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Abstract
Oneof the original motivationsfor researchin qualitative

physics was the development of intelligent tutoring systems
and learning environmentsfor physicaldomainsandcomplex
systems. This paper demonstrateshow a synergistic
combination of qualitative physics andother Al techniques can
be used to create an intelligent learning environment for
students learning to analyze anddesign thermodynamiccycles.
Pedagogically this problem is important because
thermodynamic cycles express the key properties of systems
which ‘mterconvert work and heat, such as power plants,
propulsion systems,refrigerators, and heat pumps, and the
study of thermodynamic cyclesoccupiesa major portion of an
engineeringstudent’straining in thermodynamics. This paper
describesCyclePad,a fully implementedlearning environment
which captures a substantial fraction of a thermodynamics
textbook’s knowledgeand is designedto scaffold students who
are learning the principles of such cycles. We analyze the
combinationof ideasthatmadeCyclePadpossible,commenton
some lessonslearned about the utility of various techniques,

anddescribeourplansfor classroomexperimentation.

1. Introduction
One of the central motivations for research into

qualitative physics has been its potential for the
constructionof intelligent tutoring systemsand learning
environments.By providing computationalaccountsof
humanreasoningaboutthe physicalworld, rangingfrom
what the person on the streetknows to the extensive
expertiseof scientistsand engineers,qualitative physics
should provide representationlanguagesand reasoning
techniquesthat can be applied to helping people make
the transition from novice to expert reasoningabout
physical systems. Indeed,some of the earliestwork in
the field was directly aimed at instructional problems
(e.g., [1 ,2 1). Over the last decadethere have been
several important efforts aimed at using qualitative
physics to help teach diagnosis, troubleshooting,and
operationof complexphysicalsystems(e.g., [3 ,4 ,5 ,6 I),
but little effort has been focusedon using qualitative
physics in classroom settings, to help undergraduates
learnprinciplesof a domain(a rareexceptionis [7 1).
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In this paper we describea system,called CyclePad,
that has beenbuilt to help engineeringundergraduates
appreciateand therefore learn importantprinciples of
thermodynamics. CyclePadprovidesaconceptualCAD
environmentwhere students can design and analyze
power plants, refrigerators,and other thermodynamic
cycles. It relieson a synergisticcombinationof existing
Al techniques:compositionalmodelingto representand
reason with modeling assumptions, qualitative
representationsto expressthe intuitive knowledge of
physics needed to detect impossible designs, truth-
maintenanceto provide the basis for explanations,and
constraintreasoningandpropagationto provideefficient
mathematicalreasoning. It incorporatesa substantial
fraction of the knowledge in a typical engineering
thermodynamicstextbook [8 1’ and has beentestedon
overtwo dozenexamplesof problemsinvolving steady-
state,steady flow systemswhere numericalanswersor
single-parametersensitivityanalysesarerequired.

Section 2 describesthe pedagogicalproblems that
motivated the design of CyclePad, including a brief
overview of what thermodynamiccycles are and how
they work. Section3 demonstratesCyclePad’soperation
from a user’sperspective. How CyclePadworks is the
subjectof Section 4, with Section 5 summarizing the
lessonswe have learnedso far in building the system.
Section6 outlinesourplansfor futurework.

2. The task: Teaching the designof
thermodynamic cycles

A thermodynamiccycle is a systemwithin which a
working fluid (or fluids) undergoes a series of
transformationsin order to processenergy. Everypower
plant and every engine is a thermodynamiccycle.
Refrigeratorsand heat pumps are also examples of
thermodynamiccycles. Thermodynamic cycles play
much the samerole for engineeringthermodynamicsas
electroniccircuits do for electricalengineering:A small
library of parts (in this case, compressors,turbines,
pumps,heatexchangers,andso forth) are combinedinto
networks,thuspotentiallygeneratingan unlimited setof

designsfor any givenproblem. (Practically,cyclesrange



(c) RankineCyclewith regenerativefeedwaterheating

Figure1: Sequenceof conceptualdesigns for a power plant

from four components,in the simplest cases,to networks
consistingof dozensof components.)One sourceof the
complexity of cycle analysis stems from the complex
natureof liquids and gases: Subtleinteractionsbetween
their propertiesmust be harnessedin order to improve
designs. Cycle analysisanswersquestionssuch as the
overall efficiencyof a system,how much heator work is
consumedor produced,and what operatingparameters
(e.g., temperaturesand pressures)are required of its
components. An importantactivity in designingcycles
(or indeed in many engineering design problems) is
performing sensitivity analyses, to understand how
choicesfor propertiesof the componentsand operating
pointsof a cycleaffectitsglobalproperties.

To illustrate, considerthe sequenceof power plant
designsin Figure 1. Figure 1(a) showsa simpleRankine
cycle, which pumpsa working fluid (as liquid water)into
a boiler to produce steam. In the turbine the high-
pressuresteamexpands,thusperformingwork. Heatis
extractedfrom the steamin the condenserso that the
working fluid is again water. Finally, this water is
pumped into the boiler (which requires the pump to
absorb work) thus beginning the whole cycle again.
Theseprocesseshappencontinuouslyin steadyflow, in
everypart of the system. As it happens,this cycle is not
very efficient. Raising the temperatureof the boiler
increasesefficiency,but due to materialpropertiesof the
components,there are upper bounds on operating

pressuresand temperatures.Figure 1(b) shows a more
efficient design,which usesa secondturbine to extract
moreenergyfrom thesteam.The purposeof thereheater
is to ensurethat the steamdoesnot become“wet”, i.e., to
begin to condense,becausewater droplets moving at
high speedmay damagea turbine. The extra energy
requiredto reheatthesteamis morethan balancedby the
additional work gained from the secondturbine. One
can do even better, however. Figure 1(c) shows a
regenerativeftedwater cycle where some of the steam
from the outlet of the high-pressureturbine is routed
back to the water feedingthe boiler. The boiler then is
adding heat to water that is starting at a higher
temperature,which increasesefficiency.

The analysisand design of thermodynamiccycles is
the major task which drives engineering
thermodynamics,asidefrom applicationsto chemistry.
In thermodynamics education for engineers, cycle
analysisanddesigngenerally appearstowardsthe endof
their first semester,or is evendelayedto a secondcourse,
since understandingcycles requiresa broadand deep
understandingof the fundamentalsof thermodynamics.
Eventhe mostintroductoryengineeringthermodynamics
textbooks tend to devote several chapters to cycle
analysis, and in more advanced books the fraction
devotedto cyclesrises sharply. Indeed,sometextbooks
focus exclusively on cycle analysis (e.g., [9 1). Aside
from their intrinsic interest, the conceptualdesign of

(a) SimpleRankineCycle



thermodynamiccycles provides a highly motivating
contextfor studentsto learnfundamentalprinciplesmore
deeplythanthey would otherwise.

Q: Why is Nu thermal (CYCLE) = 46%?
A: Nuthernal(CYCLE) = 46%

was found by using
Nuthermal (CYCLE) =

network (CYCLE) /Qin (CYCLE)
on

Q in(CYCLE) = 4069.555 kW
net work(CYCLE) = 1872.219 kW

Q: Why is net work(CYCLE) 1872.219 kW?
A: net work(CYCLE) = 1872.219 kW

was found by using
net work(CYCLE) =

work_in (CYCLE) +work out (CYCLE)
on

work in(CYCLE) = —15.68446 kW
work out(CYCLE) = 1887.903 kW

Q: Why is work out(CYCLE) = 1887.903 kW?
A: work out(CYCLE) = 1887.903 kW

was found by using
work_out(CYCLE) =

work (TIJRBINE2) +work (TtJRBINE1)
on

work(TURBINE2) 1372.131 kW
work(TURBINE1) = 515.7723 kW

Q: Why does work out(CYCLE) =

work (TIJRBINE2) +work (TURBINE1) hold?
A: work out(CYCLE) =

work (TURBINE2)+work (TURBINE1)
because we assumed:

CYCLE is a thermodynamic cycle
the work-flows—out of CYCLE consist

of {work(TURBINE2) ,work(TURBINE1))

Q: How has TURBINE1 works isentropicaly
been used?

A: TURBINE1 works isentropically
was used to derive

TURBINE1 works adiabaticaly
T(S3) = Tout i(TURBINE1)
s(S2) = s(S3)

Figure 2: A CyclePadhypertext dialog

A variety of problems arise when teachingstudents
how to designand analyzethermodynamiccycles:1 (1)
Studentstend to get boggeddown in the mechanicsof
solving equationsandcarrying out routine calculations.
This leads them to avoid exploring multiple design
alternativesand to avoid carrying out trade-off studies
(e.g., seeing how efficiency varies as a function of
turbine efficiency versushow it variesas a function of

I Theseobservationsarebasedon the experienceof the

secondauthor,who teachesengineeringthermodynamics
to undergraduates.

boiler outlet temperature). Yet without making such
comparativestudies,many opportunitiesfor learningare
lost. (2) Studentsoften havetrouble thinking about
what modeling assumptionsthey needto make, such as
assumingthat a heater operates isobarically, leading
them to get stuck whenanalyzinga design.(3) Students
typically don’t challenge their choicesof parametersto
seeif their design is physically possible(e.g., that their
designdoesnot requirea pumpthatproducesratherthan
consumeswork).

CyclePadwas designedspecifically to help students
learn engineering thermodynamicsby providing an
intelligent learning environment that handles routine
calculations, facilitates sensitivity analyses, helps
studentskeeptrackof modelingassumptions,anddetects
physically impossibledesigns.

3. Overview of CyclePad
CyclePadcan be viewed as a CAD system for the

conceptualdesign of thermodynamiccycles, although it
providessubstantiallymoreexplanationcapabilitiesthan
existingCAD software. CyclePadperformssteadystate
analyses of steady-flow thermodynamic cycles. The
restriction to steady-stateis standardfor this kind of
analysis,since issuesof how to start up and shutdown
the plant, or how easyit will beto monitor, maintain,or
troubleshootare issuesof concern only after the basic
design has beenshown to be sound with respectto the
goals for it (e.g.,amount of work produced,efficiency,
etc.). The restriction to steady-flowsystemsmeansthat
CyclePadcannotcurrently be used to analyze internal
combustion engines, such as Otto or Diesel cycles.
Although we plan to extendCyclePadto analyze such
systems,steadyflow cyclesconstitutethe majority of the
cycle-relatedmaterial taught to engineering students.
(For example,in [811 four out of five chapterson cycles
concern steady flow cycles, in [9] it is 9 out of 10
chapters,and [10] focusesonly on steady-flowsystems.)

When a userstarts up CyclePad,they find a menuof
component types (e.g., turbine, compressor, pump,
heater,cooler, heat exchanger,throttle, splitter, mixer)
that can be used in their design. Componentsare
connected together by stuffs, which represent the
properties of the working fluid at that point in the
system. (Stuffs servethesameroleas nodesin electronic
circuits.) The interface helps the user put togethera
design by highlighting what parts remain unconnected
andprovidingsimplecritiquesof thestructure. Once the
structuraldescriptionof the cycle is finished (e.g., there
are no danglingconnectionsor stuffs), CyclePadallows
the user to enteran analysismode,wherethe particular
propertiesof the system,such as the choice of working



fluid, the valuesof specific numericalparameters,and
modelingassumptionscanbeentered.

CyclePadacceptsinformation incrementally,deriving
from eachuser assumptionas many consequencesas it
can. At anypointquestionscanbeasked,by clicking on
a displayed item to obtain the set of questions(or
commands) that make sensefor it. In addition to
numerical parametersand structural information, all
modeling assumptionsmade about a component are
displayedwith it, andclicking on a componentshowsthe
modeling assumptionsthat can legitimately be made
about that component,given what is known about the
systemso far. The questionsandanswersare displayed
in English, and include links back into the explanation
system, thus providing an incrementally generated
hypertext.Figure2 illustrates.

In addition to numerical assumptions,selecting a
componentprovidescommandsfor making or retracting
modeling assumptionsconcerningthat component. For
example,clicking on a new turbine yields a menu of
commandswhich offers the options of assuming the
turbine is adiabatic or isentropic. Such modeling
assumptionscan introducenew constraintswhich may
help carry an analysisfurther and new parameters(e.g.,
the efficiencyof theturbine)thatmustbe set.

When CyclePaduncoversa contradiction,it changes
the interfaceto provide tools to resolvethe problemby
presenting the source of the contradiction (e.g., an
impossiblefact becomingbelieved,or conflicting values
for a numerical parameter)and the set of assumptions
underlying that contradiction. The hypertext dialog
facilities canbe usedwith this displayto figure outwhich
assumption(s)aredubiousandchangethem accordingly.

We havetestedCyclePadon overtwo dozenexamples
to date, ranging from simple ideal gas problems to the
analysisof a combinedgasturbine/steamRankinecycle
system. Webelievethat thecurrentversionof CyclePad
can solve all of the problemsin [8] concerningsteady-
state analyses of steady-flow cycles that require
numerical answersor sensitivity analysesinvolving a
singleparameter. (We are continuing to testit on new
examples, drawn from other textbooks as well.)
CyclePad is very efficient. The combined gas
turbine/steamRankinecycle is the mostcomplex system
in [8], consistingof ten components.Good studentstake
between20 minutesandonehour to solve this problem.
CyclePad does somewhatmore work in analyzingthis
problem than a good studentwould, instantiating 219
equationsinvolving 362 parameters,whereasa solution
can be found using only 52 equations. However,
CyclePadis still faster,taking justover two minuteson a
workstation, versus just over ten minutes on a
PowerBook~65c. We believe that thecombination of

the speed at which CyclePadcarries out the routine

calculations, its explanation facilities, and its
consistency-checkingfacilities, will make it a valuable
tool for studentslearningthermodynamics.

4. How CyclePadworks
The overall structureof CyclePadwas inspiredin part

by EL [11 ], an experimentalsystemfor DC and AC
analysisof analogelectroniccircuits. EL was oneof the
first systems to use constraint propagation and
dependencynetworks to organize its reasoning, and
introducedtheideaof dependency-directedbacktracking.
In this section we see how CyclePad exploits the
advancesmadeby thefield sinceEL, by examining each
of the Al ideasthat contributesto CyclePad’soperation,
andthereasonsfor theseparticulardesignchoices.

4.1 The role of compositional modeling

Compositional modeling [12, 13, 14] provides
formal representationand reasoning techniques for
formulating and reasoningabout models. Knowledge
about a domain is organizedas collections of model
fragments,organizedby modeling assumptionsand the
ontology of the domain. Formulating a model for a
specificproblemconsistsof instantiatingfragmentsfrom
the domain theory, taking into accountthe kindsof tasks
themodel is to beusedfor.

As notedpreviously,steady-stateanalysesare required
for the conceptualdesign of thermodynamiccycles. By
restrictingourselvesto steady-flowsystems,it is also the
case that the processstructure(i.e., the collection of
physicalprocessesacting in eachcomponent)is fixed for
all time. Theserestrictions allow us to organize the
domain theoryaroundthecomponentswhich comprisea
cycleandthepropertiesof theworking fluid at particular
locations(i.e., theconnectionsbetweencomponents).

The modelinglanguageusedin CyclePadis similar to
other implementationsof compositionalmodeling. For
example,Figure 3 shows part of CyclePad’smodel of a
heater. CyclePad’s knowledge base consists of 29
conceptualentities, 5 physical processes,9 assumption
classes,98 equations,40 pattern-directedrules and41
backgroundfactsaboutthermodynamics.

Modeling assumptionsare organizedinto assumption
classes [15 , 13]. Assumption classes are always
associatedwith particular classesof components.The
relevanceof one assumptionclass can dependon the
particular choicesmade for anotherassumptionclass.
For example,it only makessenseto considerwhethera
compressoris isentropic if it is already known (or
assumed)to beadiabatic.



(defEntity (Abstract—hx ?self ?in
?out)

(thermodynamic—stuff ?in)
(thermodynamic-stuff ?out)
(total—fluid—flow ?in ?out)
(== (mass—flow ?in)

(mass—flow ?out))
(parameter (mass—flow ?self))
(parameter (Q ?self))
(parameter (spec—Q ?self))
(heat-source (heat-source ?self))
((parts :cycle) has-member ?self)

(?self part—names (in out))
(?self IN ?in) (?irs IN—OF ?self)
?self out ?out) (?out out-of

?self)

(defAssumptionClass
((abstract—Hx ?hx ?in ?out))

(isobaric ?hx)
(:not (isobaric ?hx)))

(defEntity (Heater ?self ?in ?out)
(abstract—Hx ?self ?in ?out)
(?self instance—of heater)
(heat—flow (heat—source ?self)

(heat-source ?self)
?in ?out)

((heat—flows—in : cycle)
has-member (0 ?self))

(> (Q ?self) 0.0))

(defEquation Hz-law
((Abstract—Hx ?hx ?in ?out))
(:= (spec—h ?out)

(+ (spec—h ?in) (spec—Q
?hx))))

(defEquation spec-Q—definition
((Abstract—Hx ?hx ?in ?out))
(:= (spec-Q ?hx)

(/ (Q ?hx) (mass—flow ?hx))))

Figure 3: A sample of CyclePad’sknowledgebase

4.2 The role of constraint reasoningand propagation

A design is not finished until numerical valueshave
beenchosenfor its parameters.This is onereasonwhy
the overwhelmingmajority of thermodynamicstextbook
problemsrequire numerical answers.2 This fact, plus
the relative simplicity of the equations involved, has
meant that constraint propagation has sufficed for
CyclePad.

In compiling CyclePad’sknowledgebase,equations
are automatically converted into antecedentconstraint
rules that propose values for the nth variable in an
equationwheneverthe other n-i variables are known.
Redundantequationsare introduced when needed to
overcome simultaneities. This automatic translation
simplifies development.Equationsin their original form
arestill representedin theknowledgebase,however,and
are used in two ways. First, they are part of the

dependencystructure for any results calculated via
constraint propagation, for explanatory accuracy.
Second,they can be inspectedvia the query system, so
that studentscan find out what equationsmention a
specificparameter,and what equationsmight be usedto
calculateadesiredvalue.

Property tables comprise a critical source of
information forCyclePad.Propertytablesarewoveninto
the constraint propagator via pattern-directedrules,
operatingunderthe sameprotocol as the rulescompiled
for equations. Due to the inherent loss of accuracy in
interpolation, it is important,unlike equations,to avoid
usingtablesin every logically possiblefashion. Given a
superheatedvapour, for instance,knowing the pressure
and temperaturesuffice to determineeverything else
(e.g.,thespecific enthalpy,specific entropy, etc.). If one
redundantlycomputesfrom,say thespecificenthalpyand
specificentropy what thepressureandtemperaturewill
be, it is very likely that the newly estimatedvalueswill
trigger a contradiction, given the accumulated
inaccuraciesin the interpolation process. Consequently,
an important design choice in implementingtables is
selectingwhich directionsof accessare likely to prove
mostproductivefor thekindsof analysesbeingmade.

4.3 The role of qualitative physics
In CyclePadqualitative physics provides the medium

for representingconstraints on what is physically
possible. Occurrencesof physical processesinside
componentsare explicitly represented. Each process
occurrenceincludesordinal constraintsthat are tested
against numerical values by CyclePad’s constraint
propagationmechanism. Figure 4 shows a sampleof
whatCyclePadknows aboutphysicalprocesses.

2 In a typical textbook we surveyed,
900

/c of the exercises

requirednumericalanswers.



4.4 The role oftruth maintenance
We usedan LTMS [16] in CyclePadbecauseit offered

thebesttradeoffbetweeninferential powerandeconomy.
(In fact,CyclePad’sinferenceengineis theLTRE system
from [17] We ruled out a JTMS becauseHorn clauses
are tooclumsyfor manyof CyclePad’sinferential needs,
including biconditionals (used in definitional
consequences of modeling assumptions, e.g., a
compressoris operatingisentropically exactly when its
isentropicefficiency is 1.0) andTAXONOMY constraints
[18] (usedin implementingassumptionclasses). The
ability of an ATMS to providerapid switchingbetween
very differentcontextswasnot required: While frequent
additionsand retractionsof assumptionsare made in
carrying out an analysis,typically thesechangesare a
smallfraction of theworking setof assumptionsin force.

A critical role for theLTMS dependencynetworkis as
an input for explanation generation. Explanations in
CyclePadare in terms of structured explanations,an
abstract layer between the reasoning system and the
interfacethat casts the consequencesof the inference
system in terms relevant to the user. This includes
summarization(e.g., [19 ]), asin removinganyreference
to implementation-dependentinformation such as the
constraintpropagationmechanismfrom an argument. It
alsoincludesmakingexplicit implicit dependencies,such
as the variableswhosevaluesmustbe known beforethe
constraintrule implementinga particular equationwill
fire when explaining what assumptionsmight lead to
moreprogress.

5. Lessonslearned from developingCyclePad
CyclePad representsoneof thefirst attemptsto apply

ideasdevelopedby the qualitative physics community to
a real application. While CyclePad has not yet been
fielded, we believe that we have already learned several
generally useful lessonsin building it.

5.1 Compositional modelingscalesup
Previoususes of compositional modeling have either

focusedon largebut purely qualitativedomain theories,
or small quantitative theories. CyclePad demonstrates
that the ideasof compositionalmodelingcanbe usedto
organize a substantial body of quantitative and
qualitativeknowledgesothatit canbeusedeffectively.

Automatic model formulation, which typically has
beenthefocusof previouscompositionalmodeling work,
is less relevant for this application. Nevertheless,the
mechanisms of assumption classes and logical
constraints between modeling assumptions provide a
valuableservicein helpingtheuserorganizean analysis.
In fact, oneof the skills being taught in using CyclePad
is model formulation. A boiler, for instance, is typically
approximated as a heater for the purposesof cycle
analysis. A flashchamberis modeledasa splitterwhose
working fluid is saturated and with particular
assumptionsaboutthe drynessof the outlets. A multi-
stageturbine is modeledas a sequenceof turbines and
splitters. CyclePadhelpsusersanalyzemodels,so they
canfigure out if their choiceof idealizationmakessense,
but currently CyclePaddoesnot provide direct assistance
with formulating an idealized model from an informal
specification.

5.2 Regarding constraint reasoning
In this task numerical constraintpropagationsuffices.

There are however natural extensionsof CyclePad’s
analyticabilities for which algebraicmanipulationwould
be useful.Forinstance,someinsightsabouthow a cycle
works are best capturedvia equations.3 We plan to
extend CyclePadto derive such equationson demand.
Our experiencewith the constraint rules compiler in
CyclePad,and other work on thermodynamicsproblem
solving [20], suggeststhat relatively simple algebraic
capabilitieswill sufficefor this extension.

We draw two additional conclusions regarding
constraintmanipulation. First, the commercial world
hasdevelopedmanypowerfulsymbolicalgebrapackages,
such as Mathematica,Maple, and Macsyma,which in
some cases are excellent off-the-shelf solutions to

~For example,figuring out that for a gas turbine cycle the
maximum specific work output is achievedwhen the pressure
ratio is thesquarerootof its maximumpossiblevalue[8].

(defProcessEpisode (fluid—flow ?in ?out)
(same—substance?in ?out))

(defProcessEpisode (total-fluid-flow
?in ?out)

(fluid—flow ?in ?out)
(== (mass—flow ?in) (mass—flow ?out)))

(defProcessEpisode
(heat-flow ?src-start ?src—end

?dst—start ?dst—end)
(> (T ?src—start) (T ?dst—start))
(:not (< (T ?src—start) (T ?dst-end)))
(:not (> (T ?dst—end) (T ?src—end))))

(defProcessEpisode (compression
?in ?out ?worker)

(> (P ?out) (P ?in))
(< (spec—shaft—work ?worker) 0))

(defProcessEpisode (expansion
?in ?out ?receiver)

(< (P ?out) (P ?in))
(> (spec—shaft—work ?receiver) 0))

Figure 4: Physicalprocessknowledge in CyclePad



particular problems. However, we suspect that many
educationalapplicationswill be like CyclePad:Simple
algebraicfacilities are all that is required,and thus the
complexity (and expense) of integrating commercial
symbolicalgebrapackagescanbe avoided. Second,we
found that special-purposeconstraint languages(e.g.,
[21 ]) were too restrictivefor our purposes. Given the
needto reasonaboutmodelingassumptionsand theneed
to integrate information from property tables, it was
much easierto implementa simpleconstraintpropagator
insidea pattern-directedinferencesystemthan it was to
interface a special-purposeconstraint manipulator.
Aside from applicationswhere scaling up to extremely
large systemdescriptions(e.g., VLSI CAD) is a key
requirement, it is hard to seeany situation where using
such languagesmakes sense.

5.3 Regarding qualitative physics
The combination of steady-state analysis, the

restriction to steady-flow systems, and the use of
idealized components dramatically simplified the
representation of physical processes, since the
occurrenceof particular physicalprocessescould simply
bestipulatedinsidea component.

CyclePad’sfocus on quantitativeanalysisalso means
that the major inferential role for qualitative physics is
ruling out physically impossible designs. We believe
similar simplifications will hold in many other
applications, since well-designed artifacts explicitly
representthe importantphysicalchangesin termsof the
kinds of componentsand connectionsthat comprisea
schematic, and many science and engineering
educationalapplications involve quantitativeknowledge
heavily.

On the other hand,certain extensionsto CyclePad’s
capabilities will require substantiallymore qualitative
representationsand reasoning. For instance,CyclePad
currently doesnot try to explain how componentswork,
nor does it provide assistancefor understandingthe
physical rationale underlying design changes. To
formalize such argumentswill take richer qualitative
representations,as well as the ability to reason with
property diagrams (e.g. [22 ]). Fortunately, the
automatic instantiationof physical processdescriptions
from a domain theory is an inexpensiveand well-
understoodoperation.

5.4 Regarding explanation generationand TMSs

The use of a structured explanation system as an
abstractionlayerbetweeninterfaceandreasoningsystem
was extremelyhelpful in developingCyclePad,since it
allowed us to optimize each independently. We also
found,as suggestedby [23], that sophisticatednatural

languagegeneration techniqueswere inappropriatefor
this task. The ability to automaticallygeneratehypertext
in responseto a user’squestionsobviatesthe need for
discourseplanning, and the fixed nature of the task
meansthat issuessuchas selectingthe appropriatelevel
of detail in an explanationcanbepostponed. Hypertext
allows usersto selecthow much they wantto know about
a topic, and since the hypertextis only generatedon
demand, many navigation problems common in fixed
hypertexts areavoided.

ATMS technology [24] has been widely used in
qualitative reasoningsystemsbecauseof its ability to
rapidly switch betweenalternate interpretations. As
notedpreviously,this ability is unnecessaryin CyclePad,
andwesuspectthat this will betrue for mosteducational
applications.

6. Discussion
CyclePad demonstratesthat qualitative physics has

advancedenoughto supportnew applicationsof Al to
educationalproblems. Compositionalmodelingprovides
representationaltools and techniquesthat can be usedto
encode a substantial body of knowledge about
engineering thermodynamics, with constraint
propagation providing analytic capabilities and
qualitativerepresentationsproviding theintuition needed
to detect student blunders. Automatically generated
hypertextexplanationsenable the user to explore the
consequencesof his or herassumptions,andfigure out
what modeling assumptionsare neededto make further
progress.

To date,CyclePadhasonly beentestedwith graduate
student volunteers. We will be testing it with
undergraduateengineeringstudentsboth at Oxford and
at Northwesternthis academicyear. Feedbackwill be
gatheredvia a combination of electronic mail and
interviews, which we will use to further improve the
system. Our goal is to have CyclePad continuously
availableto undergraduates,so that their needswill help
guidesubsequentdevelopment.

Severalextensionsto CyclePadare in progress. First,
we will extendit to handlenon-steadyflow cycles,such
as Otto and Diesel cycles. Second,we will add some
algebraiccapabilities,sothat CyclePadcanhelp students
derive algebraic expressionsthat capture important
tradeoffsin specificsystems.

We view CyclePadas part of a virtual laboratory for
exploring thermodynamiccycles. A virtual laboratory is
a software environment consisting of a set of parts,
correspondingto physicalpartsor importantabstractions
in the domains of interest, tools for assembling
collectionsof theseparts into designs,and facilities for
analyzing and testing designs. By working in this



softwareenvironment,studentscan “build” their designs
andtry them outwithout expenseor danger. In simpler
domainssomecommercial softwareexists that can be
viewed as virtual laboratories(e.g., InteractivePhysics
for simple dynamics and Electronics Workbench). A
novel contributionof qualitativephysicsis the ability to
generateexplanations. For educational applications,
explanationgenerationis vital, to help studentsseewhat
aspectsof a situation are importantand to tie what they
are observingback to fundamentalprinciples. One of
our next steps is to extend CyclePad’s explanation
facilities, by adding coaches [25, 26, 27] to help
students,both to guidethem throughthe analysisprocess
(including the representation of real devices in termsof
ideal components)and to suggest improvements to a
student’sdesign.
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