

This paper describes SQPC (semi—quantitative
physics compiler), an implementedapproachto mod-
elling and simulation that uses semi-quantitative
knowledge. SQPC extendsQPC (qualitative physics
compiler) (Crawford, Farquhar, & Kuipers 1990; Far-
quhar 1993; 1994) to exploit the recent advancesin
semi-quantitativesimulation. SQPCis thefirst compo-
sitional modeling systemto employ semi—quantitative
representationarid simulation.

The input to SQPC is a domain theory and a sce-
narzo. The domain theory is composedprimarily of



modelfragmentdefinitionsthe describeboth thecondi-
tionsunderwhich physicalphenomenonareactive, and
their consequences.The scenariospecifiesobjects that
areknown to beof interest,someinitial conditions,and
somerelationsthat hold throughoutthescenario.Both
thedomain theoryandscenariomayinclude boundson
numeric valuesand monotonic functions. From this,
SQPCgeneratesasetof behavioraldescriptions,guar-
anteedto coverany system trajectory consistentwith
the scenarioand domain theory. A behavior may pass
through a number of distinct operatingregions,each
of which is characterizedby a distinct mathematical
model.

2 Foundations

2.1 Semi—quantitative simulation

SQPCis built on top of theQSIM qualitativesimulator
(Kuipers 1986; 1993). The input to QSIM is a qualita-
live differential equation(QDE) which specifies: (i) a
setof variables(continuouslydifferentiablefunctionsof
time); (ii) a quantity spacefor eachof thesevariables,
specified in terms of a totally ordered set of symbolic
landmark values; (iii) a set of constraintsexpressing
(algebraic,differential or monotonic) relationshipsbe-
tweenvariables.A QDE is an abstractdescriptionof a,
perhapsinfinite, set of ordinary differential equations.
The output of QSIM is a set of behaviors. Eachbe-
havior is a sequenceof states,where a stateis a map-
ping of variables to qualitative values. A qualitative
value representsthe magnitudeof the variable, which
is either equal to a landmark or in the open interval
specified by adjacent landmarks, and its direction of
change(the sign of its time derivative: dcc, sid, mc).
Each state describeseither a time point or an open
temporal interval.

In the semi-quantitative framework employed by
SQPC, the basic qualitative representationis aug-
mentedby useof Semi—QuantitativeDifferential Equa-
tions (SQDE) (Berleant & Kuipers 1988; Kuipers &
Berleant 1992; Kay & Kuipers 1993). Each landmark
may be bounded with a precise numeric upper and
lower bound. Eachmonotonicfunction constraintmay
be boundedwith a precisefunctional upperandlower
bound A monotonic function constraint representsan
element of an infinite set~of real valued functions. Its
general form is ((M s
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An envelopefor su~ha constraint is apair of functions
F = <f, f> that restricts the set being characterized

by theconstraint. That is, an envelope<f,f> for the
abovementionedconstraintcharacterizesthe set
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The semi-quantitativesimulatorsaugmentbehavior

with the numeric bounds. They are also able to use
the semi-quantitativeinformation to rule out qualita-
tively possiblebehaviors. The first semi-quantitative
techniques(Berleant & Kuipers 1988) propagatedthe
bounds throughout each time-point state, and then
used the mean-valuetheoremto constrain the values
across time. The later dynamic envelope techniques
(Kay & Kuipers 1993) construct extremal equations
for the derivative of eachstate variable. These ex-
tremalequationsare then explicitly integratedto pro-
vide bounds on variable valuesacross time intervals.
Neither techniquestrictly dominatesthe other. As a
result, the bounds provided by the two methodsmay
be intersected,yielding sometimesstrongerpredictions
than either alone.

2.2 Qualitative PhysicsCompiler
SQPC is an extension of QPC, whosemodeling lan-
guage builds on Qualitative Processtheory (Forbus
1984). The input to QPC is a domain theory and
scenariospecified in the QPC modeling language. A
domain theory consists of a set of quantified defini-
tions, called modelfragments,eachof which describes
someaspectof the domain,such asphysicallaws (e.g.
massconservation), processes(e.g. liquid flows), de-
vices (e.g. pumps),andobjects(e.g. containers).Each
definition applieswheneverthereexistsasetof partici-
pantsfor whomthestatedconditionsaresatisfied. The
specific systemor situation beingmodeledis partially
describedby thescenariodefinition, which lists asetof
objects that are of interest,someof the initial condi-
tions, relationsthat hold throughoutthescenario,and
boundaryconditions.

Influencesare compositionalrelationsbetweenvari-
ables that are particularly convenient for asserting
fragmentsof information that can be composedinto
constraints. Three kinds of influencesare supported.
An indirect influencesuchas (Y Q+ X) meansthat in
theabsenceof countervailinginfluences,an increasein
X causesan increasein Y and that Y is functionally
determinedby the set of influencing variables. More
precisely (Y Q+ X) meansthat there existsf, a con-
tinuous function, andasetof variables{x~}~<~<~such

that Y = f(X, xi,. . . , x0) and ~ > 0. In the case

of (Y Q X) then ~ < 0. The algebraic influ-

encesQadd and ~ provide the constraint 1

~nd .~ = —1 respectively. Finally, a direct influence
such as (Y I~ X) expressesthat a positive X tends
to increaseY. This is equivalent to an algebraicinflu-
ence on the derivativeof the influencedvariable(i.e.,

(Y 1~X) = ~ and (Y’ Qadd X)).



QPC employs a hybrid architecture in which the
model building portion is separatedfrom the simula-
tor. This architecture allowed SQPC to exploit semi—
quantitative information without changingthe overall
QPC algorithm.

The input to QPC (Farquhar 1994)is a domain the-
ory describingphysicalphenomenaand a specification
of the system to be modeled,called thescenario. The
domain theory and scenarioinduce a setof logical ax-
ioms. QPC uses this databaseof logical axionns to
infer the set of model fragment instancesthat apply
during the time coveredby thedatabase(called the ac-
tive model fragments). Inferencesperformedby QPC
include those concerningstructural relationshipsbe-
tweenobjectsdeclaredin thescenario,and thoseaim-
ing at computing the transitive closureof order rela-
tionships betweenquantities. A databasewith a com-
plete set of model fragment instancesdefines an ini-
tial value problem which is given to the simulator in
termsof equationsand initial conditions. If any of the
predicted behaviorscross the boundaryconditions the
processis repeated:a new databaseis constructedto
describethesystemas it crossesthe boundariesof the
current model, anothercompleteset of active model
fragmentsis determined,andanothersimulation takes
place.

Theoutput of QPCis adirectedrootedgraph,whose
nodesare either databasesor qualitativestates. The
root of thegraph is the initial database,anda possible
edgein the graph may:

• link a databaseto a refined database(obtained by
addingmore facts, either derived through inference
rulesor assumedby QPC whenambiguoussituations
areto be solved);

• link a conripletedatabaseto a state (which is oneof
the possible initial statesfor the only model deriv-
able from thedatabase);

• link astateto asuccessorstate(this link is computed
by QSIM);

• link a state to a database(the last stateof a behav-
ior which crossedthe operatingregion; the database
describesthe situation just after the transition oc-
curred).

Eachpath from theroot to aleaf describesonepossible
temporalevolution of thesystembeingmodeled. Each
model in path identifies a a distinct operatingregion
of thesystem.

3 SQPC extends QPC
SQPCextends the modeling language,the underlying
representationand the inference methodsemployed.
This sectiondescribestheseextensions.

3.1 Modeling language

SQPCextendsthe QPC modeling languageby adding
numeric boundson magnitudes,dimensionalinforma-

tion, boundingenvelopeson monotonicfunctions, and
functionsspecified by tables.
Numeric values. SQPC represents numeric and
qualitative magnitudesin a single framework. Both
representspecific real numbers,which might be known
only with uncertainty. Numeric magnitudesconstrain
such anumberto lie within a numeric range. Note two
aspectsthat complicate reasoningon numericmagni-
tudes. First, two comparablemagnitudesconstrained
by the same range are, in general, not equal (i.e.,
Range(m)= [a b] and Range(n) = [a b] do not entail
that in. = n unlessa = b). Secondly,rangeconstraints
on magnitudesmay changeduring the analysis(range
refinement). This may happenasan effect of thesemi—
quantitativesimulation performedby QSIM. A model
might entail Range(m) = [a b], while a subsequent
model in thebehaviorgraphcomputedby SQPCmight
entail Range(rn)= [a’ b’] where [a’ b’] c [a b]. That
is, as the analysis proceeds,SQPC may tighten the
bounds on the numeric rangeof a magnitude.
Dimensional information. Variables and (sym-
bolic or numeric) magnitudesare partitioned into di-
mensions. SQPC defines the sevenInternational Sys-
tem dimensionsas well asa null-dimension, which is
provided to represent“pure number” quantities such
as the efficiency of a turbine. A domain theory may
alsointroducederived dimensionsspecifiedby a list of
dimensionnameswith integerexponents(for example,
power—dimensionis rnl
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Explicit representationof dimensionsenablesSQPC
to:

1. perfornndimensionalanalysisand verify that equa-
tions and order relations are well formed. Dimen-
sional errors are common when writing equations
and can be easily detected;

2. constraininferenceaboutorderrelations. It is sense-
lessto comparequantitiesthat do not havethesame
dimension,and a reasoningmechanismnot exploit-
ing any dimensional information can produceincor-
rect inferencessuch as x < 5 A 10 < V H x < V
where a position (x) is being comparedto a volume
(V).

Bounding envelopes. An envelopeschemais de-
fined by a fornn similar to that for defining model
fragments. It statesa set of conditions under which
a specific form of monotonicfunction over a tuple of
variablesis boundedby a functional envelope. The
envelopeis specified by a pair of functions. Instanti-
atedenvelopeschemasareusedto enrich a model with
suitableenvelopes.Sinceinstantiation is automatically
performed,envelopesareinstalled in modelsasneeded,
provided an appropriatemonotonic constrainthasal-
ready beenincluded in the model.
Tabular functions. Tabular functions provide an
important practical extension to the modeling lan-



guage. A large portion of empirically collected knowl-
edge about time-varying systemsis represenitedand
summarized in tabular form. The SQPC language
permits nunnericfunctionis (used to specify envelopes)
to be defined by data in a multi-dimensional table.
SQPC assumesthat these tables are coarsedescrip-
tions of the continuous reasonablefunctions that sat-
isfy monotonicconstrainits. Currently SQPC provides
two mechanismsfor interpolating tabular data: step-
wise functions,providing piecewiseconstantupperand
lower bounds,or piecewiselinear functions, providing
tighten, but possibly less accurate, interpolations. In
this way it is possibleto define two envelopeschemas
from the same underlying tabular data. One enve-
lope schennawill usea linear interpolation method in
a region where this approximation is known to intro-
duce no significanit error; in other regions a safer,but
less precise,envelopeschemausing the more conserva-
tive interpolationi methodbasedon stepwisebounding
functions, will be used. Of coursethe setof interpola-
tion methodsbeing used for computing tabular func-
tions is open ended. The current version of SQI~C
providesthe two mentionedabove.

3.2 Reasoning

To accommodatethe representationalextensionsde-
scribed above there are several extensionsthat. need
to be made to the reasoningmechanismbasedon the
underlying QPC architecture.

Dimenisional information allows the inferencesthat
computeorder relationsbetweenvariablesand magni-
tudesto befocused. SQPCnevercomparestwo quanti-
ties with incompatibledimensions.The connpatibility
test is simplified by reducingall dimensionsto acanon-
ical form, representedby a vector of exponents(each

position in the vector correspondsto a basic dimen—
siomi).

Nunnenicbounds on magnitudesrequirea changein
thecomputationof orderrelations. Except for thesim-
plecases,mi whichthe houndingrangesdo not overlap,
SQPC leavesthe computation of numeric order rela-
tions to thesemi-quantitativeQSIM extensions.QSIM
doesagoodjob of propagatingtheboundsthrough the
constraintsin the SQDE. Recreatingthis in the SQPC
knowledgebasewould be unnecessary,redundant,and
i riefficient.

SQPCnieedsto deternninewhich envelopesto include
in the SQDE for each model. This is non-trivial be-
causethereareseveralwaysto describea monotonicre-
lationshipamong a setof quantities. Becauseeach en-
velope that cani be included is likely to strengthenthe
predictions, it is important to include all of the appli-
cableones. For instance,supposethat the model con-
tains the constraint (M (+ —) X Y Z) but there is an
envelopedefined for the constraint (M (+ +) Y Z X).
These two constraintsare analytically equivalent,so
the second constraint and its envelopeshould be in-
cluded in the SQDE. This enablesranigesfor X to be

computedgiven rangesfor Y and Z, whereasan enve-
lope for the fornner constraintenablescomputing the
rangefor Z from the rangesof the other two variables.

SQPC adds any constraint and envelope into the
SQDE that is a permutation of a constraint in the
SQDE.Notice thatSQPC includesconstraintsin mod-
els after resolving influences (i.e., after assuming a
closedworld and having determinedthe completeset
of influencingand influencedvariables). Then SQPC
looks for possible envelopes(and possibly equivalent
constraints) to be added to the model. This strat-
egy makesit possible for the designerof the domain
model and scenarioto specify the envelopes,or enve-
lope schemas,on the basis of the available data, in-
dependentlyfrom how influenceswill get resolved. In
those caseswhere SQPC will constructmodels where
somemonotonic constraint does not have any enve-
lope, SQPC will still be able to producean accurate
prediction, though with reducedprecision.

In order to producequalitativesimulationsof large
systems, QPC generated attainable envisionments.
Thoughleading to tractablesimulations,this produces
less detailed descriptionsof the dynamicsof themod-
eledsystem,for landmarksautomaticallygeneratedby
QS1M are crucial for identifying new critical points
(andattachingnumericrangesto them). SQPC,unless
appropriately instructed, does not produce an envi-
sionment,but a more standardtree—basedsimulation,
enablingalso landmarkgeneration.This choice, while
providing moredetailedresults,hasthedrawbackof re-
quiring othermethodsfor controllingthecombinatorial
explosion inherent in qualitativesimulation. We are
currently designingSQPC extensionsbasedon known
methodsfor reducing the numberof spuriousbehav-
iors: higher order derivatives (Kuipers et al. 1991),
energyfunctions(Fouché& Kuipers 1990), phase-space
criteria (Lee & Kuipers 1993), and abstraction tech-
niques (Clancy & Kuipers 1993).

4 An Example
We dennonstrateSQPCon a problemfrom the domain
of water supply control. We considera portion of the
systenn of lakes and rivers to be found in the scenic
hill country surroundingAustin, Texas. The Colorado
river flows into Lake Travis. The Mansfield Dam on
LakeTravis produceshydroelectricpower,controlsthe
level of the lake, and the flow into the downstreamleg
of the Colorado.

The problemis to evaluatea “what if” scenario(fig-
ure 1). We aregiven an initial level for LakeTravis (a
typical valuebetween690.2and690.3feet) andarough
projected inflow from the Coloradoriver (between791
and 950 cfs). The task is to determinewhat happens
to the lake level and evaluatehow long the hydroelec-
tric plant cani deliver power at the requestedrate of
10 Mw.

In addition to the numeric bounds variables in
the scenario, there are severalother sourcesof semi-



(defscenario Travis—i—turbine
“Turbine from controlled to uncontrolled regime.”
:entities
landmarks

((top—of—dam :variables ((stage travis)) :range 714))

relations
(( (flow—rate colorado—up) (791 950)) ; cfs

( (top mansfield) top—of—dam)
(is—open turb))

:initial—conditions ((= (power turb) 10)
( (stage travis) (690.2 690.3)))

(stage travis) (capacity travis))

(hi (lake—travis—stage—capacity
‘(St cap) (list (stage travis))))

(lo (lake—travis—stage—capacity

‘(st cap) (list (stage travis))))
(10 (lake—travis—stage—capacity

‘(cap st) (list (capacity travis))))
(hi (lake—travis—stage-capacity

‘(cap st) (list (capacity travis)))))))

Figure 1: Part of the sceniariodescription. The initial conditionsspecify the desiredpower output of the turbine
and the stage (level) of Lake Travis. The flow-rate of the upstreamleg of the Coloradois set for the duration of
the scenario. The : envelopes clause specifies the state-capacitytable for Lake Travis. Any model in thescenario
which includes the M+ between the stage and capacity of lake travis will include this envelope.

[~{ ~Mw ~harge-ratecfs

120 8 1,054

120 9 1,150

i20 20 2,675
125 8 1,026

145 1,940

150 8 884

i~ 30 2,936

Table 1: A portion of the table describing turbine be-

havior. E.g. given a head of l2Oft and a power setting
of 8Mw, the discharge rate is expected to be lO54cfs.

quantitative information in this problem. An envelope

schema(see figure 2) establishesbounds on the rela-
tion between the headof water above a turbine, the
desiredpoweroutput, anid the dischargerate of water

downstream. This envelopeschemaapplies whenever
the conditionsand constraint portions of the envelope
form aresatisfied.
Lake Travis is a uniique object. The relation between
the stage(level) anid capacity(volnnne) for LakeTravis
is provided by an envelopespecified in the scenario
clefini i tion.

main theory is specified in the form of tables.’ The
tables reflect both observationsand engineeringesti-
matesaboutthe relationshipsbetweenimportant vari-
ables. Table I shows someof the data extractedfrom
the table describingquantitatively the behaviorof the
turbines in Mansfield Dam.

Solving this problem is madeslightly more complex
becauseof thebehaviorof the turbines. The turbines
are controlled by a servo-mechanismdesignedto gen-
erate the desired amount of power regardlessof the
hydraulic pressure,which is deternninedby the headat

the turbine. This is possibleas long as there is suffi-
cient head. When the headdrops below the minimum
threshold for a given power output, then less power is
relea.sed.The domain theory capturesthis accurately
(see figure 4). The domain theory alsoincludesmodel
fragmentsfor conservationlaws (e.g. of massand en-
ergy), basic hydraulic principles (e.g. flow is propor-
tional to head),and so on.

Figure 3 shows the SQPC output for this scenario.
Under thespecified conditions,the desiredpower level
can be maintained until time Ti, at least 45 days
(3.94 * 106 seconds) after the start time. After Ti,
there will be insufficient hydraulic pressureto provide
the full power output, thedischargerate from thetur-
bine will decreaseuntil it rei~chesequilibrium with the
inflow at a rate between791 and 950 cfs, andthe lake

‘The Lower Colorado River Authority (LCRA) hascon-
tnibutecl actual tablesof empirical datato theQualitative
ReasoningGroupof the University of Texas for evaluation.

envelopes
((stage—capacity

constraint (M+
upper—envelope

lower—envelope

upper-inverse

lower—inverse

Mw
ft

All of the semi—qnanititativeinformation in this do—



(def envelope MANSFIELD—TURBINE—DR—E
:comment “HEAD x POWER--> DISCHARGE—RATEof a Mansfield turbine.”
:participants ((dam :type dams)

(lake :type lakes
:conditions ((connects dam lake river)))

(river :type rivers)
(t :type mansfield—turbines

conditions ((has—valve dam tfl))
:constraint ((M — +) (head t) (power t) (discharge—rate t))
upper—envelope

(hi (lake—travis—turbine—discharge-rate

‘(hd pw dr) (list (head t) (power tfl))
lower—envelope

(lo (lake—travis—turbine—discharge—rate

‘(hd pw dr) (list (head t) (power tflfl)

Figure 2: An envelope that is applicableto any turbine of the kind found on Mansfield dam. It bounds the function

that deternninesthe dischargerateof the turbine given the headaboveit and the desiredpower output. The two
functional bounds are computed by extracting the lowest and highest points from the rangereturned by a Lisp
function (lake—travis—turbine—discharge—rate)definedon the basisof the “turbine rating table” shownin the
text..

level will stabilize between568’ and 688’. Notice that
at Ti the lakesystemis enteringa newoperatingregion
because the turbine is no longer servo-controlled (i.e.,
the model fragment NORMAL—TURBINE—MF is no longer
active). Notice also that all the variablesare continu-
ousacrossthe transition, but someof their derivatives
arenot (e.g., the derivativeof discharge—rate,shown
in termsof qdir of discharge—rate).

‘Thesepredictionsarestrongenoughto be usefulto a
systemcontroller, even though the problemstatennent
is very imprecise: the flow rate was very coarse;there
are no semi-quantitativebounds for the relationship
betweenpowerandheadin the low-headsituation after
ti; the table relating stageand capacitybecomesvery
coarsebelow 600’.

More precise information in the domain theory or
scenariowill result mi mnore precisepredictions. This is
the strengthof the senni—qua.nt.ita.tiveinferencemeth-
ods. The precisionof thepredictionsis monotonicwith
the precisionof the model arid initial conditions.

We illustrate this by first strenigtheningthe initial
conditions of the scenarioand then by strengthening
the domain theory. If the upper bound on the inflow
rate is reducedfronn 950 cfs to 800 cfs, then the tipper
bound on Ti, the tinrie that power generationdrops
below the desired rate, is reduced to 76 days,a 58%
improvennent.The domaintheory can bestrengthened
by tightening the envelopesby usinga linear interpo-
lation for the stage-capacitycurve instead of a step
function. This tightensthe rangefor Ti to 50-58(lays,
an improvementof 89% from the original. Increased
precisionin the input or model leads to increasedpre-
cision in the output.

4.1 Implementation status

SQPC is fully implementedin Lucid CommonLisp as
an extensionto QPC, which in turn usestheAlgernon
knowledgerepresentationsystem(Crawford 1991)and
QSIM. We are currently experimentingwith SQPC in
the water flow control domain; SQPC has been run
on a dozen examples comparable to the one shown in
this paper. The runtime for this example is around
4 minutes on Sun Sparc4/75. The bulk of this time is

spentcomputingorderrelationswith interpretedrules.
Using standard rule compilation techniques or a special
purposeinequality reasonerwill result in a substantial
(ordersof magnitude)speedup.

5 Related work

In recentyears,severalresearchefforts haveworked to-
wardsthe developmentof self—explanatorysimulators
thatconstructnumericalsimulationsanduseaqualita-
tive representationto help explain the results. Unlike
SQPC,they do not usesemi-quantitativeinformation.
Their predictions are either precise numeric ones, or

l)UrelY qualitative.
SIMGEN (Forbus& Falkenhainer1990)computesa

total envisionmentof the scenarioand then, for each
envisionmentstate2 it btnlds a numerical simulator,
monitors the simulation and, at the end of the anal-
ysis, interpretsnumerical results in termsof the envi-
sionment graph. SIMOEN requirespreciseand com-
plete numericalequations,initial andboundarycondi-
tions for the simulation. SIMGEN mustbe capableof
building anumericalmodelfor eachenvisionmentstate
touched during the simulation; to this end it must be
suppliedwith alibrary of numericproceduresfor every

2correspondingto am, operatingregion.
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Figure 3: Behavior plot for several variables in the scenario.
desired level.

possible combination of influences. SIMCEN is inca-
pable of performing a simulation when a qualitative
relation is quantitatively underspecifiedor when pre-
ciseknowledgeunavailablefor any initial conditions.

DME (the Device Modeling Environment)(Iwasaki
& Low 1991) is an incremental compositional modeling
system capable of generating self-explanatorysinnuIa-
tions. DME can work in two exclusive modes: quali-
tative or numeric. In theformer caseDME constructs
qualitative states, and uses QSIM to generatesucces-
sors; in the latter case,DME builds numericalmodels
for simulation. In both modes,crossingan operating
region triggers remodelling. DME is highly interac-
tive and provides sophisticatedexplanation capabili-
ties (Gautier & Gruber 1993;Gruber& Gautier 1993).
DME requiresprecisenumericalequations,initial and
boundary conditions. Therefore, DME does not inte-
gratequalitative and quantitative information in pre-
diction.

Pika (Amador, Finkelstein, & Weld 1993) builds a
numericalmodel for each operatingregion of the sys-
tem as soon as this is needed. Pika monitors the nu-
nnericalsimulation and, at the end of the analysis, is
capableof engagingin asimple question/answeringdi-
alogue. Pika requires preciseequations,complete ini-
tial conditions (unlike the other systems), and com-
plete specificationof boundaryconditions(in particu-
lar inequalitiesare not allowed). Comparedto SQPC
Pika performs limited inferences: no structural infer-
encesare possible(this linnits the expressivepower of
the modeling language)and influencesare limited to
indirect and algebraicones: no provision is made for
handling moregeneral monotonicinfluences.

025

02

79

0)

The power output by the turbine after Ti is belowthe

6 Conclusion

We have presented SQPC, the first system to
unify compositional modeling techniqueswith semi-
quantitativesimulation. This is crucial for automati-
cally building mOdelsof systemswhosedynamicscross
several operatingregions. SQPC automatically con-
structs semi-quantitativemodels and producesuseful
predictionswith impreciseknowledge. We haveshown
how QPCwas extended to accomplish this. We argued
that semi-quantitative knowledge is crucial to many
applied engineering domainstheonechosenfor demon-
strating SQPC,water supply control.

The current version of SQPC relies primarily on
the Q2 static envelope (Berleant & Kuipers 1988)
method which is based on the mean-valuetheorem.
The NSIM (Kay & Kuipers 1993) dynamic envelope
method, which performs explicit numeric integration
of extremalboundingequations,often providestighter
bounds. Relianceon Q2 is due partly to softwarede-
velopmentschedulesand partly to the extensiveuse
of tabular information in the water supply control do-
main. BecauseNSIM performs explicit numeric in-
tegration, it requires smooth continuous functional
bounds. This requiresan extensionto our current tab-
ular data tools to generatesmooth monotonic func-
tional bounds for the tables. We are currently devel-
oping this extension.

The ability to usesemi-quantitativeinformation in
a compositionalmodeleris tremendouslyexciting. We
look forward to extending existing domain theories,
such as the chemical engineeringtheory constructed
by Catino (Catino 1993) to include semi-quantitative
information andexploringthe constructionof substan-
tial engineeringquality models that are tractabledue
to greater available precision.
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(defmodelfragment NORMAL-TURBINE-MF
:participants ((t :type turbines)

(dam :type dams :conditions ((has-valve dam t)
(is—open U))

(lake :type lakes :conditions ((connects dam lake river)))
(river :type rivers))

:operating—conditions ((> (stage lake) (base U)
(< (mm—head t) (head U)
(<= (head t) (max—head U))

:consequences ((I— (capacity lake) (discharge—rate U)
(Q— (discharge—ratet) (head U)
(Q*O (discharge-rate t) (power U)
(Q—add (flow—rate river) (discharge—rateU)
(Q*O (mm—headt)(power U)
(Q+O (max—head U(power U)))

Figure 4: This model fragmentdescribesnornnallyoperatingturbines. An instanceexistsif there is an openturbine
on a damn. It is active when the headabovethe turbine is betweenthe variablesmm—headand max—headand the
lake level is above the baseof the turbine. Consequencesspecify equationsthat hold when an instanceis active.
The qualitative influence I— specifiesthat a positive discharge—ratedecreaseslake capacity; influencesQ— and
Q+O partially specify monotonic funictions on the discharge—rateof the turbine (which is causally influenced by
hot.h headand power). The Q—add specifiesthat the discharge—ratesums into the river’s flow—rate. The final
influencesspecify that both mm—headand max—headare affectedby the desiredpower output.

Coupled with compositional modeling, the semi-
quantitative techniqueshave the promiseof achiev-
ing one of the major goals of qualitative reasoning:
to makestrong predictions about behavior, given the
strongestmodel available.
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