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Abstract

Workdescribedin this paperis aimedat developing
a monitoring and fault detectionsystemfor the pro-
cessplant. In particular this work concentrateson how
to combine qualitative reasoning techniqueswith con-
ventionalnumericalsensorfusion techniques. Thead-
vantagesand disadvantagesof usingpure numericalor
pure qualitative techniquealone arefirst demonstrated.
A methodof developinga combinedsemi-quantitative
model is then introduced. A number of algorithms
are designedto analyse semi-quantitativepredictions

information. Finally, the semi-quantitativemodel is
usedto perform thesystemmonitoring and changede-
tection. The applicationof the algorithmsdevelopedis
demonstratedby a numberof eramplesthroughoutthe
paper, basedon real data.

1 Introduction

Work describedin this paper is aimedat developing

a monitoring and fault detection system for a process
plant. In particularthis work concentrateson how to

combinequalitativereasoningtechniqueswith conven-
tional numericalsensorfusion techniques.

Qualitative physics provides an account of be-
haviour in the physicalworld. The vision of qualitative
physics, in conjunction with conventionalphysics, is to

provide a much broader formal accountof behaviour,

an account rich enough to enable intelligent systems
to reasoneffectively about the real world. Qualitative

physics predicts and explains behaviour in qualitative

terms. In contrastwith qualitativetechniques,numer-
ical datafusion methodsdescribedphysicalsystemin
more accuratenumerical terms. Most sensorbased
systemsemploy a largevariety of sensorsto obtain in-
formation. How the information obtainedfrom differ-
entsensingdevicesis combined to form a description
of thesystemis the sensorfusion problem. A number

of sensorfusion methods havebeen developed,ranging

from simple least-squaresfitting algorithms to com-
plex statistical inference methods. These algorithms
provide statistical descriptions of system behaviour
basedon statistical uncertaintiesinvolved. However,

qualitativereasoningmethodsprovidefeatureswhich
are difficult to captureusingpure numericalmethods.
It functionswith incomplete knowledge,a qualitative
analysisdoesnot require a detailedquantitativemodel
or completedataon thesystemwhichmaybe difficult
to obtain; A qualitativemodel may representa class
of numericalmodels, becausedifferentnumericalmod-
els cancorrespondingto the sameabstractqualitative
model; this is in contrastto the completeproblemspe-
cific type of a numericalmodel. Qualitativeanalysis
providesdirect, often causalexplanationsbetweendif-
ferent variables.

If theinformation availableaboutasystemis purely
qualitative,then the qualitativemethodswill be used;
when precisenumericalinformation is available,then
a numberof numericalmethodscanbeutilised. How-
ever,in manysituations,where numericalinformation
is substantialbut stochasticallyimprecise,the predic-
tions madeare more confident than using the purely
qualitative ones. The qualitative predictionson the
otherhandprovide causalexplanations.In suchcases,
usinga combinedmethodmay takeadvantageof both
techniquesandavoid theweaknessof usingonealone.
The work describedin this paperis anexampleof this
case.

In this paper, we focus on general physics of a sys-

tem. The ideabehind integratingthe two techniques
is also to get somequalitative knowledgeof the pro-
cess and sensor physics and incorporate them into the
numericaldata fusion processes.The application of
the algorithms developed is demonstrated by a num-
ber of examplesthroughout thepaper, basedon a real

system,processplant.



The structure of this system is outlined in Figure
1. We first introducea method of building a qualita-
tive physicalmodel to simulatethesystembehaviours.
We then develop the system model using a classical
state-spacedescription, and explain problemsassoci-
atedwith parameteruncertainty. Finally we discuss
the common themethat lies betweenthem and the
model generated using the combined knowledge. The
system state estimate and behaviour prediction gen-

erated by this combined model, which we term it as

semi-quantitativemodel, areanalysedfor the purpose
of system monitoring and fault detection.

2 System Modelling

The processplant dynamicsystemis loosely mod-
elled around a conventional nuclear power plant. It
incorporatesfour pumps, three boilers, two heat ex-
changersandfifty six computercontrolled valves. The
sensinglevel provideslargequantity of redundantsen-
sorinformation collectedfrom morethan two hundred
sensors(thermocouples,flow metersandpressuresen-
sors) which are distributed at appropriatelocations
in the plant. Details of the processplant system and

sensingsystemcan be found in [11].
We consider the simple casefor the processplant

system. The circuit incorporatesoneboiler, onepump
and one heat-exchanger. For reasonsof simplicity,

we assumeall the valves along the circuit are in the
“open” positions and that there is no energy loss in
pipes and pumps. Only temperaturesfrom the in-
put and output of the boiler are to be measuredand
predicted. We start by switching on all three com-

ponents. When the temperature of the output of the

boiler reachesa certainpoint, the secondpump which
is in parallel with the first one will be switched on.
What happensnext?

To answerthis question,we havemodelled thesys-
temboth qualitatively andnumerically.

2.1 Qualitative Model

The qualitative model of the example discussed

above is developedbasedon the principle of energy
conservationin thermodynamics:
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whereQ~ andQout are the heatinginput andheating
output, ~ and T

0~1
are the temperatureinput and

output from the boiler, T
0~

,.is theplant room temper-
ature, ri~iis the massflow, Cb andCj are the specific

heatfor boilerandheatexchanger,U is theheattrans-
fer coefficient for convection loss, and A is the heat
transfer area. In qualitative modelling, thesesystem
parametersare defined using qualitative rangesand
landmark valuesas follows: the heat input is a value
Q

2
,~*which lies in the range(0, oo), massflow hastwo

valueswhenworkingwith onepump or two pumpsre-
spectively: denotedas mnf and2mf. The restof the
parametersaresimilarly defined. Oneparticular land-
mark value is setupfor the temperatureoutput from
theboiler, Th

0
t. This landmark is setonly for thepur-

poseof decidingthe time point at which to switch on
the secondpump, that is when Tout is higher than

that of Thot and increasing,then the secondpump is
switchedon.

The above model provides a qualitative descrip-
tion of the structure of the mechanism and an initial

qualitativestate without knowing the exactvaluesof
the landmarks. The qualitative simulation package
(QSIM) is usedhereto provide automatic generation
of the qualitativebehavioursof thestatevariable. The
behaviour predictions generatedby the above qualita-

tive model are shown in Figure2 and Figure 3. The
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Figure 1: Outline of System
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Figure 2: QSIM plot of temperatureinput of one to
two pumpsrunning.

corresponding changes in mass flow are shown in Fig-
ure 4.

2.2 Discussion

From Figure 2, Figure 3 and Figure 4 we can see

that qualitative model predictionsincludeall the pos-
sible behavioursthat can be deducedfrom the given
qualitative information. Behaviour 1 indicates the
casethat when the secondpump is switchedon, Tout
dropsbackto roomtemperaturethen increasesagain;
behaviour 2 indicates Tout drops to a temperature
point which is betweenroom temperatureand Thot.
Behaviour3 and4 showthecaseswhich thestatetran-
sition conditions (Tout >> Thot andTout is increas-
ing) are not met, so Tout is either steadyat Thot
(beh4), or below Thot (beh3),the secondpump is not
switchedon at all, seebeh3andbeh4in Figure 4.

Qualitative predictions may also contain spurious
behavioursthat do not reflect any real situation. For
example,behaviour1 shownabove,Tout can not drop
back to room temperaturewhen Tin is higher than
room temperature.In a real casewe can alwaysguar-
antee that the transition conditions are satisfied, so
only behaviour2 is the correctanswer,althoughbeh3
andbeh4arelogically correct.

2.3 Numerical Modelling Using State-
Space Desc~iption

The systemwe consideris assumedto be a first or-

der system following [12], where the physical differen-

Figure 3: QSIM plot of temperatureoutput of one to
two pumps running.

tial equationof steadyflow processescanbe described
asa linear lumped-parameterdifferential equation. A
recursiveleast-squareparameterestimator is used to
processthe sensordata and find the parametersfor
the state transition matrix and the input gain matrix.

Using a lumped-parametersystem,the discretised
state transition equationis of the following form:

x(k + 1) = Fx(k) + Gu(k) + v(k), (6)

where x is the vectorof temperature(input and out-
put from the boiler in our example), F is the state
transition matrix, G is the input gain matrix, u is the
input vector (heatinputs) and v(k) -..~ .Af(O, Q(k)) is
the processnoise.

Equation (6) can also be written as the following:

T
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= [ a
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a~ ] [ T

00~
(k)] + [ c~] [T

0~21
(k)]+v(k)

a
21

a22 Tjn(k)

In the systemwe are considering,all the temper-
aturesare measurable;the determinationof the pa-
rametersfor this model is from experimentaldataob-
tainedfrom theprocessplant. Realmeasurementdata
of the temperatureinput and output from the boiler
is shown in Figure 5(a). The corresponding changes

in flow cross the boiler are shown in Figure 5(b).

The system model is obtained using least squares
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Figure 4: QSIM plot of massflow changeswith oneto
two pumps running.

(3)

Figure5: (a)Temperaturedatawith oneto two pumps
running; (b)Flow changeswith oneto two pumpsrun-
ning.

regressionthrough the following equations:

T
001

(k+ 1) = auT,~~t(k)+ ai
2

7~n(k)+ ci (8)

T~~(k+ 1) = a
2

iT
0~

t(k)+ a
22

Tjn(k)+ C2 (9)

For the one-pumpcase:

a
11

a
12

— 0.596973 0.380452 0
F

1~
= a

21
a

22
— 0.243474 0.75596 (1

—0.493984

= 1.11595

Consideringthe two-pump case:

— 0.532277 0.433116
~2p — 0.188163 0.809515

(11)

and
—0.794684

G2~= 1.12695 (13)

Theprocessnoisecovarianceis alsoestimatedbased
on experimental data.

= T(k) — 7(k). (16)

2.4 Parameter Uncertainty

Theadvantagesof usinganumericalmodelis that it
finds a exactsolutions,providing the model is correct.
However, constructing an accuratenumericalmodel

for “real-world” domains is usually a difficult, error-
prone andtime-consumingprocess. Moreover, dueto
modelinaccuracy,erroneousresultsmaybe generated,
which may fail to coverall the rangesthat needto be
considered.

Here we emphasisparameteruncertaintyor model
error. We definea systemerror model as follows

F=F+~F (17)

whereF is the “real” (accurate)model of the system,

z~Fis the model error and F is the model incorpo-
rating the error. Using two different models (F and
F), the two predictionsbasedon the sameestimates

k) are:

and

x(k + 1 k) = Fic(k I k) + Gu(k) (18)

I k)=F*(kj k)+Gu(k). (19)

Fromequation(18) — equation(19) we have:

*(k+ ii k)—~(k+ ilk)

= (F—~)*(kIk)

(20)

(21)

= ~Fx(k k). (22)

We term the model prediction error as

Thus

5*(k + 1 k) = z~Fx(kI k). (23)

(~x(k±1 k))T(~x(k+1 Ik))

= (z~Fi(kI k))T(~F~(kIk))

= (x(k k))
T

(~F)
T

(L~F)(*(k I k))

where

— Tou~Tou~
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Figure 6: The relation betweenthe model error and
prediction error.

Or

Here c5x~denotesthe elementof ~, x~is the element
of ~ and ~ is the elementof ~F.

Alternatively, we can rewrite equation (25) as the
norm of the vectors:

II~xII2= II~II2II~FII2 (26)

Equation (26) shows the relationship between the
model error andprediction error. Figure 6(a) showsa
plot of II6sIIs againsttimestepwhen given a number
of fixed Ik~FIIs.(Here II~II~are the temperaturees-
timatesfrom an experimentusingoneboiler start-up
process.)Figure 6(b)showshow 116x11 changesagainst

II~FIIwhen we considerdifferent time points. Using
purely numericalmodellingtechniques,it can be seen
that model errors canhavesubstantialeffectson sys-
tem predictions.

3 Integration: Semi-quantitative
Model Building

Severalrecent papershave focussedon the rela-
tionship betweenqualitativesimulation andnumerical
simulation. Oneof the notableapproachesis the idea
of landmarkrefinement(Q2)[i]. This aimsto employ
quantitative information to refine qualitative land-
marks; to makebetter predictionsabout model tra-
jectoriesthan are possiblewith pure qualitative sim-
ulation, andto prunea treeof qualitativebehaviours
as it is generated.Dvorak’s MIMIC [5, 4] usedQ2 for
his dynamic systemmonitoring and diagnosis. How-
ever, Q2 suffers from suboptimal and often rather
poor quantitativeinference.Stepsizerefinement(Q3
[2]) has been developedwhich is meant to improve
Q2’s quantitative results by producingprogressively

smaller step sizes. Another distinctive method is QP
theory basedapproachwhich usesqualitative model
to predict andexplain the behavioursgeneratedby a
numericalmodel ([9] and SIMGEN [10]). Causalor-
dering was used on the qualitative models to guide
explanations.The explanationsalsoincorporatednu-
merical information producedby the numericalsim-
ulation module. The limitation of this approachis
that it requiresa comprehensivedomain model anda
total envisionment.A numberof otherpapersconsid-
eredtheabstractionof intervalvaluedinformationinto
qualitativesimulation. The generalproblemof mea-
surementinterpretationcan be split into two cases,
figuring out what is happeningin a systemat a par-
ticular time (taking one look) [6, 7, 8] anddescribing
what is happeningover a spanof time DATMI [3].

(25) 3.1 Generation of the Semi-quantitative
Model

From our analysis of numerical and qualitative
modelling, we can see the following points: using

system identification methods to obtain a numeri-
cal model is relatively easy given the sensingsystem,

therefore,the numerical state space model formula-
tion is used to describethe system. Howevermodels
constructedin this way give little physical inside, as
the parameters of the model have no direct physical
meaning, they are usedonly as tool to provide a de-

scription of the system’soverall behaviour. While on
theotherhand,the qualitativemodelderivedfrom the
fundamentalbalanceequationsprovidesbettercausal
explanationandmore intuitive insight into systembe-
haviour. Thus,qualitativeknowledgeis incorporated
asaguideto thenumericalprediction processandalso
to provide an indication of the necessityor otherwise
of usingmorecomplexdatafusion techniques.There-
fore, our approachis to develop a semi-quantitative
or semi-qualitativemodel of the systemwhich takes
advantageof both numericalandqualitative method.

Using the statetransition form describedin Equa-
tion (6), the statetransitionmodel matrix andinput
model are describedin the following form:

(a) (3)

and

a
11

a
12

-- a
10

a
21

a22 --- a
20

(27)

a
01

a
02

--- a
00

Cl

C
2G= : (28)

C
0



Eachelementof the statetransitionmatrix, F, or
input matrix, G, is a purely numerical value. The
dimensionn is decidedby the numberof the parame-
ters.The correspondingsemi-quantitativemodelsfol-
low the sameformulation but eachcorrespondingele-
ment of the matricesis an interval value [a, b] (a << b)
which can be oneof the following cases:

• a = b, which is [a, a] when it is a fully specified
value, the interval endpointsareidentical.

• a ~ b, where both a and b arenumerical values,
thus [a, b] is a real range value, where the true
value falls into this range.

• a ~ b, where either a or b or both are qualitative
values, eg. (—~, b], (0, oo) or (—~, oo).

The semi-quantitativemodel of the system is mi- Figure7: Dottedlines: boileroutput temperaturepre-
diction ranges;solid line: real measurements.Inter-tially generatedby taking measurementsduring a polation time step n = 10.

number of runs of the system under different condi-

tions, including different durations,anddifferent situ-
ations, eg. different initial states(temperaturevalues We term the rangevalued matrix an interval matrix
in ourapplication). The originalsystemdesignparam- (following [13]). The semi-quantitativeform of the
eterscan also be asourceof information whenmaking systemmodel andinput model aredenotedas:
decisionon the initial rangeof the parameters.

The principle of finding this initial interval matrix I [~i1, b
11

] [a
12

,b
12

]

is independentof the applicationsystem. For apartic- [a
21

, b
21

] [a
22

,b
22

]
ular physicalsystemwith whichwe areconcerned,we [F~

04212121231
]=

have a sensing network as described earlier. Thus we I
are able to take measurements from time to time. The L kmni, b

01
]

measurementsmadecan be used to relatethe quanti-
tative model to the qualitativemodel. I [c

1
, dl] 1

Havinga number of experimentalruns,we canob- I [c
2

, d
2

] I
tam a group of correspondingnumericalmodels F

1
, [Giotervai] = I (34)

F
2

, ..., Fm (all n x n matrices) and G1, G2, ..., Gm. [ c
0

d
0

] I
(all n x 1 matrices.) using the method discussedin
Section 2.3. The new semi-quantitativestate space When two variablesin the state vector are not re-
model Fintervai is then generatedin the following way. lated, thecorrespondingelementin the matrix is zero.
Eachelementof the matrix is an interval value which When thereis at least oneelementin the original in-
takestheminimum andmaximum valuesfrom thecor- terval matrix which is a purely qualitativevalue, like
respondingelementof 1~and G~,that is: (0, oo), (—oo,~), thequalitativesimulationprocessis

usedto predict the system behavioursinitially until a
= min{a~~~

1
, a~J

2113
, , ~Z3~,= } (29) real valuedinterval is found to replacethe qualitative

interval.
and

~ = max{bjj~
1

,bjj~
2

,--- ~bjj~~}~ (30) 3.2 The Prediction

[a
02

,b
02

] .

[a10,b10]
[a20,b20]

[a
00

, b
00

]
(33)

Input matrix:

= min{c~213, Ct~
2

,- - , cj~,,, }
Having found the semi-quantitativemodels of the

(31) system, Fjotervai and G~0~5212101,the predictions can
be madebasedon the interval matrices. The inter-
val analysistechniquesdevelopedby Moore [13, 14]

(32) form the basis for interval calculation. The individual

40

35

30

25

100 200 300

timestep

1000

and

d~= max{d~~
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3.3 Measurement Interpolation

(

(3)

Figure 8: (a)Semi-quantitativemodel predictions
(dotted lines) approachthe unique numericalmodel
prediction (solid line) when reducingthe range infor-

mation of the model. (b)The predictions (dotted lines)

made by the semi-quantitative model have excessive
widths when the elementsof the model haveexcessive
rangevalues,theystill include thepurenumericalpre-
diction (solid line), but approachthe qualitativepre-
diction.

arithmetic operations {+, —, *1) are defined by:

[a,b]+[e,d] = {x+y:xE[a,b],yE[c,d]}

= [a+c,b+~

[a,b] — [c,d] = {x — y : xfi [a,b],y E [c,d]}

= [a—d,b—c]

[a,b][c,d) = {xy : xE [a,b],y e [cd])

= [min(aC, ad, bc,bd), max(ac,ad, bc,bd)],

[a,b]/[c,d] = {x/y: xE [a,b],y E [cd])

= [a, b][1/d, 1/c], foro ~ [c, d] (38)

E{owever, the propagationof interval matricesmay
result in the excessive widths for the range informa-

tion. Therefore, for a given system, the prediction
madebasedon this semi-quantitativemodel will be
a subset of the prediction that the pure qualitative
model hasmade and it will includetheexactbehaviour
aspredicted by an accuratemodel. Wheni the range
information in the interval matrices reduces (which in
generalis the casewhen themodelerror z~.FE (0, inf)
decreases)the prediction,will reduceits range and ap-
proachthe uniquereal solution. This is demonstrated
in Figure 8(a). Figure 8(b) shows the reversecase.

herewhen wideningtheconstraintson the rangeinfor-
ination (~Fincreases),the semi-quantitativemodel
predictions approach the purely qualitative one.

(35)

To avoid problems with divergent ranges,a mea-
surementinterpolation method was developed. An
algorithm is designedto keep the predictionsconver-
gent within certain ranges involving the useof mea-
surementsto “refine” stateestimationor interpolating
new measurementsto replacethe estimate.

As F andG are interval matrices,after onepredic-
tion cycle, the prediction vector is an interval vector,
shownin the following equation:

[*(k+1 Ik)]= [F]x(k Ik)+[G]u(k) (39)

Further cycles may further widen the intervals.
(With the squarebracketsdenoting the interval ma-
trices or vectors). To avoid an unboundedincrease
of the interval width, we take the intersectionof the
measurements with the state estimate at every n time
steps:

When k=l-n; (40)

where n = predefinednumberof time steps,

and 1 = 0,1,-- . , I - n < current time step.

x(k I k)021~I~=x(k Ik) fl z(k) I~ (41)

The importanceof using the measurementsto re-
(36) fine the estimate is that the observationvalues are

always within reasonablesmall ranges. (That is:
(371 [obs — z~,obs+ z~],whereL~is the measurementpreci-

~‘ sion.) Thus by taking the intersectionof both, the in-
tervalwidth of thenext step’sprediction canbe bound
within small ranges.

The inherentprinciple ideaworks for the following
cases.Assume:

when

x(k 1k) E [l~,l~]and z(k) E [lp,iq].

either l~,< l~,and
1

q >
1

i~

or l~<l,~<i~

(42)

Then the left hand side of equation (41) is non-zero.
However when 1

q < I~,or l~,> I~,equation (41) is

zero,the abovealgorithm doesnot work in astraight-
forward way. This is the casethat thestate estimated
is inconsistentwith themeasurement.This represents
one of thefollowing cases:

• The system model needsto be modified so that
when the system behavesnormally, the estimate
should be consistent with the real measurements;



Figure 9: (a) Interpolation time stepn = 3, (b) Inter-

polation time step n = 2.

• The conflict showsthat the system is in an ab-
normal state; further analysistechniqueswill be
used;

• The abnormalstate model is to be augmented

basedon both the new measurementsand quali-
tative knowledgeaboutthe physicalsystems.

Here we explain the algorithm used throughsome
examples. We consider the same case discussedin
Section 2 that transits the state from one pump to
two pumps. Figure 7 shows the predictionsmadeby
the semi-quantitativemodel with every 10 time steps

(n = 10) of the measurementinterpolations. Figure
9(a) showsresultswith n 3. And finally Figure9(b)
showsthe refinementtime stepwith n = 2.

4 System Monitoring and Fault Detec-
tion

The interval estimatesand predictionsare used to
perform system monitoring and fault detection. As
intervaldataprovidesus with a different type of infor-
mation from conventionalsingle valueddata,different
algorithmsarealsodesignedhereto dealwith interval
values.

4.1 Monitoring: Qualitative Interpreta-
tions

To monitor the physicsof the systemandto under-
standit using common senseknowledge,we abstract
rangeinformation to sign information. This is oneway
of interpretingthe qualitative information from semi-
quantitative information. The interpretationcriteria

aredescribedbelow.
Supposeinterval valueschangefrom A to B, A E

~ B E [l~,1~}.They can be interpreted into

65 k~6p~S~66

,o th~~2p

Figure10: Exampleof two rangevaluedtemperatures;
Solid lines: [T2

10
, T2h~},dotted lines: [Ti10, TihI].

t.step qual.int t.step qual.int t.step qual.int
4 std-dec 9 std-inc 14 std-inc
19 std-inc 24 std-inc 29 std-inc
34 std-inc 39 std-inc 44 std-inc
49 std-inc 54 std-inc 59 std-inc
64 std-inc ... ... 489 std-dec

494 std-inc 499 std-dec 504 dec
509 inc 514 std-dec 519 std-inc
524 std-dec 529 std-inc 534 std-mag
539 std-dec 544 std-inc 549 std-inc
554 std-inc ... ... 919 std-dec

924 std-inc 929 std-inc .934 std-dec
939 std-inc 944 std-inc 949 std-inc

Figure ii: Qualitative Interpretation

threedifferent typesof qualitativechangesdefinedas

follows:

inc (increase;) jfla ~

dec (decrease;) if l~> I~,

std (steady;) otherwise. (43)

The level of detail that the interpretationinvolves
dependson how close the two interval valuesA and B
arechosen.Figure 10 givestwo rangevalued temper-
aturesequences.Figure 11 shows the qualitative in-
terpretationbasedon B(tirnestep)—A(timestep)= 5.
However, the level of detail maybe changedover the
interpretationof onesequence.Either at somecrucial
points (eg. state transition) or when there are some
significantchangesof the qualitativestates(eg. from
inc to dcc), higher level of details canbe introduced.

By continuing this qualitative interpretationof the
rangeinformationovertime, aqualitativeunderstand-
ing of the physicalsystemcan be obtainedincremen-
tally. Domain-specificknowledgeabout the state and
the transition possibilities can be used to suggestthe
interpretationwhich is most likely. When no consis-



tent interpretation exists, faulty hypothesesmay be

generated.

4.2 Fault Detection

The interval estimatesand predictionsare used to
perform system monitoring and fault detection. As
intervaldataprovidesus with adifferent typeof infor-
mation from conventionalsinglevalueddata, different
algorithms are also designedhere to deal with inter-
val values. Before giving detailed explanationof the

algorithms,an assumptionis introducedfirst. That is
thesystemsconsidereddo not haveany unknowncon-
trolled state changes/transitions.Any state changes

are regardedas faults. As a consequence,there will
be “abrupt changes”in the sensorreadings. At this
stage,only temperaturereadingsareconsidered.Pres-
sureand flow readingswill be taken into account in
the diagnosisprocess.

Two methods are designedto analysethe interval
sequencesanddetect abruptchanges.

~r~&
(a) SZ~ ( 5 5 ) (h) AZ

55
( s~5

Figure12: Higher boundandlower boundof therange

value analysis.

4.2.1 Smoothingmethod

Assumethat we havea sequenceof prediction vectors;
they representinterval information, denotedas:

([i(k)]jk=0,1,...,n)

where ~(k) e [~10(i),zh~(i)], and i ~ (0, ii).

By choosinga time width, which we term as the win-
dow sizer, we cananalysethechangesof higherbound
andlower boundof this prediction sequencein the fol-

lowing way:

Zh~(t+ r) — Zhj(t)
=

7-

zi0(t + r) — ~j0(t)
= L~Z

107-

As an example, given the two sequenceof tem-

peraturepredictionsin Figure 10, by running of the
“smoothing” programto [T117,T15~],the correspond-
ing LiZhj andz~Z10obtainedareshownin Figure 12.

From Figure 12 we can see that: this processhas
smoothedsmall changes,but retainsthe largechanges.
Therefore, by checking max(z~.Zh~)and max(~Zj0),
the abrupt changepoints or failure points can be de-
tected. This changedetectionprocessis done from
timestepzeroto the current time step. When r —* 0,
then the aboveequationsbecome:

dZ~, dZ10—a-— = ~ and —a— =

Figure 13: Interval changesdetectionexample 1

which show the changingrate of the range informa-
tion. Thewindow size r here can be adjustedaccord-
ing to specificapplication needs.

4.2.2 Non-smoothing method

Another way of looking at changesof interval infor-
mation quantitatively is the non-smoothingmethod.

(44) Rather than consideringthe higher bound or lower
boundof the interval valuesseparately,hereeach in-
tervalvalueas awhole will be comparedwith thepre-

(45) vioustime stepvalue. The algorithmcontinuouslycar-
ries out the following process,from the current time
stepscanningbackwardsto the first time step:

If Z10(k) > Z~(k— 1)

Then k—1-—~k,andk—2—~k—1

Else k—*kandk—2--+k—1

(47)

Figure13 showsanexampleof the executionof this
algorithm on the sequencesin Figure 10. The algo-
rithm will pick up anyabrupt changesalongthe time
sequence.Figure 14 is anotherdemonstrationof the

(46) algorithm.



Figure 14: Interval changesdetectionexample2

5 Conclusions and Future Work

This paperdescribesthe work done towardsinte-
grating qualitative reasoninginto numericaldatafu-

sion. Presentedhere is a methodologyfor generating
the combinedmodel, and analysing the interval in-
formation for the purposeof system monitoring and
fault detection. Various algorithms developedhave

beenimplementedon areal system,processplant. Ef-
fort hasbeenmadein integratingtheresults from the
engineeringcommunity andfrom the qualitativecom-
munity. Further work along this line will be carried
out, emphasizingin particular the use of qualitative
reasoningtechniquesto explain variousphenomena.

Futurework also includesusingtheintegratedtech-
nique to perform thediagnosistask, Although a semi-
quantitativemodel can be generated,it describesonly
standardbehaviour.Therefore,it is impossible to use
it to simulateunforeseensituations.However, consid-
ering the processplant system we havebeenstudy-

ing, we mayhavea fixed number of qualitativemodel
basedphysically on the principle of violation of con-
tinuity or energy equations. Then we should be able
to deduce,for example,from the successfulviolation
of the energy constraintor massflow constraint, that
there existsa particular type of fault in a particular
location.
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