Integrating Qualitative Simulation for Numerical Data Fusion
Methods

Yang Gao and Hugh F. Durrant-Whyte
Department of Engineering Science
University of Oxford
Oxford OX1 3PJ, UK
yang@robots.oxford.ac.uk and hugh@robots.oxford.ac.uk

Abstract

Work described in this paper is aimed at developing
a monitoring and fault delection system for the pro-
cess plant. In particular this work concentrates on how
to combine qualitative reasoning techniques with con-
ventional numerical sensor fusion techniques. The ad-
vantages and disadvantages of using pure numerical or
pure qualitative technique alone are first demonstrated.
A method of developing a combined semi-quaniitative
model is then introduced. A number of algorithms
are designed to analyse semi-quantitative predictions
information. Finally, the semi-quantilative model is
used to perform the system monitoring and change de-
tection. The application of the algorithms developed is
demonstrated by a number of examples throughout the
paper, based on real data.

1 Introduction

Work described in this paper is aimed at developing
a monitoring and fault detection system for a process
plant. In particular this work concentrates on how to
combine qualitative reasoning techniques with conven-
tional numerical sensor fusion techniques.

Qualitative physics provides an account of be-
haviour in the physical world. The vision of qualitative
physics, in conjunction with conventional physics, is to
provide a much broader formal account of behaviour,
an account rich enough to enable intelligent systems
to reason effectively about the real world. Qualitative
physics predicts and explains behaviour in qualitative
terms. In contrast with qualitative techniques, numer-
ical data fusion methods described physical system in
more accurate numerical terms. Most sensor based
systems employ a large variety of sensors to obtain in-
formation. How the information obtained from differ-
ent sensing devices is combined to form a description
of the system is the sensor fusion problem. A number

of sensor fusion methods have been developed, ranging
from simple least-squares fitting algorithms to com-
plex statistical inference methods. These algorithms
provide statistical descriptions of system behaviour
based on statistical uncertainties involved. However,
qualitative reasoning methods provide features which
are difficult to capture using pure numerical methods.
It functions with incomplete knowledge, a qualitative
analysis does not require a detailed quantitative model
or complete data on the system which may be difficult
to obtain; A qualitative model may represent a class
of numerical models, because different numerical mod-
els can corresponding to the same abstract qualitative
model; this is in contrast to the complete problem spe-
cific type of a numerical model. Qualitative analysis
provides direct, often causal explanations between dif-
ferent variables.

If the information available about a system is purely
qualitative, then the qualitative methods will be used;
when precise numerical information is available, then
a number of numerical methods can be utilised. How-
ever, in many situations, where numerical information
is substantial but stochastically imprecise, the predic-
tions made are more confident than using the purely
qualitative ones. The qualitative predictions on the
other hand provide causal explanations. In such cases,
using a combined method may take advantage of both
techniques and avoid the weakness of using one alone.
The work described in this paper is an example of this
case.

In this paper, we focus on general physics of a sys-
tem. The idea behind integrating the two techniques
is also to get some qualitative knowledge of the pro-
cess and sensor physics and incorporate them into the
numerical data fusion processes. The application of
the algorithms developed is demonstrated by a num-
ber of examples throughout the paper, based on a real
system, process plant.
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Figure 1: Outline of System

The structure of this system is outlined in Figure
1. We first introduce a method of building a qualita-
tive physical model to simulate the system behaviours.
We then develop the system model using a classical
state-space description, and explain problems associ-
ated with parameter uncertainty. Finally we discuss
the common theme that lies between them and the
model generated using the combined knowledge. The
system state estimate and behaviour prediction gen-
erated by this combined model, which we term it as
semi-quantitative model, are analysed for the purpose
of system monitoring and fault detection.

2 System Modelling

The process plant dynamic system is loosely mod-
elled around a conventional nuclear power plant. It
incorporates four pumps, three boilers, two heat ex-
changers and fifty six computer controlled valves. The
sensing level provides large quantity of redundant sen-
sor information collected from more than two hundred
sensors (thermocouples, flow meters and pressure sen-
sors) which are distributed at appropriate locations
in the plant. Details of the process plant system and
sensing system can be found in [11].

We consider the simple case for the process plant
system. The circuit incorporates one boiler, one pump
and one heat-exchanger. For reasons of simplicity,

we assume all the valves along the circuit are in the
“open” positions and that there is no energy loss in
pipes and pumps. Only temperatures from the in-
put and output of the boiler are to be measured and
predicted. We start by switching on all three com-
ponents. When the temperature of the output of the
boiler reaches a certain point, the second pump which
is in parallel with the first one will be switched on.
What happens next?

To answer this question, we have modelled the sys-
tem both qualitatively and numerically.

2.1 Qualitative Model

The qualitative model of the example discussed
above is developed based on the principle of energy
conservation in thermodynamics:

Qin = Cbm(Tout - Tm) (1)
Tin + Tou
Qour = UA(—————2 L — Tair) (2

Qour = Cfon(Tout - T‘m)
Qin — Qout = Qnet
dTout/dt = Qnet (5)

where Q;,, and Q,y; are the heating input and heating
output, T;, and T,,; are the temperature input and
output from the boiler, T,;, i1s the plant room temper-
ature, m is the mass flow, Cy and C; are the specific
heat for boiler and heat exchanger, U is the heat trans-
fer coefficient for convection loss, and A is the heat
transfer area. In qualitative modelling, these system
parameters are defined using qualitative ranges and
landmark values as follows: the heat input is a value
Qin* which lies in the range (0, 00}, mass flow has two
values when working with one pump or two pumps re-
spectively: denoted as mf and 2mf. The rest of the
parameters are similarly defined. One particular land-
mark value is setup for the temperature output from
the boiler, Tho¢. This landmark is set only for the pur-
pose of deciding the time point at which to switch on
the second pump, that is when Tout is higher than
that of Thot and increasing, then the second pump is
switched on.

The above model provides a qualitative descrip-
tion of the structure of the mechanism and an initial
qualitative state without knowing the exact values of
the landmarks. The qualitative simulation package
(QSIM) is used here to provide automatic generation
of the qualitative behaviours of the state variable. The
behaviour predictions generated by the above qualita-
tive model are shown in Figure2 and Figure 3. The
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Figure 2: QSIM plot of temperature input of one to
two pumps running.

corresponding changes in mass flow are shown in Fig-
ure 4.

2.2 Discussion

From Figure 2, Figure 3 and Figure 4 we can see
that qualitative model predictions include all the pos-
sible behaviours that can be deduced from the given
qualitative information. Behaviour 1 indicates the
case that when the second pump is switched on, Tout
drops back to room temperature then increases again;
behaviour 2 indicates Tout drops to a temperature
point which is between room temperature and Thot.
Behaviour 3 and 4 show the cases which the state tran-
sition conditions (Tout > T'hot and Tout is increas-
ing) are not met, so Tout is either steady at Thot
(beh4), or below T'hot (beh3), the second pump is not
switched on at all, see beh3 and beh4 in Figure 4.

Qualitative predictions may also contain spurious
behaviours that do not reflect any real situation. For
example, behaviour 1 shown above, T'out can not drop
back to room temperature when Tin is higher than
room temperature. In a real case we can always guar-
antee that the transition conditions are satisfied, so
only behaviour 2 is the correct answer, although beh3
and beh4 are logically correct.

2.3 Numerical Modelling Using State-
Space Description

The system we consider is assumed to be a first or-
der system following [12], where the physical differen-

Figure 3: QSIM plot of temperature output of one to
two pumps running.

tial equation of steady flow processes can be described
as a linear lumped-parameter differential equation. A
recursive least-square parameter estimator is used to
process the sensor data and find the parameters for
the state transition matrix and the input gain matrix.
Using a lumped-parameter system, the discretised
state transition equation is of the following form:

x(k + 1) = Fx(k) + Gu(k) + v(k), (6)

where x is the vector of temperature (input and out-
put from the boiler in our example), F is the state
transition matrix, G is the input gain matrix, u is the
input vector (heat inputs) and v(k) ~ A(0,Q(k)) is
the process noise.

Equation (6) can also be written as the following:

[ Tout(k +1) ]

Tin(k +1)
B [ o an ] [ %it((lf)) } + [ o ] [Tair (k)] + (k)

In the system we are considering, all the temper-
atures are measurable; the determination of the pa-
rameters for this model is from experimental data ob-
tained from the process plant. Real measurement data
of the temperature input and output from the boiler
is shown in Figure 5(a). The corresponding changes
in flow cross the boiler are shown in Figure 5(b).

The system model i1s obtained using least squares

(7)
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Figure 4: QSIM plot of mass flow changes with one to
two pumps running.
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Figure 5: (a)Temperature data with one to two pumps
running; (b)Flow changes with one to two pumps run-
ning.

regression through the following equations:

jjout(k' + 1) = alli[’out(k) + a12Tin(k) + ¢y (8)
Tin(k+1) = an1Tout(k) + aaTin(k) +c2 (9)

For the one-pump case:

o _[an aix] _ [ 0596973 0.380452
F“"[ ]“{ 075595 | (10

agy  aA29 0.243474
and
—0.493984 .
GIP—[ 1.11595 ] (1)

Considering the two-pump case:

0.532277 0.433116 } (12)

Fop = [ 0.188163 0.809515

and

—0.794684
1.12695

Gop = [ (13)

The process noise covariance is also estimated based
on experimental data.

Q - [Tguij}ut j}'nj}ut]

ToutTin Tm n (14)

0.00064219

0.1
- [ 0.00064219 0.02 jl » (15)

where

T(k) = T(k) — T(k). (16)
2.4 Parameter Uncertainty

The advantages of using a numerical model is that it
finds a exact solutions, providing the model is correct.
However, constructing an accurate numerical model
for “real-world” domains is usually a difficult, error-
prone and time-consuming process. Moreover, due to
model inaccuracy, erroneous results may be generated,
which may fail to cover all the ranges that need to be
considered.

Here we emphasis parameter uncertainty or model
error. We define a system error model as follows

F=F+AF (17)

where F is the “real” (accurate) model of the system,
AF is the model error and F is the model incorpo-
rating the error. Using two different models (F and

F), the two predictions based on the same estimates
x(k | k) are:

%(k+1]k) = Fx(k | k) + Gu(k)  (18)

and
%(k+ 1] k) =Fx(k | k) + Gu(k). (19)
From equation (18) — equation (19) we have:
x(k+ 11 k) ~x(k+1]k) (20)
= (F-F)x(k|k) (21)
= AFx(k|k). 4 (22)

We term the model prediction error as
x(k+1]k)=AFx(k | k). (23)
Thus

(6%(k + 1| k)T (8%(k + 1| k)
(AFx(k | ’c))T(AF)?(k | k)
(k| k)T (AR)T(AF)(X(k | k) (24)

Il

it
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Figure 6: The relation between the model error and
prediction error.

Or
Z 6x]2j = Z SB? Z AFUZ (25)
j j ]
Here 6z; denotes the element of 62, z; is the element
of  and AFy; is the element of AF.
Alternatively, we can rewrite equation (25) as the
norm of the vectors:

1621* = ||| AF|}* (26)

Equation (26) shows the relationship between the
model error and prediction error. Figure 6(a) shows a
plot of ||6z||s against timestep when given a number
of fixed ||AF||s. (Here ||Z||s are the temperature es-
timates from an experiment using one boiler start-up
process.) Figure 6(b) shows how ||6z|| changes against
[|AF|| when we consider different time points. Using
purely numerical modelling techniques, it can be seen
that model errors can have substantial effects on sys-
tem predictions.

3 Integration:
Model Building

Several recent papers have focussed on the rela-
tionship between qualitative simulation and numerical
simulation. One of the notable approaches is the idea
of landmark refinement (Q2)[1]. This aims to employ
quantitative information to refine qualitative land-
marks; to make better predictions about model tra-
jectories than are possible with pure qualitative sim-
ulation, and to prune a tree of qualitative behaviours
as it is generated. Dvorak’s MIMIC [5, 4] used Q2 for
his dynamic system monitoring and diagnosis. How-
ever, Q2 suffers from suboptimal and often rather
poor quantitative inference. Step size refinement (Q3
[2]) has been developed which is meant to improve
Q2’s quantitative results by producing progressively

Semi-quantitative

smaller step sizes. Another distinctive method is QP
theory based approach which uses qualitative model
to predict and explain the behaviours generated by a
numerical model ([9] and SIMGEN [10]). Causal or-
dering was used on the qualitative models to guide
explanations. The explanations also incorporated nu-
merical information produced by the numerical sim-
ulation module. The limitation of this approach is
that it requires a comprehensive domain model and a
total envisionment. A number of other papers consid-
ered the abstraction of interval valued information into
qualitative simulation. The general problem of mea-
surement interpretation can be split into two cases,
figuring out what is happening in a system at a par-
ticular time (taking one look) [6, 7, 8] and describing
what is happening over a span of time DATMI [3].

3.1 Generation of the Semi-quantitative
Model

From our analysis of numerical and qualitative
modelling, we can see the following points: using
system identification methods to obtain a numeri-
cal model is relatively easy given the sensing system,
therefore, the numerical state space model formula-
tion is used to describe the system. However models
constructed in this way give little physical inside, as
the parameters of the model have no direct physical
meaning, they are used only as tool to provide a de-
scription of the system’s overall behaviour. While on
the other hand, the qualitative model derived from the
fundamental balance equations provides better causal
explanation and more intuitive insight into system be-
haviour. Thus, qualitative knowledge is incorporated
as a guide to the numerical prediction process and also
to provide an indication of the necessity or otherwise
of using more complex data fusion techniques. There-
fore, our approach is to develop a semi-quantitative
or semi-qualitative model of the system which takes
advantage of both numerical and qualitative method.

Using the state transition form described in Equa-
tion (6), the state transition model matrix and input
model are described in the following form:

apny a2 - Qip
Q21 Q22 - QAgp
F= . . . . (27)
anl QAp2 -+ Qpn
and
C1
Ca
G = . (28)

Cn




Each element of the state transition matrix, F, or
input matrix, G, is a purely numerical value. The
dimension n is decided by the number of the parame-
ters. The corresponding semi-quantitative models fol-
low the same formulation but each corresponding ele-
ment of the matrices is an interval value [a,b] (a € b)
which can be one of the following cases:

e a = b, which is [a,a] when it is a fully specified
value, the interval endpoints are identical.

e a # b, where both a and b are numerical values,
thus [a,b] is a real range value, where the true
value falls into this range.

o a # b, where either a or b or both are qualitative
values, eg. (—o0,b], (0,00) or (—oc0, 00).

The semi-quantitative model of the system is ini-
tially generated by taking measurements during a
number of runs of the system under different condi-
tions, including different durations, and different situ-
ations, eg. different initial states (temperature values
in our application). The original system design param-
eters can also be a source of information when making
decision on the initial range of the parameters.

The principle of finding this initial interval matrix
is independent of the application system. For a partic-
ular physical system with which we are concerned, we
have a sensing network as described earlier. Thus we
are able to take measurements from time to time. The
measurements made can be used to relate the quanti-
tative model to the qualitative model.

Having a number of experimental runs, we can ob-
tain a group of corresponding numerical models Fy,
Fy, ..., F,, (all n x n matrices) and Gy, Go, ..., Gp,.
(all n x 1 matrices.) using the method discussed in
Section 2.3. The new semi-quantitative state space
model Fi,tervar 1s then generated in the following way.
Each element of the matrix is an interval value which
takes the minimum and maximum values from the cor-
responding element of F; and G;, that is:

aij

il

min{aijm,aijm,’";aijpm} (29)

and

bij = maxz{b bij gy bij b (30)

1o

Input matrix:

e = min{Cip,, Cipyy -

’ciF‘m} (31)

and

di:mam{dimadim»“',dipm]“ (32)

temperature
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Figure 7: Dotted lines: boiler output temperature pre-
diction ranges; solid line: real measurements. Inter-
polation time step n = 10.

We term the range valued matrix an interval matriz
(following [13]). The semi-quantitative form of the
system model and input model are denoted as:

[a11,b11]  [a12,012] [a1n, b1n]
[021, b21] [a22, b22] [a2n; bzn]
[F'interval] - . .
[anl ) bnl} [an2y bnz] [anna bnn]
(33)
[Cl ’ dl]
[e2, da]
[Ginterval] - . (34)
[cny dn]

When two variables in the state vector are not re-
lated, the corresponding element in the matrix is zero.
When there is at least one element in the original in-
terval matrix which is a purely qualitative value, like
(0,00}, (—o0, 00), the qualitative simulation process is
used to predict the system behaviours initially until a
real valued interval is found to replace the qualitative
interval.

3.2 The Prediction

Having found the semi-quantitative models of the
system, Finterval and Gipierval, the predictions can
be made based on the interval matrices. The inter-
val analysis techniques developed by Moore [13, 14]
form the basis for interval calculation. The individual
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Figure 8: (a)Semi-quantitative model predictions
(dotted lines) approach the unique numerical model
prediction (solid line) when reducing the range infor-
mation of the model. {b)The predictions (dotted lines)
made by the semi-quantitative model have excessive
widths when the elements of the model have excessive
range values, they still include the pure numerical pre-
diction (solid line), but approach the qualitative pre-
diction.

arithmetic operations {+, —, %, /} are defined by:

[a,b] +[c,d] = {z+y:z€lab],yelcd}

= [a+cb+d (35)
[a,b]——[c,d] = {x—y:xe[a,b],ye[c,d]}

= [Ja—d,b—¢ (36)

[a,b]c.d] = {zy:z€lab],y€led} (37)

= [min(ac, ad,bc, bd), max(ac,ad, be, bd)],

[a,0)/c,d] = {z/y:zelablyé€led}

[a,0][1/d, 1/c], for0 & [c,d] (38)

fl

However, the propagation of interval matrices may
result in the excessive widths for the range informa-
tion. Therefore, for a given system, the prediction
made based on this semi-quantitative model will be
a subset of the prediction that the pure qualitative
model has made and it will include the exact behaviour
as predicted by an accurate model. When the range
information in the interval matrices reduces (which in
general is the case when the model error AF € (0,inf)
decreases) the prediction, will reduce its range and ap-
proach the unique real solution. This is demonstrated
in Figure 8(a). Figure 8(b) shows the reverse case.
Here when widening the constraints on the range infor-
mation (AF increases), the semi-quantitative model
predictions approach the purely qualitative one.

3.3 Measurement Interpolation

To avoid problems with divergent ranges, a mea-
surement interpolation method was developed. An
algorithm is designed to keep the predictions conver-
gent within certain ranges involving the use of mea-
surements to “refine” state estimation or interpolating
new measurements to replace the estimate.

As F' and G are interval matrices, after one predic-
tion cycle, the prediction vector is an interval vector,
shown in the following equation:

(x(k+ 1] k)] = [Flx(k | k) + [G]u(k)  (39)

Further cycles may further widen the intervals.
(With the square brackets denoting the interval ma-
trices or vectors). To avoid an unbounded increase
of the interval width, we take the intersection of the
measurements with the state estimate at every n time
steps:

When k=1-n; (40)
where n = predefined number of time steps,
and I = 0,1,---,1-n < current time step.

X(k [ k)pew In=%(k | k) N 2z(k) |n (41)

The importance of using the measurements to re-
fine the estimate is that the observation values are
always within reasonable small ranges. (That is:
[obs — A, 0bs + A], where A is the measurement preci-
sion.) Thus by taking the intersection of both, the in-
terval width of the next step’s prediction can be bound
within small ranges.

The inherent principle idea works for the following
cases. Assume:

%(k | k) € [li,;] and z(k) € [I,,1,]. (42)

when

either 1, <lj,and ;> 1;

or Iy <1, <

Then the left hand side of equation (41) is non-zero.
However when I, < [;, or I, > [j, equation (41) is
zero, the above algorithm does not work in a straight-
forward way. This is the case that the state estimated
1s inconsistent with the measurement. This represents
one of the following cases:

e The system model needs to be modified so that
when the system behaves normally, the estimate
should be consistent with the real measurements;



s temperature

Figure 9: (a) Interpolation time step n = 3, (b) Inter-
polation time step n = 2.

e The conflict shows that the system is in an ab-
normal state; further analysis techniques will be
used;

e The abnormal state model is to be augmented
based on both the new measurements and quali-
tative knowledge about the physical systems.

Here we explain the algorithm used through some
examples. We consider the same case discussed in
Section 2 that transits the state from one pump to
two pumps. Figure 7 shows the predictions made by
the semi-quantitative model with every 10 time steps
(n = 10) of the measurement interpolations. Figure
9(a) shows results with n = 3. And finally Figure 9(b)
shows the refinement time step with n = 2.

4 System Monitoring and Fault Detec-
tion

The interval estimates and predictions are used to
perform system monitoring and fault detection. As
interval data provides us with a different type of infor-
mation from conventional single valued data, different
algorithms are also designed here to deal with interval
values.

4.1 Monitoring: Qualitative Interpreta-
tions

To monitor the physics of the system and to under-
stand 1t using common sense knowledge, we abstract
range information to sign information. This is one way
of interpreting the qualitative information from semi-
quantitative information. The interpretation criteria
are described below.

Suppose interval values change from A to B, A €
[lp,1n], B € [la,{3]. They can be interpreted into

f’
3
’
timestcp
/00 20 300 40 S0 o 700 80 90 1000

Figure 10: Example of two range valued temperatures;
Solid lines: [T'2;,,T2p;], dotted lines: [T'1;,,T15;].

t.step | qual.int | t.step | qual.int | t.step | qual.int
4 std-dec 9 std-inc 14 std-inc
19 std-inc 24 std-inc 29 std-inc
34 std-inc 39 std-inc 44 std-inc
49 std-inc 54 std-inc 59 std-inc
64 std-inc - - 489 std-dec
494 std-inc 499 std-dec 504 dec
509 inc 514 std-dec 519 std-inc
524 | std-dec | 529 | std-inc 534 | std-mag
539 std-dec 544 std-inc 549 std-inc
554 std-inc ... . 919 std-dec
924 std-inc 929 std-inc | .934 std-dec
939 std-inc 944 std-inc 949 std-inc

Figure 11: Qualitative Interpretation

three different types of qualitative changes defined as
follows:

inc  (increase;)

ifla 21y
dec (decrease;) iflg > 1,
std  (steady;) otherwise. (43)

The level of detail that the interpretation involves
depends on how close the two interval values 4 and B
are chosen. Figure 10 gives two range valued temper-
ature sequences. Figure 11 shows the qualitative in-
terpretation based on B(timestep) — A(timestep) = 5.
However, the level of detail may be changed over the
interpretation of one sequence. Either at some crucial
points (eg. state transition) or when there are some
significant changes of the qualitative states (eg. from
inc to dec), higher level of details can be introduced.

By continuing this qualitative interpretation of the
range information over time, a qualitative understand-
ing of the physical system can be obtained incremen-
tally. Domain-specific knowledge about the state and
the transition possibilities can be used to suggest the
interpretation which is most likely. When no consis-



tent interpretation exists, faulty hypotheses may be
generated.

4.2 Fault Detection

The interval estimates and predictions are used to
perform system monitoring and fault detection. As
interval data provides us with a different type of infor-
mation from conventional single valued data, different
algorithms are also designed here to deal with inter-
val values. Before giving detailed explanation of the
algorithms, an assumption is introduced first. That is
the systems considered do not have any unknown con-
trolled state changes/transitions. Any state changes
are regarded as faults. As a consequence, there will
be “abrupt changes” in the sensor readings. At this
stage, only temperature readings are considered. Pres-
sure and flow readings will be taken into account in
the diagnosis process.

Two methods are designed to analyse the interval
sequences and detect abrupt changes.

4.2.1 Smoothing method

Assume that we have a sequence of prediction vectors;
they represent interval information, denoted as:

([i(k)} [ k:011V"'vn)
z(k) € [210(1), Zni(1)],

where and ¢ € (0,n).

By choosing a time width, which we term as the win-
dow size 7, we can analyse the changes of higher bound
and lower bound of this prediction sequence in the fol-

lowing way:

Zhi(t + 1) — 2p: (1)

= AZp; 44

. h (44)

ilo(t + T) - ilo(t) — AZI (45)
- 0

As an example, given the two sequence of tem-
perature predictions in Figure 10, by running of the
“smoothing” program to [T'1j,, T'11;], the correspond-
ing AZy; and AZ;, obtained are shown in Figure 12.
From Figure 12 we can see that: this process has
smoothed small changes, but retains the large changes.
Therefore, by checking maz(AZy;) and maz(AZ;,),
the abrupt change points or failure points can be de-
tected. This change detection process is done from
timestep zero to the current time step. When 7 — 0,
then the above equations become:

dZIo
dt

dZn;
di

= AZ,, and =AZ;,,  (46)

@ AZp; ( t=5) by AZp (t=S )

Figure 12: Higher bound and lower bound of the range
value analysis.
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Figure 13: Interval changes detection example 1

which show the changing rate of the range informa-
tion. The window size 7 here can be adjusted accord-
ing to specific application needs.

4.2.2 Non-smoothing method

Another way of looking at changes of interval infor-
mation quantitatively is the non-smoothing method.
Rather than considering the higher bound or lower
bound of the interval values separately, here each in-
terval value as a whole will be compared with the pre-
vious time step value. The algorithm continuously car-
ries out the following process, from the current time
step scanning backwards to the first time step:

If Zzo(k‘) Zzhi(k'—l)
Then k—1—k andk-2—k—1
Else k—kandk—-2—k~1
(47)

Figure 13 shows an example of the execution of this
algorithm on the sequences in Figure 10. The algo-
rithm will pick up any abrupt changes along the time
sequence. Figure 14 is another demonstration of the
algorithm.
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Figure 14: Interval changes detection example 2

5 Conclusions and Future Work

This paper describes the work done towards inte-
grating qualitative reasoning into numerical data fu-
sion. Presented here is a methodology for generating
the combined model, and analysing the interval in-
formation for the purpose of system monitoring and
fault detection. Various algorithms developed have
been implemented on a real system, process plant. Ef-
fort has been made in integrating the results from the
engineering community and from the qualitative com-
munity. Further work along this line will be carried
out, emphasizing in particular the use of qualitative
reasoning techniques to explain various phenomena.

Future work also includes using the integrated tech-
nique to perform the diagnosis task. Although a semi-
quantitative model can be generated, it describes only
standard behaviour. Therefore, it is impossible to use
it to simulate unforeseen situations. However, consid-
ering the process plant system we have been study-
ing, we may have a fixed number of qualitative model
based physically on the principle of violation of con-
tinuity or energy equations. Then we should be able
to deduce, for example, from the successful violation
of the energy constraint or mass flow constraint, that
there exists a particular type of fault in a particular
location.
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