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Abstract

Incomplete information is present in many engineering
domains, hindering traditional and non-traditional
simulation techniques. This paper describes SQPC
(semi—-quantitative physics compiler), an implemented
approach to modelling and simulation that can predict
the behavior of incompletely specified systems, such as
those that arise in the water control domain. SQPC
is the first system that unifies compositional model-
ing techniques with semi~quantitative representations.
We describe SQPC’s foundations, QSIM and QPC,
and how it extends them. We demonstrate SQPC us-
ing an example from the water supply domain.

1 Introduction

Consider the problem of water supply control. A lake
has a dam with floodgates that can be opened or closed
to regulate the water flow through power generating
turbines, the water level (stage) of the lake, and the
downstream flow. The goal of a controller is to pro-
vide adequate reservoir capacity for power generation,
consumption, industrial use, and recreation, as well as
downstream flow. In exceptional circumstances, the
controller must also work to minimize or avoid flood-
ing both above and below the dam. This task is both
difficult and vitally important to the residents of sur-
rounding areas. The work of controllers could be sub-
stantially eased by sound automatic modeling and sim-
ulation tools.

There are several forms of incomplete information
that appear in this domain. The precise shape and ca-
pacity of lakes or reservoirs is rarely known; the outflow
from opening a dam’s floodgates is only crudely mea-
sured; empirical data on the level/flow-rate curve for
rivers becomes less and less accurate when flood condi-
tions approach; few quantities are measured (e.g. flow
rates of minot tributaries are not measured at all); the
amount of runoff to be expected from a given rainfall
depends on difficult to measure surface characteristics
such as saturation; the amount of rainfall that actu-
ally falls on a lake and surrounding areas is difficult
to predict and is imprecisely measured. Nonetheless,
both mathematical analysis and observations do pro-
vide rough bounds on the quantities involved. Often,
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rough accurate bounds suffice to select appropriate ac-
tions.

This domain is challenging for existing approaches to
modeling and simulation. Pure qualitative reasoning
techniques (Forbus 1984; Kuipers 1986) do not exploit
the partial information available and consequently pro-
vide insufficiently strong predictions. Traditional nu-
meric methods require much more precise information
than is available, forcing modelers to make assump-
tions which may invalidate results and which may be
difficult to evaluate.

Fortunately, recent advances In semi-quantitative
simulation techniques provide a method for predicting
the behavior of such systems. This work extends the
purely qualitative representation (Kuipers 1986) with
means for representing semi-quantitative information
(Berleant & Kuipers 1988; Kuipers & Berleant 1992;
Kay & Kuipers 1993). In this work, semi-quantitative
information is represented in two forms: bounds on
variable values and functional bounds (envelopes) on
otherwise unspecified monotonic functions. This is ex-
actly the kind of information that is available in the
water supply and many engineering domains.

Several systems (Forbus & Falkenhainer 1990;
Iwasaki & Low 1991; Amador, Finkelstein, & Weld
1993) have been developed that use compositional
modelling techniques and exploit qualitative models to
provide explanations of numeric simulations. They are
unable to represent or use semi-quantitative informa-
tion. In order to provide a numeric simulation, they
all require complete precise initial conditions and alge-
braic equations.

This paper describes SQPC (semi-quantitative
physics compiler), an implemented approach to mod-
elling and simulation that uses semi-quantitative
knowledge. SQPC extends QPC (qualitative physics
compiler) (Crawford, Farquhar, & Kuipers 1990; Far-
quhar 1993; 1994) to exploit the recent advances in
semi-quantitative simulation. SQPC is the first compo-
sitional modeling system to employ semi—quantitative
representation and simulation.

The input to SQPC is a domain theory and a sce-
narto. The domain theory is composed primarily of




model fragment definitions the describe both the condi-
tions under which physical phenomenon are active, and
their consequences. The scenario specifies objects that
are known to be of interest, some initial conditions, and
some relations that hold throughout the scenario. Both
the domain theory and scenario may include bounds on
numeric values and monotonic functions. From this,
SQPC generates a set of behavioral descriptions, guar-
anteed to cover any system trajectory consistent with
the scenario and domain theory. A behavior may pass
through a number of distinct operating regions, each
of which is characterized by a distinct mathematical
model.

2 Foundations
2.1 Semi-quantitative simulation

SQPC is built on top of the QSIM qualitative simulator
(Kulpers 1986; 1993). The input to QSIM is a qualila-
tive differential equation (QDE) which specifies: (i) a
set of variables (continuously differentiable functions of
time); (ii) a quantily space for each of these variables,
specified in terms of a totally ordered set of symbolic
landmark values; (iii) a set of constraints expressing
(algebraic, differential or monotonic) relationships be-
tween variables. A QDE is an abstract description of a,
perhaps infinite, set of ordinary differential equations.
The output of QSIM is a set of behaviors. Each be-
havior is a sequence of states, where a state is a map-
ping of variables to qualitative values. A qualitative
value represents the magnitude of the variable, which
is either equal to a landmark or in the open interval
specified by adjacent landmarks, and its direction of
change (the sign of its time derivative: dec, std, inc).
Each state describes either a time point or an open
temporal interval.

In the semi-quantitative framework employed by
SQPC, the basic qualitative representation is aug-
mented by use of Semi-Quantitative Differential Equa-
tions (SQDE) (Berleant & Kuipers 1988; Kuipers &
Berleant 1992; Kay & Kuipers 1993). Each landmark
may be bounded with a precise numeric upper and
lower bound. Each monotonic function constraint may
be bounded with a precise functional upper and lower
bound. A monotonic function constraint represents an
element of an infinite set of real valued functions. Its
general form is (M sy...8,) 2y ... 2, y) where each
s; 1s a sign and z;,y are variables. Such a constraint
denotes the set
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by the constraint. That is, an envelope <i,7> for the
above mentioned constraint characterizes the set
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The semi-quantitative simulators augment behavior
with the numeric bounds. They are also able to use
the semi-quantitative information to rule out qualita-
tively possible behaviors. The first semi-quantitative
techniques (Berleant & Kuipers 1988) propagated the
bounds throughout each time-point state, and then
used the mean-value theorem to constrain the values
across time. The later dynamic envelope techniques
(Kay & Kuipers 1993) construct extremal equations
for the derivative of each state variable. These ex-
tremal equations are then explicitly integrated to pro-
vide bounds on variable values across time intervals.
Neither technique strictly dominates the other. As a
result, the bounds provided by the two methods may
be intersected, yielding sometimes stronger predictions
than either alone.

2.2  Qualitative Physics Compiler

SQPC is an extension of QPC, whose modeling lan-
guage builds on Qualitative Process theory (Forbus
1984). The input to QPC is a domain theory and
scenario specified in the QPC modeling language. A
domain theory consists of a set of quantified defini-
tions, called model fragments, each of which describes
some aspect of the domain, such as physical laws (e.g.
mass conservation), processes (e.g. liquid flows), de-
vices (e.g. pumps), and objects (e.g. containers). Each
definition applies whenever there exists a set of partici-
pants for whom the stated conditions are satisfied. The
specific system or situation being modeled is partially
described by the scenario definition, which lists a set of
objects that are of interest, some of the initial condi-
tions, relations that hold throughout the scenario, and
boundary conditions.

Influences are compositional relations between vari-
ables that are particularly convenient for asserting
fragments of information that can be composed into
constraints. Three kinds of influences are supported.
An indirect influence such as (Y Q@+ X) means that in
the absence of countervailing influences, an increase in
X causes an increase in Y and that Y is functionally
determined by the set of influencing variables. More
precisely (Y Q% X) means that there exists f, a con-
tinuous function, and a set of variables {z;}1<i<n such

that Y = f(X,z1,...,25) and'—g)fg > 0. In the case
of (Y @ X) then g)[(— < 0. The algebraic influ-
ences QQaqq and @Qsyp provide the constraint 58% =1
and g{(— = —1 respectively. Finally, a direct influence
such as (Y It X) expresses that a positive X tends

to increase Y. This is equivalent to an algebraic influ-
ence on the derivative of the influenced variable (i.e.,

(Y It X)=Y' =4 and (Y’ Quaa X))



QPC employs a hybrid architecture in which the
model building portion is separated from the simula-
tor. This architecture allowed SQPC to exploit semi-
quantitative information without changing the overall
QPC algorithm.

The input to QPC (Farquhar 1994) is a domain the-
ory describing physical phenomena and a specification
of the system to be modeled, called the scenario. The
domain theory and scenario induce a set of logical ax-
ioms. QPC uses this database of logical axioms to
infer the set of model fragment instances that apply
during the time covered by the database (called the ac-
five model fragments). Inferences performed by QPC
include those concerning structural relationships be-
tween objects declared in the scenario, and those aim-
ing at computing the transitive closure of order rela-
tionships between quantities. A database with a com-
plete set of model fragment instances defines an ini-
tial value problem which is given to the simulator in
terms of equations and initial conditions. If any of the
predicted behaviors cross the boundary conditions the
process is repeated: a new database is constructed to
describe the system as it crosses the boundaries of the
current model, another complete set of active model
fragments is determined, and another simulation takes
place.

‘The output of QPC is a directed rooted graph, whose
nodes are either databases or qualitative states. The
root of the graph is the initial database, and a possible
edge in the graph may:

o link a database to a refined database (obtained by
adding more facts, either derived through inference

rules or assumed by QPC when ambiguoussituations
are to be solved);

¢ link a complete database to a state (which is one of
the possible initial states for the only model deriv-
able from the database);

¢ link astate to a successor state (this link is computed
by QSIM);

¢ link a state to a database (the last state of a behav-
ior which crossed the operating region; the database

describes the situation just after the transition oc-
curred).

Each path from the root to a leaf describes one possible
temporal evolution of the system being modeled. Each
model in path identifies a a distinct operating region
of the system.

3 SQPC extends QPC

SQPC extends the modeling language, the underlying
representation and the inference methods employed.
This section describes these extensions.

3.1 Modeling language

SQPC extends the QPC modeling language by adding
numeric bounds on magnitudes, dimensional informa-

tion, bounding envelopes on monotonic functions, and
functions specified by tables.

Numeric values. SQPC represents numeric and
qualitative magnitudes in a single framework. Both
represent specific real numbers, which might be known
only with uncertainty. Numeric magnitudes constrain
such a number to lie within a numeric range. Note two
aspects that complicate reasoning on numeric magni-
tudes. First, two comparable magnitudes constrained
by the same range are, in general, not equal (ze.,
Range(m) = [a b] and Range(n) = [a b] do not entail
that m = n unless a = b). Secondly, range constraints
on magnitudes may change during the analysis (range
refinement). This may happen as an effect of the semi-
quantitative simulation performed by QSIM. A model
might entail Range(m) = [a b], while a subsequent
model in the behavior graph computed by SQPCmight
entail Range(m) = [a’ ¥'] where {@’ ¥'] C [a b]. That
is, as the analysis proceeds, SQPC may tighten the
bounds on the numeric range of a magnitude.
Dimensional information. Variables and (sym-
bolic or numeric) magnitudes are partitioned into di-
mensions. SQPC defines the seven International Sys-
tem dimensions as well as a null-dimension, which is
provided to represent “pure number” quantities such
as the efficiency of a turbine. A domain theory may
also introduce derived dimensions specified by a list of
dimension names with integer exponents (for example,
power-dimension is mi?/t3).

Explicit representation of dimensions enables SQPC
to:

1. perform dimensional analysis and verify that equa-
tions and order relations are well formed. Dimen-
sional errors are common when writing equations
and can be easily detected;

2. constrain inference about order relations. It is sense-
less to compare quantities that do not have the same
dimension, and a reasoning mechanism not exploit-
ing any dimensional information can produce incor-
rect inferences such as 2 < 5AI0 < V Fa <V
where a position (z) is being compared to a volume

V).

Bc()ul)lding envelopes. An envelope schema is de-
fined by a form similar to that for defining model
fragments. It states a set of conditions under which
a specific form of monotonic function over a tuple of
variables is bounded by a functional envelope. The
envelope is specified by a pair of functions. Instanti-
ated envelope schemas are used to enrich a model with
suitable envelopes. Since instantiation is automatically
performed, envelopes are installed in models as needed,
provided an appropriate monotonic constraint has al-
ready been included in the model.

Tabular functions. Tabular functions provide an

important practical extension to the modeling lan-



guage. A large portion of empirically collected knowl-
edge about time-varying systems is represented and
summarized in tabular form. The SQPC language
permits numeric functions (used to specify envelopes)
.to be defined by data in a multi-dimensional table.
SQPC assumes that these tables are coarse descrip-
tions of the continuous reasonable functions that sat-
isfy monotonic constraints. Currently SQPC provides
two mechanisms for interpolating tabular data: step-
wise functions, providing piecewise constant upper and
lower bounds, or piecewise linear functions, providing
tighter, but possibly less accurate, interpolations. In
this way it is possible to define two envelope schemas
from the same underlying tabular data. One enve-
lope schema will use a linear interpolation method in
a region where this approximation is known to intro-
duce no significant error; in other regions a safer, but
less precise, envelope schema using the more conserva-
tive interpolation method based on stepwise bounding
functions, will be used. Of course the set of interpola-
tion methods being used for computing tabular func-
tions is open ended. The current version of SQPC
provides the two mentioned above.

3.2 Reasoning

To accommodate the representational extensions de-
scribed above there are several extensions that need
to be made to the reasoning mechanism based on the
underlying QPC architecture.

Dimensional information allows the inferences that
compute order relations between variables and magni-
tudes to be focused. SQPC never compares two quanti-
ties with incompatible dimensions. The compatibility
test is simplified by reducing all dimensions to a canon-
ical form, represented by a vector of exponents (each
position in the vector corresponds to a basic dimen-
sion).

Numeric bounds on magnitudes require a change in
the computation of order relations. Except for the sim-
ple cases, in which the bounding ranges do not overlap,
SQPC leaves the computation of numeric order rela-
tions to the semi-quantitative QSIM extensions. QSIM
does a good job of propagating the bounds through the
constraints in the SQDE. Recreating this in the SQPC
knowledge base would be unnecessary, redundant, and
ineflicient.

SQPC needs to determine which envelopes to include
in the SQDE for each model. This is non-trivial be-
cause there are several ways to describe a monotonic re-
lationship among a set of quantities. Because each en-
velope that can be included is likely to strengthen the
predictions, it 1s important to include all of the appli-
cable ones. For instance, suppose that the model con-
tains the constraint (M (+ —) X Y Z) but there is an
envelope defined for the constraint (M (+ +) Y Z X).
These two constraints are analytically equivalent, so
the second constraint and its envelope should be in-
cluded in the SQDE. This enables ranges for X to be

computed given ranges for Y and Z, whereas an enve-
lope for the former constraint enables computing the
range for Z from the ranges of the other two variables.

SQPC adds any constraint and envelope into the
SQDE that is a permutation of a constraint in the
SQDE. Notice that SQPC includes constraints in mod-
els after resolving influences (i.e., after assuming a
closed world and having determined the complete set
of influencing and influenced variables). Then SQPC
looks for possible envelopes (and possibly equivalent
constraints) to be added to the model. This strat-
egy makes it possible for the designer of the domain
model and scenario to specify the envelopes, or enve-
lope schemas, on the basis of the available data, in-
dependently from how influences will get resolved. In
those cases where SQPC will construct models where
some monotonic constraint does not have any enve-
lope, SQPC will still be able to produce an accurate
prediction, though with reduced precision.

In order to produce qualitative simulations of large
systems, QPC generated attainable envisionments.
Though leading to tractable simulations, this produces
less detailed descriptions of the dynamics of the mod-
eled system, for landmarks automatically generated by
QSIM are crucial for identifying new critical points
(and attaching numeric ranges to them). SQPC, unless
appropriately instructed, does not produce an envi-
sionment, but a more standard tree-based simulation,
enabling also landmark generation. This choice, while
providing more detailed results, has the drawback of re-
quiring other methods for controlling the combinatorial
explosion inherent in qualitative simulation. We are
currently designing SQPC extensions based on known
methods for reducing the number of spurious behav-
lors: higher order derivatives (Kuipers et al. 1991),
energy functions (Fouché & Kuipers 1990), phase-space
criteria (Lee & Kuipers 1993), and abstraction tech-
niques (Clancy & Kuipers 1993).

4 An Example

We demonstrate SQPC on a problem from the domain
of water supply control. We consider a portion of the
system of lakes and rivers to be found in the scenic
hill country surrounding Austin, Texas. The Colorado
river flows into Lake Travis. The Mansfield Dam on
Lake Travis produces hydroelectric power, controls the
level of the lake, and the flow into the downstream leg
of the Colorado.

The problem is to evaluate a “what if” scenario (fig-
ure 1). We are given an initial level for Lake Travis (a
typical value between 690.2 and 690.3 feet) and arough
projected inflow from the Colorado river (between 791
and 950 cfs). The task is to determine what happens
to the lake level and evaluate how long the hydroelec-
tric plant can deliver power at the requested rate of
10 Mw.

In addition to the numeric bounds variables in
the scenario, there are several other sources of semi-



(defscenario Travis~1-turbine

"Turbine from controlled to uncontrolled regime."

tentities

:landmarks

((top-of-dam :variables ((stage travis)) :range 714))

:relations

((= (flow-rate colorado-up) (791 950))

(= (top mansfield) top-of-dam)

(is~open turb))

:initial-conditions ((= (power turb) 10)
(= (stage travis) (690.2 690.3)))

; cfs

; ft
renvelopes
((stage-capacity
:constraint (M+ (stage travis) (capacity travis))
:upper-envelope (hi (lake-travis-stage-capacity
(st cap) (list (stage travis))))
:lower-envelope (lo (lake-travis-stage-capacity
: ’(st cap) (list (stage travis))))
:upper-inverse (lo (lake-travis-stage-capacity
*(cap st) (list (capacity travis))))
:lower-inverse (hi (lake-travis-stage-capacity
’(cap st) (list (capacity travis)))))))

Figure 1. Part of the scenario description. The initial conditions specify the desired power output of the turbine
and the stage (level) of Lake Travis. The flow-rate of the upstream leg of the Colorado is set for the duration of
the scenario. The :envelopes clause specifies the state-capacity table for Lake Travis. Any model in the scenario
which includes the M+ between the stage and capacity of lake travis will include this envelope.

| Head (ft) | Power (Mw) | Discharge-rale (cfs) |

120 3 T 054
190 9 T 150
120 50 3675
%5 g 076
45 20 940
T50 g 887
150 30 5036

Table 1: A portion of the table describing turbine be-
havior. E.g. given a head of 120ft and a power setting
of 8Mw, the discharge rate is expected to be 1054cfs.

quantitative information in this problem. An envelope
schema (see figure 2) establishes bounds on the rela-
tion between the head of water above a turbine, the
desired power output, and the discharge rate of water
downstream. This envelope schema applies whenever
the conditions and constraint portions of the envelope
form are satisfied.

Lake Travis is a unique object. The relation between
the stage (level) and capacity {(volume) for Lake Travis
is provided by an envelope specified in the scenario
definition.

All of the semi-quantitative information in this do-

main theory is specified in the form of tables.! The
tables reflect both observations and engineering esti-
mates about the relationships between important vari-
ables. Table 1 shows some of the data extracted from
the table describing quantitatively the behavior of the
turbines in Mansfield Dam.

Solving this problem is made slightly more complex
because of the behavior of the turbines. The turbines
are controlled by a servo-mechanism designed to gen-
erate the desired amount of power regardless of the
hydraulic pressure, which is determined by the head at
the turbine. This is possible as long as there is suffi-
cient head. When the head drops below the minimum
threshold for a given power output, then less power is
released. The domaln theory captures this accurately
(see figure 4). The domain theory also includes model
fragments for conservation laws (e.g. of mass and en-
ergy), basic hydraulic principles (e.g. flow is propor-
tional to head), and so on.

Figure 3 shows the SQPC output for this scenario.
Under the specified conditions, the desired power level
can be maintained until time T1, at least 45 days
(3.94 * 10° seconds) after the start time. After T1,
there will be insufficient hydraulic pressure to provide
the full power output, the discharge rate from the tur-
bine will decrease until it redches equilibrium with the
inflow at a rate between 791 and 950 cfs, and the lake

'The Lower Colorado River Authority (LCRA) has con-
tributed actual tables of empirical data to the Qualitative
Reasoning Group of the University of Texas for evaluation.




(defenvelope MANSFIELD~TURBINE-DR-E

:comment "HEAD x POWER --> DISCHARGE-RATE of a Mansfield turbine."

:participants ((dam :type dams)
(lake :type lakes

tconditions ((connects dam lake river)))

(river :type rivers)
(t :type mansfield-turbines

:conditions ((has-valve dam t))))
:constraint ((M - +) (head t) (power t) (discharge-rate t))

:upper—envelope
(hi (lake-travis-turbine-discharge-rate

’(hd pw dr) (list (head t) (power t))))

:lower-envelope
(lo (lake-travis-turbine-discharge-rate

’(hd pw dr) (list (head t) (power t)))))

Figure 2: An envelope that is applicable to any turbine of the kind found on Mansfield dam. It bounds the function
that determines the discharge rate of the turbine given the head above it and the desired power output. The two
functional bounds are computed by extracting the lowest and highest points from the range returned by a Lisp
function (lake-travis-turbine-discharge-rate) defined on the basis of the “turbine rating table” shown in the

text

level will stabilize between 568" and 688’. Notice that
at T1 the lake system is entering a new operating region
because the turbine is no longer servo-controlled (z.e.,
the model fragment NORMAL-TURBINE-MF is no longer
active). Notice also that all the variables are continu-
ous across the transition, but some of their derivatives
are not (e.g., the derivative of discharge-rate, shown
in terms of gdir of discharge-rate).

These predictions are strong enough to be useful to a
system controller, even though the problem statement
1s very imprecise: the flow rate was very coarse; there
are no semi-quantitative bounds for the relationship
between power and head in the low-head situation after
t1; the table relating stage and capacily becomes very
coarse below 600°.

More precise information in the domain theory or
scenario will result in more precise predictions. This is
the strength of the semi-quantitative inference meth-
ods. The precision of the predictions is monotonic with
the precision of the model and initial conditions.

We illustrate this by first strengthening the initial
conditions of the scenario and then by strengthening
the domain theory. If the upper bound on the inflow
rate is reduced from 950 cfs to 800 cfs, then the upper
bound on T1, the time that power generation drops
below the desired rate, is reduced to 76 days, a 58%
improvement. The domain theory can be strengthened
by tightening the envelopes by using a linear interpo-
lation for the stage-capacity curve instead of a step
function. This tightens the range for T1 to 50-58 days,
an improvement of 89% from the original. Increased
precision in the input or model leads to increased pre-
cision in the output.

4.1 Implementation status

SQPC is fully implemented in Lucid Common Lisp as
an extension to QPC, which in turn uses the Algernon
knowledge representation system (Crawford 1991) and
QSIM. We are currently experimenting with SQPC in
the water flow control domain; SQPC has been run
on a dozen examples comparable to the one shown in
this paper. The runtime for this example is around
4 minutes on Sun Sparcd/75. The bulk of this time is
spent computing order relations with interpreted rules.
Using standard rule compilation techniques or a special
purpose inequality reasoner will result in a substantial
(orders of magnitude) speedup.

5 Related work

In recent years, several research efforts have worked to-
wards the development of self-explanatory simulators
that construct numerical simulations and use a qualita-
tive representation to help explain the results. Unlike
SQPC, they do not use semi-quantitative information.
Their predictions are either precise numeric ones, or
purely qualitative.

SIMGEN (Forbus & Falkenhainer 1990) computes a
total envisionment of the scenario and then, for each
envisionment state? it builds a numerical simulator,
monitors the simulation and, at the end of the anal-
ysis, interprets numerical results in terms of the envi-
sionment graph. SIMGEN requires precise and com-
plete numerical equations, initial and boundary condi-
tions for the simulation. SIMGEN must be capable of
building a numerical model for each envisionment state
touched during the simulation; to this end it must be
supplied with a library of numeric procedures for every

2corresponding to an operating region.
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Figure 3: Behavior plot for several variables in the scenario.

desired level.

possible combination of influences. SIMGEN is inca-
pable of performing a simulation when a qualitative
relation is quantitatively underspecified or when pre-
cise knowledge unavailable for any initial conditions.

DME (the Device Modeling Environment) (Iwasaki
& Low 1991) is an incremental compositional modeling
system capable of generating self-explanatory simula-
tions. DME can work in two exclusive modes: quali-
tative or numeric. In the former case DME constructs
qualitative states, and uses QSIM to generate succes-
sors; in the latter case, DME builds numerical models
for simulation. In both modes, crossing an operating
region triggers remodelling. DME is highly interac-
tive and provides sophisticated explanation capabili-
ties (Gautier & Gruber 1993; Gruber & Gautier 1993).
DME requires precise numerical equations, initial and
boundary conditions. Therefore, DME does not inte-
grate qualitative and quantitative information in pre-
diction.

Pika (Amador, Finkelstein, & Weld 1993) builds a
numerical model for each operating region of the sys-
tem as soon as this is needed. Pika monitors the nu-
merical simulation and, at the end of the analysis, is
capable of engaging in a simple question/answering di-
alogue. Pika requires precise equations, complete ini-
tial conditions (unlike the other systems), and com-
plete specification of boundary conditions (in particu-
lar inequalities are not allowed). Compared to SQPC
Pika performs limited inferences: no structural infer-
ences are possible (this limits the expressive power of
the modeling language) and influences are limited to
indirect and algebraic ones: no provision is made for
handling more general monotonic influences.

The power output by the turbine after T1 is below the

6 Conclusion

We have presented SQPC, the first system to
unify compositional modeling techniques with semi-
quantitative simulation. This is crucial for automati-
cally building models of systems whose dynamics cross
several operating regions. SQPC automatically con-
structs semi-quantitative models and produces useful
predictions with imprecise knowledge. We have shown
how QPC was extended to accomplish this. We argued
that semi-quantitative knowledge is crucial to many
applied engineering domains the one chosen for demon-
strating SQPC, water supply control.

The current version of SQPC relies primarily on
the Q2 static envelope (Berleant & Kuipers 1988)
method which is based on the mean-value theorem.
The NSIM (Kay & Kuipers 1993) dynamic envelope
method, which performs explicit numeric integration
of extremal bounding equations, often provides tighter
bounds. Reliance on Q2 is due partly to software de-
velopment schedules and partly to the extensive use
of tabular information in the water supply control do-
main. Because NSIM performs explicit numeric in-
tegration, it requires smooth continuous functional
bounds. This requires an extension to our current tab-
ular data tcols to generate smooth monotonic func-
tional bounds for the tables. We are currently devel-
oping this extension.

The ability to use semi-quantitative information in
a compositional modeler is tremendously exciting. We
look forward to extending existing domain theories,
such as the chemical engineering theory constructed
by Catino (Catino 1993) to include semi-quantitative
information and exploring the construction of substan-
tial engineering quality models that are tractable due
to greater available precision.



(defmodelfragment NORMAL-TURBINE-MF
:participants ((t :type turbines)

(dam :type dams :conditions ((has-valve dam t)
(is-open t)))
(lake :type lakes :conditions ((connects dam lake river)))

(river :type rivers))

:operating-conditions ((> (stage lake) (base t))
(<= (min-head t) (head t))
(<= (head t) (max-head t)))

:consequences ((I- (capacity lake) (discharge-rate t))

(Q- (discharge-rate t) (head t))

(Q+0 (discharge-rate t) (power t))

(Q-add (flow-rate river) (discharge-rate t))

(Q+0 (min-head t) (power t))
(Q+0 (max-head t) (power t))))

Figure 4: This model fragment describes normally operating turbines. An instance exists if there is an open turbine
on a dam. [t is active when the head above the turbine is between the variables min-head and max-head and the
lake level is above the base of the turbine. Consequences specify equations that hold when an instance is active.
The qualitative influence I- specifies that a positive discharge-rate decreases lake capacity; influences Q- and
Q+0 partially specify monotonic functions on the discharge-rate of the turbine (which is causally influenced by
both head and power). The Q-add specifies that the discharge-rate sums into the river’s flow-rate. The final
influences specify that both min-head and max-head are affected by the desired power output.

Coupled with compositional modeling, the semi-
quantitative techniques have the promise of achiev-
ing one of the major goals of qualitative reasoning:
to make strong predictions about behavior, given the
strongest model available.

Acknowledgements

Adam’s work has taken place in part at the Quali-
tative Reasoning Group at the Artificial Intelligence
Laboratory, The University of Texas at Austin, which
is supported in part by NSF grants IRI-8904454, IRI-
9017047, and IRI-9216584, and by NASA contracts
NCC 2-760 and NAG 9-665. 1t has continued at
the Stanford Knowledge Systems Laboratory, which is
sponsored by the Advanced Research Projects Agency,
ARPA Order 8607, monitored by NASA Ames Re-
search Center under grant NAG 2-581; and by NASA
Ames Research Center under grant NCC 2-537.

Giorgio started working on the research reported in
this paper while he was visiting the UT Qualitative
Reasoning Group during 1992. He would like to thank
all the members of the group, and especially prof. Ben
Kuipers, Bert Kay and Adam.

References

Amador, F.; Finkelstein, A.; and Weld, D. 1993.
Real-time self-explanatory simulation. In Proc. of
the Eleventh National Conference on Artificial Intel-
ligence. AAAI Press/MIT Press.

Berleant, D., and Kuipers, B. 1988. Using incomplete
quantitative knowledge in qualitative reasoning. In
Proc. of the Sizth National Conference on Artificial
Intelligence, 324-329.

Catino, C. 1993. Automated Modeling of Chemi-
cal Planis with Application to Hazard and Operability
Studies. Ph.D. Dissertation, Department of Chemical

Engeneering, University of Pennsylvania, Philadel-
phia, PA.

Clancy, D., and Kuipers, B. 1993. Behavior abstrac-
tion for tractable simulation. In Proc. of the Sev-
enth International Workshop on Qualitalive Reason-
ing aboutl Physical Systems, 57-64.

Crawford, J.; Farquhar, A.; and Kuipers, B. 1990.
QPC: a compiler from physical models into quali-
tative differential equations. In Proc. of the Eight
National Conference on Artificial Intelligence. AAAI
Press/The MIT Press.

Crawford, J. 1991. Algernon — a tractable system
for knowledge representation. SIGART Bullelin 2(3).

Farquhar, A. 1993. Automated Modeling of Phys-
1cal Systems in the Presence of Incomplete Knowl-
edge. Ph.D. Dissertation, Department of Computer
Sciences, the University of Texas at Austin. Avail-
able as technical report UT-AI-93-207.

Farquhar, A. 1994. A qualitative physics compiler. In
Proc. of the Twelfth National Conference on Artificial
Intelligence.

Forbus, K., and Falkenhainer, B. 1990. Self-
explanatory simulations: an integration of qualitative
and quantitative knowledge. In Proc. of the Eight Na-
tional Conference on Artificral Intelligence, 380-387.
AAAT Press/The MIT Press.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24:85-168.



Fouché, P., and Kuipers, B. 1990. An assessment of
currrent qualitative simulation techniques. In Proc. of
Fourth Infernational Worskhop on Qualitative Rea-
soning about Physical Systems, 195-205.

Gautier, P., and Gruber, T. 1993. Generating expla-
nations of device behavior using compositional mod-
eling and causal ordering. In Proc. of the Eleventh
National Conference on Artificial Intelligence. AAAI
Press/MIT Press.

Gruber, T., and Gautier, P, 1993. Machine-generated
explanations of engineering models: a compositional
modeling approach. In Proc. International Joint Con-
ference on Artificial Intelligence.

Iwasaki, Y., and Low, C. M. 1991. Model genera-
tion and simulation of device behavior with contin-
uous and discrete changes. Technical Report KSL
91-69, Knowledge Systems Laboratory - Stanford
University.

Kay, H., and Kuipers, B. 1993. Numerical behav-
ior envelopes for qualitative models. In Proc. of
the Eleventh National Conference on Artificial Intel-
ligence. AAAL Press/MIT Press.

Kuipers, B., and Berleant, D. 1992. Combined quali-
tative and numerical simulation with Q3. In Faltings,
B., and Struss, P., eds., Recent advances in quelttative
physics. MIT Press. 3-16.

Kuipers, B.; Chiu, C.; Molle, D. D.; and Throop, D.
1991. Higher-order derivative constraint in qualita-
tive simulation. Artificial Inlelligence 51:343-379.
Kuipers, B. 1986. Qualitative simulation. Artificial
Intelligence 29:289-338.

Kuipers, B. 1993. Reasoning with qualitative models.
Artificial Intelligence 59:125-132.

Lee, W. W., and Kuipers, B. 1993. A qualitative
method to construct phase portraits. In Proc. of
the Eleventh National Conference on Artifictal Intel-
ligence. AAAT Press/MIT Press.





