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Abstract Model generationhas emergcdasakeytask
in engineering design and analysis. Al researchin this
areahasfocusedon modelbasedreasoningemphasising
qualitative models in attempting to automatethis
process.In this paper,we proposethat this work on the
useof model basedreasoningin model generation
would benefit from the inclusion of case-based
reasoning(CBR) techniques.We arguethat theuseof
casesconstrainsthe reasoningprocessas casesreflect
known good routesin the solution space.Casesalso
havetheadvantageof facilitating the integrationof heat
transfer exemplars,approximations, formulae and
correlations.In addition,muchof humancompetencein
this areais basedon reusingsolutions to previously
solvedproblemsand CBR emulatesthis. In the paper,
we advancetheseargumentsbasedon our experience
with CoBRA, a CBR system for physical model
generationfor thedomainof heattransferdescribedby
partial differentialequations.

1 INTRODUCTION

Model generationhas beenrecognisedto be oneof the
significant researchchallenges of the qualitative
reasoningcommunity [22, 23, 241 In recent years,
researchwork has focusedon different aspecLsof model
generationincluding; modellingof engineeringsystems
using compositional modelling [7,121, behavioural
modelling of engineeringphenomenausing model
abstractionswitching [I], modelling acrossmultiple
ontologies using meta-modelling techniques[13],
simplification of design analysis models using first
principlesreasoning[14], differential equationmodelling
usingorderof magnitudereasoning125]. Although these
projectshave been motivated by different goals and
adopt different artificial intelligence approaches,a
numberof generalpoints can be made. Firstly, most
work has interpreted model generationas a ‘model
switching’ task betweenan initial complex model and
somesimplerbut unspecifiedmodel.Consequently,this
perspectivehas lead to the developmentof model
generationsystemsthat havebeenbasedon traversinga
vast solution spaceof engineeringknowledgeusing
model-basedreasoningtechniques.Secondly,few of the
researchefforts appearto havebeenexplicitly grounded
on a cognitive understandingof how engineersin
practiseactually carry out modelling. This, we believe,
has resulted in the overlooking of a large body of
experiential engineering know-how and techniques.
Thirdly, most of the researchefforts have aspired
towardsautomatedmodelling environmentswhich aim
to replicatethe skills and expertiseof engineers.This,
we arguehasresultedin the focusingon modellingtasks
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that are often simplistic and thereforeunrelatedto
modellingof realworld engineeringproblems.Finally, it
is notedthat for somework, thereappearsto havebeen
little effort in understandingthe realneedsof engineers
from model generationtools andto apply thesefindings
to the research efforts; this has resulted in the
developmentof applications that are often of little
practical use to the engineeringprofession.It is worth
notingthat thesecommentsarenot uniqueto this paper,
in so far that they havebeennotedby other researchers
commenting on the direction of researchin the
qualitativereasoningcommunity [22,23,24].

In this work, wefocuson the taskof physicalmodel
generationassociatedwith the analysisof engineering
problems describedby partial differential equations
(PDEs).PDEs are nowadaysanalysedusingnumerical
simulationtechniquessuchas the finite elementmethod.
Prior to simulation engineersmust createsimplified
spatial,phenomenologicaland temporalmodelsof real
world engineering problems to facilitate efficient
computation. Thus, in this context, physical model
generationcan be regardedas one of the preliminary
stagesof numerical PDE analysis [9]. It has been
acknowledgedby bothengineering[2, 8] andnumerical
analysis researchers[3, 18] that these preliminary
modelling tasks form a crucial part of the overall
simulationprocessand they call for increasedresearch
efforts in the developmentof knowledgebasedmodel
generationtools.Although, therehasbeenconsiderable
work from thequalitativereasoningcommunityin model
generation,therehasbeenlittle effort explicitly directed
towards physical model generation in numerical
simulationof PDEs.

In this paper, we presenta novel approachto
physicalmodelling in heattransferanalysiswhich aims
to addressmany of the issuesraisedin the first paragraph
including: What is the nature of modelling in PDE
analysis?How do engineerscarry out modelling and
how does this influence our approach? What do
engineersrequire from modellingsystems? Whattype
of tools assistengineersbestwith the model generation
task?Our examinationof thesequestionshas led us to
view model generationas an iterativedesign task that
uses both experientialand model-basedknowledge.
Consequentlywe havedevelopeda physicalmodelling
systemcalledCoBRA which exploitsboth model-based
andcase-basedreasoningtechniqueswithin derivational
analogyframework.We arguethat this approachhasa
number of advantagesover other work including;
cognitiveplausibility, computationaltractability,easeof



knowledgeacquisitionanda morepragmaticengineering
approachto modelgeneration.Finally,webelievethat it
addressessome of concerns raised by researchersfrom
thequalitativereasoningcommunityaboutthe needto
firstly, focus more clearly on significant engineering
problems,and secondly,to tackletheseproblemsin a
mannerthat is beneficialto the engineeringcommunity
[22].

Thepaperis laid out asfollows: Section2 discusses,
firstly the issuesassociatedwith thephysicalmodelling
of heat transfer problems describedby PDEs, and
secondlyour understandingof how engineerscarry Out
physical model generation.Section 3 describesour
approachandintroducesCoBRA, a systemfor carrying
out physicalmodelling in heattransferanalysis.Section
4 examinesother related work anddealswith someof
the wider implications of our approach. Section 5
concludesthe paper.

2 MODEL GENERATION

In this sectionwe discussthe issuesassociatedwith the
physicalmodellingof theheattransferPDEsandoutline
our understandingandapproachto model generationfor
this problemdomain.

2.1 Physicalmodelling in PDE analysis

Convectionheat transferproblemscan be definedas
physicalsystemswhereheattransferoccurs betweena
solid body anda surroundingfluid medium,eachat a
differenttemperature.Numerical analysisof convection
problems is usually carried out in a number of stages
(seeFigure 1) which havebeenidentifiedas follows [3,
18]:
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• Behavioural Analysis This is the first task in most
numerical engineering problems and it involves
reasoningaboutthephysicalsystemwith theobjectiveof
obtaininga behaviouralunderstandingof the underlying
phenomena.In this work, we assumethat the engineer
hasalreadyobtaineda behaviouralunderstandingof the
physicalsystem.

• Physical Modelling This phaseinvolves applying
idealisations and simplifications to spatial,
phenomenologicaland temporalaspectsof the physical

systemwith theobjectiveof abstractinga mathematical
model.This is the focusof the currentwork.

* NumericalSimulationThisphaseinvolvescreatinga
numerical model and simulating using numerical
techniquessuchasthe finite elementmethod.

• Visualisation This stageinvolvespostprocessingand
visualising of the numerical data produced by the
simulationprocess.

Exceptfor simpleproblems,it is neitherfeasiblenor
desirableto analyseall aspectsof a physicalsystem.This
is because most real world problems contain
complexitiesthat rendernumericalsimulationdifficult
and redundanciesthat are unnecessaryto analyse.In
practise, engineers simplify complexities thereby
facilitating more efficient computation and ignore
redundancieswithout lossto theintegrityof thephysical
system. In physical model generation the major
challengesto the engineerare: identifying the various
complexities and redundanciesin a physical system,
applying appropriatemodellingstrategiesto simplify or
reducethesefeaturesandassessingthe suitability of the
resulting model. We considerphysical modelling to
consistof a number of subtasksincluding, spatial,
phenomenologicaland temporalmodelling.

Spatialmodelling focuseson geometricfeaturesof
the problem domain and involves applying modelling
strategiessuchas: taking a two dimensionalidealisation
of a three dimensional physical system, finding
geometricsymmetriesor carryingoutfeaturemodelling.
Figure 2 illustratesfeaturemodelling, andstrategiescan
involve eitherreplacingan existingcomplexfeaturewith
a simpler feature,removingthe featureandsubstituting
it with anequivalentboundaryconditionor removingthe
featurecompletelywithoutanycompensatorymeasures.

RealWorld
Problem

Figure 2 Featuremodellingstrategies



Phenomenologicalmodelling deals with the
constructionof a PDE model that describesthe thermal
heattransferprocess.Consideringthe full thermalPDE,
it consistsof threeequationsbasedon thephysical laws
of conservationof mass,momentumandenergy.Each
equationis in turn composedof terms,whereeachterm
describesa particular sub-phenomenon.In many heat
transferproblemsit is not necessaryto model all these
sub-phenomenonand therefore terms can be either
simplifiedor evenbeignoredcompletely.

Temporal modelling involves choosing an
appropriatetransientor steadystatemodel.

2.2 Our approach to physical modelling in PDE
analysis

Thecentralargumentpresentedin this paperis that for
physicalmodelling in finite elementanalysistheexisting
approachof using model-basedreasoningshould be
augmentedwith case-basedreasoningtechniques.This
argumentis basedon two ass~rtions:

• This modelling task is basedon a weak domain
theory.

• When modellingengineersrefer to exemplarsand
previouslysolvedproblems.

This first assertion requires some elaboration
because,at first glance,heat transferanalysisis not
normally consideredto be a weak theorydomain.This
apparentcontradictionexistsbecausethereis a strong
theory for much of the interactionin heattransfer. The
behaviouraldescriptionthat is the input to this modelling
processis well understoodas is the numericalsimulation
process(see Figure 1). However, the actualphysical
modelling processis not. The task of generatinga
physicalmodelfrom a behaviouralmodel is an abductive
processandcompetenceis basedon experiencerather
thanon any comprehensivetheory that mightbe found in
an engineeringtext. Instead, modelling skills and
strategiesareexperiential in nature andareacquiredby
engineers through experience and practise. In
conclusion,the modelsthemselvesare basedon a strong
domain theory but the processof producing and
simplifying thesemodelsis not.

Our second assertion is less contentious;our
experiencewith engineeringmodelling is that human
expertsreferextensivelyto heattransferexemplarsand
previously modelled problems. Exemplars occur
extensively in the form of fundamentalscenariosthat
include heat transfer to plates, cylinders, fins, etc.
Associatedwith these exemplarsare a rich body of
approximations and correlations which facilitate analysis
and evaluation. Exemplars in the form of modelling
episodesprovide the basis for model generation as
practisedby engineers.Thesemodelling episodesare
usedas building blocks for designingmodelsfor use in
simulation. Engineersmodel by rememberingthese
scenariosand then reasonand modify them to fit the
current context. Thesemodifications usually involve

‘first-principles’ reasoningbasedaroundapproximations
and correlationsassociatedwith the exemplar. This
anecdotalevidenceis backed up by researchin the
relatedareaof engineeringdesign.While therehas little
work on the integration of CBR in engineering
modellingtherehasbeenmuch work on usingCBR in
design.Arguments that humandesignersrefer to past
problemsolvingepisodesare presentedin [11, 20, 21].

Summarising then, we arguethat the QR research
on modellingwould benefitfrom the integrationof CBR
techniquesbecausethat is the way engineersdo it. In
addition,we arguethat the fact that modelling is based
on a weak domain theorysignalsthat a CBR approach
will befruitful.

3 PHYSICAL MODEL GENERATION IN CoBRA

In this section,we discussthe Al methodologyadopted
in this work, outline theconceptualarchitectureof our
system and describethe CoBRA system for physical
modelgeneration.

3.1 Al methodology

CBR is an Al methodologythatservesthe basicintuition
that humans reuse solutions to previously solved
problems during problem solving. The most obvious
advantageof this approachis that competentsystemscan
be developedbasedon shallow domain models, thus
requiring little knowledgeengineering.However,it is
generallyacceptedthat CBR systemsfor designrequire
reasonablydeepdomain modelsand much work has
been done in this area [4, II, 15, 16J. CBR systems
incorporatingdeepdomain models still haveadvantages
over systemsbasedon first-principles reasoning.The
caseorganisationhelpsfocustheknowledgeacquisition
process and the cases encode known good routes through
the solution spaceand thus constrainingthe solution
searchprocess[61.

One of the key issues in CBR is the manner in
which thecasesareadapted.Thestandardapproachis to
transform the solution of the old case to meet the
specificationfor the new case.In some circumstances
the interdependenciesin the solution componentsare too
complexfor this to be practical. In this casegenerative
adaptation(derivational analogy) can be used. This
involves reworking thestepsin thesolution generation
processin thecontextof the newproblemspecification.
This is thestrategyadoptedin CoBRA.

3.2 Conceptualarchitecture

An environmentthat facilitates interactive modelling
between the user and the modelling system was
considered to be the most suitable conceptual
architecturefor tackling physical model generationin
heat transferanalysis.This decisionwas promptedby
both design and pragmatic considerations.Design
considerationsarise from the knowledgethat in finite
elementanalysisthe majorityof usersare expectedto be



non-naiveparticipantswho will havea certaindegreeof
understandingof physicalmodelling.Thus, this classof
user is expected to be familiar with the various
modelling tasks(outlinedin Section2.1) butwill require
expert advice in selecting modelling strategiesand
applying thesestrategiesor actions in a particular
problemcontext.Forthe task of physicalmodelling in
finite elementanalysis,automatedmodelling or ‘black
box’ approachesdo not serve this user group well.
Pragmatic considerationswere prompted by the
realisation of the significant implementational
difficulties that were likely to be encounteredif the
entire modellingprocesswasto beautomated.Taking an
automatedapproachwould lead to additional formidable
technical challenges(for example, featurerecognition)
which would have detractedfrom the core issue of
examiningwhethercasebasedreasoningtechniqueswith
derivationalanalogycanbeappliedto this domain.

Consideringnow how theseideasare incorporated
with the CoBRA modelling system,we summaniseour
conceptualapproachby the following points:

• Modelling is carried out in distinct stageswhich
include phenomenological,spatial and temporal
modelling.

• Within any modellingstage,modellingdecisionsare
taken in a piecewisefashion by examining each
modellingissuein turn. In this way a physicalmodel
is designedin astepby step manner.

• Casebasedreasoningwith model-basedgenerative
adaptationforms thecore Al approach.

• A case consistsof a descriptionof the modelling
problem,a modelling solution and a denivational
trace.

• Derivational traces consist of a model based
reasoningtrace by which a modelling solution was
reached.They alsoactasa validation mechanismand
explanationfacility of thecasesolution.

Becausethe useris involved in the model creation
process,physicalmodelling is consideredto be a design
task in itself. This perspectiveallows physicalmodelling
to beviewedas an interpretationof thepropose-critique-
modify design model as proposedby Chandrasekaran
[27] for design.In this case,Chandrasekaran’sapproach
is adaptedfor designingphysicalmodels,where,theuser
examinesand proposes the sequenceof modelling
events, case based reasoningtools retrieve similar
modellingscenarioswith solutions,derivationalanalogy
techniquesadapt the solutions and also act as a
critiquing mechanismin the context of the adapted
solution and finally modification is carriedout by the
user applying the modelling action to the physical
system.

3.3 CaseDescriptions in CoBRA

In CoBRA, a target case consists of a frame based
representationof thephysical system.Framesarecreated
on the basisof geometricinformation obtainedthrough
an AutoCAD interface.In a target frame,representation
is organisedaccordingto thedifferent modelling stages,

spatial, phenomenological and temporal. This
representationis built up componentby componentby
the user, in this case (see Figure 3), a base fin
(longitudinal rectangularfin), a secondaryappendage
(longitudinalrectangularfin) and the additional minor
features associated with the appendages(cavities,
features, etc.). In spatial modelling, this involves
choosing from the user interface, the appropriate
qualitativedescriptorsto define each feature.Feature
indices are basedon qualitative engineeringtermsthat
are used by engineersto describe and distinguish
fundamentalmodelling scenarios.In addition to the
featureindices,problemparameterssuch as geometric
data are included in the targetcases.However this
information is notusedas indices,but is includedfor use
in the derivationaltraces.

ComplexAn~ndage
:base

type slender body

profile flat_plate

:base_appendage

type longitudinal

profile rectangle

houndary.jegion windward

:positive_feature
type longitudiunal

profile triangular

Solution

Action Removefin

Figure 3 A casein the CoBRA system

A basecaseconsistsof arepresentationof the realworld
physicalsystem,thesolution in the form of a simplified
model,anda reasoningtraceof thejustificationsfor the
transformationsin going from the real world problemto
the simplified model.Casesareconstructedat the level
of fundamentalmodellingscenariosandthis determines
directly the type of indicesusedaswell as thecontents
of thederivational traces. Figure 3 illustratesa typical
convectionheattransferproblemthatcanbe tackledby
the modellingsystem.The physical systemis a finned
heatexchangerthat dissipatesheat to the surrounding
ambientair, suchexchangersareoften usedasheatsinks
in electronic devices.The heatexchangerconsistsof a
base appendagewith an associated secondary
appendage.Each appendagehas additional minor
features.The task being addressedby CoBRA in this
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Rectangular

Fin
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exampleis to producea simplified model of thephysical
system.The frame definition on the right of Figure 3
illustratestheproblemdescription,the problemsolution
and the derivationaltrace that provided this solution.
Indicesare basedon qualitativeengineeringterms that
aresufficient to distinguishthefundamentalmodelling
scenarios.A targetcasecontains only the problem
description; this is the specification of the physical
system.Modelling progressesby firstly examiningthe
roleof theminorfeatures,andthen theimportanceof the
secondaryandcomplexappendage.

Case retrieval is implemented in a two stage
process,matching (or basefiltering) and mapping.
Matching is carriedout using an activation network
which is madeup of activationunits whichcorrespondto
the indicesof thebasecases.A featurevectoris created
for eachtargetcasewhich containstherelevantindices
of theproblem.The featurevectoris the basisby which
the activation units are initialised and on completion,
eachcasein thecasebasecontainsa valueof how many
indices it shareswith the targetcase.Themappingstage
is concernedwith establishing the correspondences
betweenthe basecasesand the targetcases.Mapping
basedon establishingthe full set of matchingfeatures
betweenthetargetandbasecasesis the criteria usedfor
retrievingcases.

3.4 Generative Adaptation using Model based
Reasoning

Derivationaltracesareexploited in this domain,because,
although the target and base cases may map
qualitatively, small differences between physical
parameterssuchas spatial or mediumdata can leadto
significantly different solutions.Suchdifferencescannot
be expectedto be capturedin the initial qualitative
classificationof the problem,furthermore,to index all
episodesbasedon both descriptive and parametric
indices would resultin an intractablylargecasebase.In
CoBRA,a derivationaltracelinks thestartand goal state
of a caseand describesthe basis of the modelling
solution. Each reasoning trace has two main
components;a decisionpart anda resultingaction part
(after[5]). Thedecisionpartcontains:

• Alternative modelling strategiesconsideredand
rejected

• Assumptionsand justifications for the decisions
taken.

• Heat transferapproximationsand correlationsto
allow evaluationof a particularmodellingstrategy.

• Heat transfer domain knowledge describing
dependenciesof laterdecisionson earlier ones.

The actionpartholds the stepstakenas a result of
the reasoningtraceof thedecisionpart. A typical action
is, “Removethe featurewhich facesinto the flow”. A
samplereasoningtraceis shown in Figure4. Eachnode
in the reasoningtracerepresentsa decisionpoint in the
model simplification process. In this example, the
solution in the basecase was derived in two ordered
stages.The first stage examinesthe influence of the

featureon theflow field andconsistsof Goals I and2.
This involvesdeterminingwhetherthe featureis actually
fully containedwithin a turbulentboundarylayer, and if
so, whetherthe influenceof the featureon theflow field
is deemednegligible.Goal 3 examinesthe contribution
of thefeatureto overall heattransfer.In the basecase,
the heattransfercontributionof the featurewas of the
order of 4% of total heattransferwell within the 5%
constraint,sothereforethefin wasremoved.In the target
case,this contributionwasof theorder of 3.5% thereby
permittingthefeatureto beremoved.Featureon

Appendage

Turbulent

•1
Non-enclosed

laminar or turbulent ??

Enclosed

A13\
Heat transfer
less than 5% heattransfer

greater than 5%
REMOVE less than 8%

Boundary
Laminar layer

enclosure??

heat
Transfer??

l-leat transfer
greaterthan8%

RETAIN

Featureon
Appendage

RESIZE REMOVE

Flat COMI~ENSATE
Plate

Flat Plate &
Boundary
Condition

Figure4 A model-basedderivationaltrace

Derivational traces are based on fundamental
modelling scenariosand are createdat this level of
complexity.Thus thecontentsof the derivationaltrace
are determinedby the context of each scenario in
questionand this can vary from exemplarto exemplar.
Becausethe derivationaltracesare createdat according
to each fundamentalmodelling scenario,the issue of
trade-offbetweenthe sufficiencyof the indicesand the
complexity of the derivationaltracesis essentiallypre-
determinedby theengineeringnatureandcontentof the
exemplars.

Currently,the derivationaltracesare constructed
andorganisedon a caseby casebasis,in otherwords,a
generalisedapproach basedon a common vocabulary
andstructurehas notbeenused.Becauseof the varying
natureandcomplexity of the derivationaltraces,it is
likely that such a generalisedapproachwould be



organisedat a planningratherthan at a modelling level.
This is an issuethat will beinvestigatedin future work.

4.0 COMPARISON WITH RELATED WORK

In this sectionwebriefly review relatedwork andin this
context,compareour approachto modelgeneration.

Addanki [I] describesan automatedmodelling
approachusing a methodologycalled the “graph of
models”.The basicideais that systembehaviourcanbe
representedby a seriesof interl inkedmodelswhich exist
at different levelsof abstraction.Modelling progresses
by automaticselectionandchangingof analysismodels
on the basis of assumptionsatisfaction and model
accuracy.

Iwasaki [12] describesa system called Device
Modelling Environmentthat formulatesa behavioural
modelof a device,simulatesits behaviourand interprets
the results. An input description of the device
topological structure is given and a compositional
modelling approach formulates the appropriate
mathematicalmodel.

Yip [25] describesa system for simplifying the
Navier Stokesfluid equationsusingorderof magnitude
reasoningwithin a qualitativereasoningframework.The
conceptualapproachadoptedis rathersimilar to the way
an engineeringacademicwould engagein deriving
simplified models.PDE modelsproducedby the system
are mathematicallycomplete,but may in some cases
haveno physical meaning.This modellingtask in similar
to the phenomenologicalmodellingstagedescribedin
Section2.1

Ling [14] discussesa systemfor generatingsetsof
PDEsfor designingthermal systemsdescribedby either
algebraicequations,ordinarydifferential equationsand
PDEs. Orderof magnitudeand dimensionalanalysis
techniques are used to heuristically derive a
mathematicalmodel. Currently they haveimplemented
their approachfor conductionheattransferproblems.

Shephardet al. [17] discussthe variousmodelling
decisionsthat must be consideredwhen specifying a
mathematical model for numerical analysis. They
describean approachbasedon a rule basedexpert
systemfor the domain of stressanalysis in aircraft
structures.Attention is focusedon the use of different
idealised behaviouralmodels at different levels of
abstraction.

FalkenhainerandForbus[7] describe an approach
basedon compositionalmodelling. By using explicit
modellingassumptions,domainknowledgecanbe to be
decomposedinto semi-independentfragments,each
describingvariouscomponentsof thephysicalsystem.

In our work, we deal with physical model
generation associated with engineering problems
describedby PDEs; to date only the work of Yip [25]

andLing [14] havedealtwith this classof problem.Our
approachhoweverhas somesignificantdifferences.

Firstly, rather than deriving models from first
principles,we usecaseswhich are basedon tried and
testedepisodes.Oneadvantageis that, in practisefor
finite elementanalysis,engineersdo notnormallyderive
physical modelsfrom first principles (asdescribedby
Yip [25]). Instead,our observationshavebeen,that they
choosebetweenknown good modelsand then ‘tweak’
thesemodelsto satisfy the problemat hand [9]. Cases
with model-basedgenerativeadaptationsupport this
approachto modellingmorereadily. Anotheradvantage
is that, casesencodeknown good routesthroughweak
domain solution spacesthereby avoiding extensive
backtracking often associated with model-based
approaches[61.

Secondly, we argue that by using case based
reasoning techniques,we can capture a body of
experientialengineeringskills and know-how, that is
otherwise difficult to representby model-based
techniques.Ourstudiesof modellinghaveindicatedthat
engineersmake extensiverecourseto this type of
knowledgewhen carrying out physical modelling in
numericalanalysis[9].

Thirdly, from a knowledgeengineeringperspective,
the useof derivationaltracesmeansthat theknowledge
acquisition processis carriedout in the context of
episodes.This we found providedno specialdifficulties
for our domain expert, which is in contrast to
experiencesfor elicitation of generalisedknowledge
associatedwith modelbasedapproaches[26].

Fourthly, we arguethat this approachmeetsmore
closely the needsof engineeringpractitioners in a
numberof ways. Forinstance,comparedto thework of
Iwasaki [12] which aims to develop a complete
modellingandsimulationenvironment,we believethat
the emergenceof modelling tools that canbe integrated
betweenexisting CAD and numericalpackageswill
serveengineeringneedsmost usefully [2,3,8,18]. In
addition, we believe that such tools should aim to
empowerengineeringanalysts,and therefore,it is likely
that interactivemodellingsupportsystemsas advocated
in this paperwill achievethis aim morereadily[9].

5.0 CONCLUSIONS

In this paper we presentedan approachto physical
model generationthat adoptsboth casebasedandmodel
basedreasoning.This approachhasbeenbasedon the
assertionthat physicalmodellinggenerationis a poorly
understoodprocessand is often carried out using a
combinationof episodicand first principlesreasoning.
This argumentis backedup by ourbelief, not only that
physical modelling is basedon a weak domain theory
but also that engineersmake extensiveuseof previous
modelling episodesand experientialknowledgewhen
modelling. Furthermorewe argue that for physical
modelling in PDE analysis,interactive modelling tools



that operatebetween CAD and numerical analysis
systemsare likely to be most useful for engineersin
physical modelling tasks, Currently the case base
consistsof abouttwenty casesandfuturework will focus
on expandingthe numberof casesso as to increasethe
coverageof thesystem.In additionwe intendto examine
the issueof creatinga commonvocabularyandstructure
for moreefficient and transparentimplementationand
representationof thederivationaltraces.
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