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Abstract

Reasoiungabouta complex physical systemgenerally
requiresthe creationand executionof a model of the
system, the creationof wluch in turn dependson the
types of knowledge availablefor the physical system
and their representation. Such a model is normally
created by the person studying the system. Despite
the considerabletime andeffort spent,a hand-crafted
model is often error-prone. Modifying a hand-crafted
model to solve a similar problem about other physi-
cal systemsis also (hificult, and may take more time
tItan building a new model for the systems. We (IC-
scribe a niethod which uses first principles to auto-
matically create models and simulators for spatially
complex motions. This method solves severalprob-
lems with existing Al modeling work on motion by:
(1) explicit handling of vector quantities and frames
of reference; (2) simultaneous handling of multiple
equations (algebraicor differential, linear or nonlin-
ear); and (3) declarative,algorithm-neutral represen-
tation ofphysics knowledge. The method hasbeen im-
plementedin a working program called ORAcLE and
testedin the domains of mechanicaldevicesand sail-
boats. Experimental resultsshow that ORAcLE ~S Ca-
pable of generatingcorrectmodels of several(lifferent
typesof physical systemsif enough domain knowledge
is available.

Introduction

Spatial reasoningproblemsareconsideredin a variety
of areas,but different areashavedifferent spatial rea-
soning tasks. In computervision, for example,recog-
nition of familiar objectscan be the main spatial rea-
soning task. Our focus in this paperis on modeling
physicalsystemsfor reasoningaboutspatiallycomplex
motion of the systems. By spatially complex motion
we meanthe motion of multiple moving objectsin ar-
bitrary configurationsin three dimension. Motion in
three dimensionis much more difficult to understand
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anddealwith than themotion in oneor two dimension
becausemodeling sucha motion involves reasoningin
vector space.

There are several works on modeling motion, hut
spatiallycomplexmotions did not getmuchattention.
Somequalitativephysicsapproacheshavebeenusedto
model motion. But they focus on developingrepresen-
tations for physicalsystemsand reasoningabout the
systemswithin the representations,and their capabil-
ity of reasoningabout motion is limited to simple mo-
tions only. Consider, for example,a spring with one
end attachedto a fixed point and the other end at-
tachedto ablock. What happensif theblock is pulled
androtatedfrom its equilibrium position andreleased,
as illustrated in Figure la? This spring-block system
is different from a linear harmonicoscillator,which is
acommontextbook exampleoften used in qualitative
physics research. It is well known that the harmonic
oscillator has one degree of freedom, i.e., displace-
ment of the block from its equilibrium position, and
its motion is oscillatory on a straight line. However,
predicting the behavior of the spring-blocksystem in
Figure la is not assimple as the harmonicoscillator.
Manyqualitativephysicsapproacheswhich can model
the harmonic oscillator (Forbus 1984; Kuipers 1986;
Struss 1988; Weld 1988; Williams 1986) cannot han-
dle this spring-block system. The primary reasonfor
this difficulty can he attributed to the fact that qual-
itative valuesare not adequatefor spatially complex
problemsand that they lack the ability to reasonex-
plicitly about vector quantitiesand moving frames of
reference. Someresearchin spatial reasoningor corn-
mercialmechanicssimulatorshavepowerfulalgorithms
to model motion, but they incorporateknowledgeof
physicalphenomenadirectly into algorithmsanddiffi-
cult to reuseor extendthem to solvesimilar problems
about otherphysical systems.

The work of this paper is motivated by two goals.
The first goal is to automatethe model fornmlation
and simulation processfor complexmotion. The sec-
ond goal is to make the modeling processas general
as possible so that common domain theoriescan be
sharedand reusedinsteadof being duplicated. As we
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Figure 1: (a)1 block attached to a spring. The block is pulled and rotated from its equilibrium position and
released. (h) 2 blocks connectedby 1 spring. Both blocks are pulled in opposite directions and released. (c) 3
blocks connectedby 2 springs. The middle block is pulled directly to the side and released.

Figure2: Stars~4Stripes,winnerof the 1987 America’s
Cup competition.

will show later, we handleexplicitly vector quantities
and referenceframes, and construct a model from a
set of model fragments. The model fragmentsrepre-
sent the fundamentalphysics knowledgein a declara-
tive andalgorithm-independentway, andarereusedin
building modelsof different typesof physical systems.

The remainderof this paperdiscussesa framework
for automaticallycreating and simulating behavioral
modelsof moving physicalsystems,andillustrates the
frameworkusing thesinglespring-blocksystemin Fig-
ure la as a running example. We also discuss the
epistemologicaladequacyof theframeworkfor broader
classof physical systems,and addressrelated issues
suchas: Can the modelingsystemof the singlespring-
block system be used to predict the behaviorof more
general spring-block systemssuch as Figure lb and
Figure lc, or different typesof physicalsystemssuch
as a sailboat shown in Figure 2? Do we needa sep-
aratemodeling systemfor every physicalsystem? Or
the samemodeling systemjust with more knowledge
will suffice to model them?

Framework for Model Building and
Simulation

In this section we describe the framework of our model-
ing systemcalled ORACLE, implemented in the math-
ematical manipulation languageMaple (Char et at.

1991).

Ontology and Representation
The principal elementsof ORACLE’S ontology are en-
tities, phenomena,model fragments,andmodels,each
represented in a frame (Minsky 1975). Art entity is a
physical object which either constitutes a physical sys-
tem by itself (i.e., primitive object) or is a part of a
physical system (i.e., compositeobject). The proper-
tiesof anentity areexpressedasvariablesin equations.
The block entity, for example,haspropertiessuch as
position and velocity. An entity is representedin a
frame with slots for the properties. Facetsallowed in
a slot are value, form, range, if.needed, and if_added.
The value facet is initially set to null hut will he as-
signeda vector, scalar, string, set, or any other expres-
sion as it becomesknown. Theformfacet distinguishes
the slot type (e.g., scalaror vector) and is consulted
when the system creates a new Maple variable name
during the problem solving process. For example, if
the system is asked to compute the position of a block
hl, aset of new variables {hlx(t), bly(t), hlz(t)} will
he created for the position vector and used in equa-
tions. The range facet specifies a valid range of the
property value if it is known. The if_needed facet or
if_added facet holds the procedure call, invoked when
a slot value is needed or added. The if_needed proce-
dureof the velocity slot in the examplebelowsaysthat
velocity is derivable from position.

block [AKOrigid...body,
position(t)=Evaluesanull, forxn~=[x(t) ,y(t) ,z(t)]],
velocity(t)=[value=null, form’~Cu(t),v(t),w(t)I,

±f_neededEderive_velocity, position(t)JJ,
- (other slots not shown) - . . - I

A phenomenonis a process which changes one or
more properties of anentity in a physical system. Force

from a spring, for example, is a phenomenon which
can change the position and/or orientation of an entity
which is attached to the spring.

A modelfragmentis a characterization of a physical

phenomenonby a set of entities, variables, assump-
tions, and equations. There may be more than one
model fragments for a single phenomenon, each with
different assumptionor approximation. The equations
of a model fragment are applicable when the corre-

(b)



sponding phenomenonoccurs. The spring force, for
example,exerted on an object attachedto end2 of a
linear spring with lineardampingis representedas fol-
lows (syntaxslightly modified for readability):

Springforce2’~[phenomenon=’sprirtgforce at end2’,
entit ies=Es=linear_dantped_spring],
variables’~’[ks [force_const],

b~’sEdamping_coeff],
e1(t)~’s[end1(t)], e2(t)=s[end2(t)].
l=sCrest...length], f(t)”sCforce2(t)]],

equations=Ef(t)=—k*(11e2(t)—el(t)I I—l)*
(e2(t)—el(tfl/I e2(t)—el(t)
b*diff((i 1e2(t)—el(tfl —l)*(e2(t)—el(tfl/
I 1e2(t)—el(t) II ,t)]]

It saysthat s is alinear damped spring, k is a force
constantof thespring, b is adampingcoefficient,el(t)
ande2(t) are the positionvectorsof endl andend2, 1
is the rest length,andf(t) is the spring force at end2.

e2(t) — el(t) is the vector norm representing the
length of the spring at time t, e2(t) — el(t) —l is
the signed length change from the rest length, and
(e2(t) — el(t))/ e2(t) — el(t) M is a unit vector with
direction from endi to end2.

A modelis acompositionof model fragmentsappli-
cable to a physical system in a particular situation.
Simulation is the execution of a model.

The motion of an entity at any instant can be de-
scribed by a set of ordinary differential equationsin
the twelve components of four vectors: position, orien-
tation, velocity, and angular velocity.’ The differential
equations are usually nonlinear and do not have a solu-
tion in closed form, so they must be solved by numeric
integration. For a moving entity, ORACLE constructsa
model with the twelve components of the four vectors
(position, orientation, velocity, and angular velocity)
as statevariables, which take numeric values during
simulation.

The state variables of each subpart of an entity are
initially defined in the local reference frame, which is

assumed to be fixed to the entity. Then each subpart
defined in its local reference frame is translated and
rotated by having its reference frame redefined in a
commoninertial referenceframe. The system chooses
the common inertial referenceframefrom local refer-
enceframes which are not accelerated.If there is no
suchreferenceframe(i.e., all thelocal referenceframes
arenoninertial), it introducesa new inertial reference
frame. If there are several inertial referenceframes,
the choiceis arbitrary.

‘The degreesof freedom of a moving entity are six in-
steadof twelve becausethe velocity function amid thean-
gular velocity function arc derivableby differentiating the
position and orientationfunctions, respectively. The mo-
tion of a physical system with ii subpartscan be charac-
terizedby maximum12n statevariableswith 6n degreesof

Algorithm
ORACLE takesas input a descriptionof a physicalsys-
tem in terms of the entities of the system, any con-
straints to he satisfied,and the propertiesof the enti-
ties (i.e., variables)whosevaluesare going to he com-
putedby modeling andsimulation. As output, it pro-
ducesamodel of themotionof thesystemandthevari-
able valuesobtainedby solving the model. The algo-
rithni of ORACLE consistsof threephases:(1) problem
analysis, (2) model creation, and (3) model execution.
In the first phase, ORACLE represents each entity of a
problem statement in a frame by copying a classframe
and filling in slots for property values specified in the

Algorithm 1 ORACLE’S top-levelalgorithm

Problem Analysis Analyzeaproblemstatement.

1. Analyze entities, and create frames of the entities
anda set INIT of initial-value conditions.

2. For each constraint, determine its type and represent
them in equations.

3. Analyze variables and generate a set DRVD of dif-
ferential equations.

Model Creation Searchfor relevantmodelfragments
andcomposeabehavioralmodel with them.

1. For each entity B of the problem statement

For each model fragment MF indexed by the
“mf” slot of B

If MF has not been instantiated for B
AND every variableof MF either
correspondsto an entity property or variable
of the input or can he derivedfrom them
AND the assumption(if any) of MF does
not violate any entity property or constraint
of the input

Put MF in a list MFS.

2. model M = DRVD

3. #equations= #equations(M)
4. retry: For eachmodel fragmentMF in MFS

(a) InstantiateMF for theproblem.
(h) M = M u {MF}
(c) #equations= #equations(M)
(d) If #equations= #variables, do model execu-

tion.
5. Print the dead-endsituation, and quit.

Model Execution Solve the model M either analyt-
ically or by numeric simulation.

1. Determinethe typesof equationsof the model and
solvethem with INIT for thevariables.

2. If avalid solution is obtained,print the model and
solutions,andquit.

3. If a valid solution is not obtained, retract the most
recentMF from the model and go to retry.

freedom.



problem statement. It also transformsvector quanti-
ties expressedin the local referenceframes into those
in the inertial referenceframe,formulatesinitial condi-
tions, andexecutesif_addedproceduresin the slots. A
model fragmentspecifying forceson a componentof a
compositeobject is instantiatedby if_addedprocedures
in thethis phase.After constraintsareanalyzed,vari-
ablesareexaminedto determineif their valuesareal-
readyknownin their slot valuesor derivablefrom other
variables. In the secondphase,additional model frag-
ments which have not been instantiated are retrieved
and a model is constructed from them. In the final
phase,the constructed model is solved for the prob-
1cm. If ORACLE runs out of potentially relevant model
fragments before it finds a valid solution, it prints the
situation, asks more information, and quits. The top-

level algorithm of ORACLE is outlined in Algorithm 1.

Example
Weillustrate how ORACLE works with the spring-block
system of Figure in. Suppose the following problem
description is given as an input. There is no particular
constraint in this problem and the system is asked to
compute the four vector variables (twelve variables in
component form) of the block.

antities[bl=[block, massl,
principal_moments_of _inertia=’[1/6,1/6, 1/6],
position(O)~’[3,O,O]
orientation(O)=[Pi/4,Pi/2,O],
velocity(O)”[O,O,O],
ang_velocity(O)C0,O,OJ],

s1’~[spring, force_constlO,
damping_coeff=1/1O, rast_length3/2,
endl(t)[O,O,O], end2(t)”bl[—1/2,O,O]],

sb”[composite_object, parts’~{b1,s1}]];
constraints[ I;
variables=Cbl Eposition(t)], bi [oriantation(t)],

bl[velocity(t)] , blEang_velocity(t)]J;

For eachentity hi, si, and sb, a frame is created
andthegiven propertiesof the entitiesarerecordedin
their slot values. The if_addedprocedurein the end2
slot of si computesthespring force actingon hi using
a model fragment Springforce2and recordsthe value
in the force slot of hi. The position of end2 in the
inertial referenceframeis computedfrom atranslation
and arotation of the local referenceframe of bi. The
initial conditionsof theblockarealsoformulated, Here
are the Maple variable namesORACLE assignsfor this
example.

INIT =

{blx(O)ss3, bly(O)0, blz(O)0,
blphi(O)=O, bltheta(O)”Pi/2, blpsi(O)=O,
blu(O)=O, blv(O)”O, blw(O)=O,
blomegal(O)0, blomega2(O)0, blomuega3(O)0}

None of the four state variables of hi can be as-
signed a value simply by looking at slot values of hi,
but the velocity and the angular velocity functions
can be derived by differentiating the position and the

orientation functions, respectively,accordingto their
if_neededfacets. The systemgeneratestrivial differen-
tial equationsfor the velocity andangularvelocity by
the proceduresattachedto the if_neededfacets.

DRVD =

{blu(t)diff(blx(t),t),
b1v(t)’~diff(b1y(t),t),
b1w(t)’~diff(b1z(t),t),
blomegal(t)=diff(bltheta(t),t)*cos(blphi(tfl+

diff(blpsi(t),t)*sin(bltheta(tfl*sin(blphi(t)),
blomega2(t)diff(bltheta(t),t)*s±n(blphi(tfl—

diff(blpsi(t),t)*sin(bltheta(tfl*cos(blphi(t)),
blomega3(t)diff(blphi(t) ,t)+

diff(blpsi(t) ,t)*cos(bltheta(t))}

Now ORACLEfocuses on finding equations for the
position and the orientation. The equations for them
cannot be derived from other variables since they are
basic variables, so ORACLElooks for relevant model

fragments. It examines model fragments, indexed by
the mf slot of theblock. ORACLEdecides that Newton2
and Euler are potentially relevant because the entities
(solid and rigid body, respectively) of the model frag-
ments are superclass of a block and the equations of
the model fragments contain at least one variable of
the problem. Model fragments of Newton2 and Euler
are as follows.

Newton2 Cphenomenon’ Newton’s second law
of motion’,

entities=[r=solid],
variables=[f(t)r[net_force(t)]

p(t ) ‘6r [momentum(t) I]
assuinptions[ 3,
equations=[f(t)=diff(p(t) , t)]]

Euler[phenomenon ‘time—dependency of
ang_velocity’,

entities [brigi&body],
variables=[Qmega(t)b[aitg_velocity(t)],

M(t)=b[ang_momentum(t)],
T(t)a~b[net_torque(t)J]

assumptions[ 3,
equationss6s[add(diff01(t), t)

crossprod(Omega(t),
N(t) ) )=T(t)]

The entity and variable names of the model frag-

ments are instantiated as those of the problem and
theyaresubstitutedin theequationsof themodelfrag-
ments. The angular momentumis derived from prin-
cipal momentsof inertia and angularvelocity by the
if_neededprocedurein the aug_momentumslot. Like-
wise, the net torqueis derivedfrom force andposition
vector of the point at which the force acts.

/ I,i!,(t) \
M(t) = ( I

2~
l
2

(t) ), T(t) = ~r x f(t)
\ 1

3
11

3
(t) J

The principal moments of inertia (Ii, 12, 13) and the
position vector (~-)of the spring-attachedpoint can be
assignedfrom the information of t,he problemdescrip-
tion. The angularvelocity is oneof thestatevariables



Figure3: Plots of the 12 state variablesof the block hi as functions of time. The first column showsthe position
vector, the secondcolumn the orientation vector, the third column the velocity, and the last column the angular
velocity.

Figure 4: Motion of theblock hi. Spring not shown.

Figure 5: The kinetic, potential, and total energyof thesingle spring-block systemas functions of time during the
sinmlation.
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askedby the problem,and its functions arederived in
DRVD. The value of force 1(t), which hascomputed
usinga model fragmentSpringforce2(shown earlier in
section ), is availablein the force slot of bi, and sub-
stituted in the equationsof Newton2and Euler.

Thesystemhasnow total 12 equationsin component
forms (6 from themodel fragmentsand6 from DRVD)
plus 12 initial conditionsfor 12 unknowns. Severalof
thedifferential equationsarenonlinear,andwhen OR-
ACLE attemptsto solvethe model analytically, it does
not find asolution in closedform. ORACLE thensolves
thedifferential equationsby numericsimulation. ORA-
CLE displaysthesimulationresultby showingthestate
variablesas functionsof time usinggnuplot (Figure 3).
Animationof the movingblock is shown(Figure 4) us-
ing PADL-2 solid modeling system (Hartquist 1983).
Figure 4 contains several animation scenes superim-
posed. Note that the motion of the block is much more
complex than that of the linear harmonic oscillator.

The kinetic energy,potential energy, andtotal energy
of the system are also displayedaspart of validation
criteria of the results (Figure 5). The total energy in
Figure 5 decreasesover time dueto the nonzerodamp-
ing coefficientof the spring of the problem statement.

Extension to Broader Class of Physical
Systems

Multiple Spring-block Systems

The previoussectionshowedhow ORACLE predictsthe
behavior of the single spring-block system. Can the
modeling system of the single spring-blocksystem he
used to predict the behavior of the multiple spring-
blocksystemssuch as Figure lb and Figure ic? The
answer is “yes”. The multiple spring-block systems
haveadditional entities and phenomena,but they are
simply the multiple occurrencesof the sametypes as
thesingle spring-blocksystem. Havingalreadyenough
knowledgerepresentedin general form to handle the
single spring-block system, ORACLE can handle the
multiple spring-block systemswith no change. The
way it solves theproblem is the same.It computesthe
positionsof endsof eachspring in the inertial refer-
ence frame by transformingthe local referenceframe
of its associatedblock, and derives differential equa-
tionsfor thevelocity andangularvelocity of theblocks
from the proceduresattachedto the if_neededfacets.
It then instantiatesmodel fragmentsof Spring force,
Newton2 and Euler, and composesa model. Notice
that model fragmentsharingoccurswithin the models
becauseeachof thosemodel fragmentsis instantiated
more than once for different entities. The result of the
executionof the models indicate that although none
of the blocksareinitially rotated, both blocks of Fig-
ure lb andtheendblocks of Figure ic rotateaswell as
translatedue to spring forceswhich arenot parallel to
theradiusvectorsof thepoints to which the springsare
attached.If the springdampingis ignored(i.e., damp-

ing_coeff = 0), the middle block of Figure ic shows
translational motion only, hut it shows both transla-
tional and rotationalmotions if the spring damping is
considered(damping_coeff~ 0). Figure 6 showspartof
animation scenesfor the casewhen the spring damp-
ing is considered. In fact ORACLE is able to handle
multiple rigid bodiesconnectedby springs in arbitrary
positions and orientations becausethe way of identify-
ing relevantmodel fragmentsandcomposing them is
I1ot restricted by the number of entities or their con-
nections.

Sailboat in Fluid
A sailboat is a compositeobject whose driving force
comes from the differential motion of air over water.
Before we model the sailboat, we can ask the same
question as before. Can we usethemodelingsystem of
the spring-block systems to predict the behavior of a

sailboat in fluids? The answer is “yes”, provided that
the modeling system has enough domain knowledge
to handlethe problem. We do not need to build a
different modeling system. A modeling system with
the same algorithm and the same model fragments plus
additional model fragments and entities can predict the

behaviorof the sailboat.
New classesof entitiesaddedto theknowledgebase

are fluids (water and air) and lifting surfaces (hull
and sail). The sailboat, water, and air entity have
their own referenceframes,which moveas their enti-
ties move. New phenomenainclude hydrodynamicand
aerodynamic forces, each with two components (lift
and drag), and skin friction. A single model fragment
is used to representboth hydrodynamicand aerody-
namicfrictional drag forces, and later instantiated for
them. Likewise, a single model is used to represent
both hydrodynamicandaerodynamiclift forces.

FDrag=[phenomenon=’frictional drag force on
an object in fluid’,

entities=[s=physical_objoct, f”fluidJ,
variables=[FD=sEfdrag(t)],

v=strel.fluid_speed(t)]
fd~’s[rel_fluid_direction(t)]
Pas[parasitic_area],
rho~’f[densityJ],

assumptions~’[ 3,
equations[FD=1/2*Pa*rho*v2*fd]]

Lift”[phenomenon’ lift and lift induced force on
an object in fluid’,

entities=[s=physicalobject, ffluid],
variables[LFs[lift(t)J,

L~’s [lift _magnitude(t)],
vs [rel_fluid.speed(t)J
fd=s [rel_fluid_direction(t)]
pds [perpendicular.rel_fluid_dir(t)J,
Cas[effective.capture_area],
rho=f [density]],

assumptions”[s[rel...fluid_speed(t)] > 03
equations[LFL*pd+L2/(2*Ca*rho*v2)*fd]]

For the hull, the rd_fluid_speedis the speedof the
boat relative to water. For the sail, therd_fluid_speed



Figure 6: Motion of themultiple spring-blocksystemsin Figure lb and Figure ic. Springsnot shown.

Figure 7: Directionsof forcecomponentsonasailboat,
adaptedfrom (Letcher, 1976)

is the speedof the boat relative to air. The magnitude
anddirectionof thehydrodynamicforcesacting on the
hull dependon the rd_fluid_speedof the hull, and the
aerodynamicforcesdependon thereLfluid..speedof the
sail. rd_fluid_direction is an anglebetweenthe direc-
tion of fluid andthe directionof an object, represented
in angle. Drag forces actingon the hull havecompo-
nents opposite to the direction of its rd_fluid_speed.
Lift forces on the hull are perpendicularto the direc-
tion of its rd_fluid_speed. Similarly, drag forces on
the sail havecomponentsopposite to the direction of
its reL.fluid_speed,and lift forces on the sail are per-
pendicularto the direction of its rel..fluid_speed. Lift
forceson thehull andsail of asailboatare horizontal,
not vertical.

The directions of the force componentsare summa-
rized in Figure 7. In the figure, wateris assumedto be
at rest (i.e., speed= 0) and V~,~ and A denotethe
wind speed,sailboatspeed,andcourseanglefrom the
wind direction, respectively.

Notice that themodel fragmentLift hasanonempty
assumption slot, sa~ring that the relative fluid speed
must be positive. When both the fluid and the ob-
ject are at rest or the fluid hasthe samespeedas the
object in the samedirection, the relative fluid speed
becomeszeroand theequationsof the model fragment

cannot be defined due to zero denominator. Thus we
have another model fragment of lift with a different
assumptionslot; it says that lift force is zero when the
relative fluid speed is zero.

Lift_at_zero_speed=[
phenomenon”lift and lift induced

force on an object in fluid’,
entities~’[s”physical_object, f=fluid],
variables=[L=s[lift(t)]

svs [rel_f].uid_speed(t)]],
assumptions=[s[rel_fluid_speed(t)] = 03
equations [L[13 =0,

L [23=0,
L [33=03]

During problem solving, ORACLE automatically
chooses between the two model fragments of lift by
checking their assumptions. At present, the kinds of
assumptions ORACLE can processare confined to the
algebraicpropertiesof entities, suchasnumericranges
or arithmetic expressions.

After the entities and model fragments are added,

ORACLE can solveseveraltypesof problemson a sail-
boat,but we will focuson onetype of problemin this
section. Supposethat a sailboatis headingin the an-
gle of 49 degreesfrom the direction of wind at uniform
speed16.9 ft/sec and that water is at rest. The sys-
tem is askedto computethesailboatspeedwhich will
balanceall the forcesinvolved.

ORACLE first infers all the forces on the sailboat
from the forcesactingon its components,hull andsail.
It instantiatesthe model fragmentsFDragandLift for
eachof them and records the summation of them in
the netIorce slot of the sailboat.

F = ~ (FDrag~+ Lift~)

iC (hull, sail)

It then searchesfor a model fragment which relates
forces with speed, and finds the model fragment of
Newton2. It substitutes the equationsof the forces
in the equationof Newton2, F(t) = d(p(t))/dt. Since
the problemstatesthatall the forcesarebalanced,the
net force on the sailboatmust be zero, implying the
momentum p(t) is constant. The right hand side of
the equationbecomeszero from the constantmomen-
tum, resulting in an algebraicequation. However,the

hull lift
Vt
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Figure 8: The sailboatspeedasa function of time.

problem is under constrainedin the sensethat total
number of equationsin componentform is 2 (Fx=0,
Fy=O, Fz becomesatrivial equation0=0) but the to-
tal number of unknownsin the equations is 3 (boat
speed, sail lift magnitude, and hull lift magnitude).
ORACLE prints the situation, asking for further in-
formation. The user provides an additional equation,
O(Fx)/O(sail_Iift.magnitude)= 0, by making asimpli-
fying assumptionthat thesail is controlledas to max-
imize the sailboatforce in the direction of boat head-
ing. The equationsaresolvedalgebraically,producing
asolution, boat speed= 15.7 ft/sec. The solution is
checkedagainsttherangefacet of thespeedslot of the
boat,which saysthat value of the boatspeedmust be
in the rangeof [0 .. infinity]. Sincethe solutionof 15.8
is includedin the range,it is returnedto the userasa
valid solution. However, if thereare severalsolutions,
only thosewithin thevaluesspecifiedby therangefacet
(if any) are selectedas valid solutions. When the in-
formation in the rangefacet is not sufficient to choose
a correct solution from multiple solutions, additional
or alternativeprocedurefor filtering correct solutions
is to use the result of the numeric simulation of its
correspondingdiffr~rentialmodel, as we will show be-
low. A correct solutionof analgebraicmodel describ-
ing a behaviorin a steadystate must agree with the
numericsimulationresultof its correspondingdifferen-
tial model. This procedureof validating thesolutionof
an algebraicmodelagainst thenumericsimulation of a
differentialmodel hasnot beenautomatedin the cur-
rent implementationof ORACLE, and the usershould
try both models to comparetheir results.

The previous exampleshowed how ORACLE coni-
posesa model to compute the sailboat speed in the
equilibrium stateof forces. If we areinterestednot only
in suchaspeedbut also in how the boatarrives at the
speed,startingfrom zerospeed,theboat speedmust he
computedasafunction of time. Relevantmodel frag-
mentsare retrievedandinstantiated in asimilar way.
In this case,however, the net force on the sailboatis
not necessarilyzero all the time becausethe boat ac-

celeratesuntil it reachestheequilibriumstateof forces.
Therefore, the right hand side of theequationof New—
ton2 doesnot becomezero, hut stays as d(p(t))/dt.
Sincep(t) = d(m - v(t))/dt, ORACLE solves the differ-
ential equation,F(t) = d(m - v(t))/dt for v(t) by nu-
meric simulation. A plot of the simulation result in
Figure 8 showsthat thesailboatultimately accelerates
to the same speedas the one predicted by the alge-
braic method, thus confirming the algebraicsolution.
Also noticethat themodel fragmentNewton2usedfor
modeling the spring_blocksystemsis reusedfor mod-
eling thesailboatand that model fragmentsLift and
FDragaresharedby hull and sail.

Issues in Scaling Up
There are several problemsraised in scaling up ORA-

CLE not only to broaden the types of physical systems
to he modeled but also to model a physical system
with a large number of componentsand phenomena
involved.

First, the size of a model generated by the current
version of ORACLEcan restrict scaling up either be-
causeof practical limitations of solving a huge model
or becausesolving a huge model takes too much time
to be useful. Table 1 showsthesizesof themodelsand
the times for formulating and solving the models for
the examples shown in this paper. The model sizesof
spring-blocksystemswith different configurations from

the examplesin Table 1 are about the same as those
of the spring-block systems with the same number of
blocks and springs in Table 1, that is, the model sizes
of spring-blocksystemsareindependentof their config-
urations. As we can see in Table 1, the size of a model
is not directly proportional to the number of model
fragmentsinstantiated. Rather it is proportional to
the numberof variablesspecifiedin the problemstate-
ment, or to the number of unknownsin theequationsof
the model (#unknowns includes #variables and newly
generated variables in the equations).

As describedearlier, a model contains aset of vari-
ables,a set of assumptions,a set of namesof model
fragments,anda list of equations.The equationsof a
model are compositionof the equationsof the model
fragmentsinstantiated to construct the model. Al-
though the equations of most model fragmentsexist in
a very short, simple form beforeinstantiation, theymay
becomevery long andcomplexafter they are instanti-
atedfor theparticularentities andphysicalphenomena
in the problem. This explains the largevariations in
the sizesof modelswith similar numberof model frag-
ments; the big size of a model is attributed to the long

equations of instantiated model fragments. Even for
a same model fragment, the equations after instantia-
tion can he very different in their sizes depending on
for which variables they are to be solved and which

variables of the equations are known.
Figure 9 showsthegrowth rate of themodelsizeand

the growth rate of the timne for modeling and simula—
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example #variables #unknowns #model fragments #lines of model
model fragments(#instantiation)
model_gentime modeLsol time display_savetime total time

algebraic
model
of boat

1 3 5 30
FDrag(2), Lift (2), Newton2(1)
4.900 4.616 4.917 14.333

differential
model
of boat

1 3 6 31
Newton2 (1), FDrag (2), Lift (2), Lift_at_zero_speed (1)
4.700 18.700 4.716 28.116

one
block
system

12 12 3 206
Newton2(1), Euler (1), Springforce2(1)
14.583 19.800 14.833 49.216

two
block
system

24 24 6 2010
Newton2(2), Euler (2), Springforcei (1), Springforce2(1)
108.533 118.283 110.433 337.249

three
block
system

36 36 10 5330
Newton2(3), Euler (3), Springforcei (2), Springforce2(2)
339.350 264.616 344.767 948.733

Table 1: Size of amodel andtime for formulatingandsolving it for eachof the ORACLE examples.#variahlesis the
number of variablesin componentform, specified in the problemstatement;#unknowus includes#variablesand
newly generated variablesin the equations;#model fragmentsis the total numberof mqdel fragmentsinstantiated
for themodel; #lines of model is acountof lines of the model; model_gentime is CPU time for generatingamodel;
modeLsol time is CPU time for solving the equationsof amodel; display_savetime is CPU time for displayingthe
resultof solving the model andsavingall the results; the units of the CPU times are in seconds.
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Figure 9: The size of a model andthe time for formu-
lating andexecutingthe model. For the count of lines
andtimes of amodelwith 3 unknowns,theaverageval-
uesof the 2 modelswith 3 unknowns(algebraicmodel
of boat,differentialmodel of boat) areused. The units
of the model sizesa~ein the line countsof modelsand
the units of the timesare in seconds.

tion as a function of the number of unknownsof the
a model. The size of a model is measuredin termsof
the number of lines of the model. When the number
of unknownsincreasesfrom 3 to 12, themodel sizein-
creasesfrom 30.05 lines to 206 lines, which is almost
7 times. This is becausethe spring-blockexample in-
volves much morecomplex computationwhich results
in long equations.It is alsonotablethatwhen thenum-
berof unknownsincreasesfrom 12 to 24, themodel size
increasesfrom 206 lines to 2010 lines, about 10 times,
andthat whenthe numberof unknownsincreasesfrom
24 to 36, the model size increasesfrom 2010 lines to
5330 lines. Given limited data, the growth rate of a
model is roughlyquadraticin thenumber of unknowns.
The total time for generatinga model and solving it
is also proportional to the numberof unknownsof the
model, but the growth rate of time is not as fast as
that of the model size, asshownin Figure 9.

Someof the largemodelshavelong equationswhich
cannotbe simplified further in their natureunlesswe
decide to produce approximatemodels instead. How-
ever,somemodelsmayhesimplified without losing ac-
curacyof their predictionsby doingadditionalprocess-
ing on the equationsinsteadof applying Maple-builtin
simplification functions. Reformulatingthemodel gen-
eration and solving processof ORACLE is anotherdi-
rection to considerin order to efficiently constructand
solve a large model. Restricting ORACLE to a cer-
tain type of physical system is anotherway to scale
up the modeling system to handle a complex physi-
cal system with a large number of componentsand

5 10 15 20 25 30 35 40
#unknownsof theequationsof amodel



phenomenainvolved. For example, if we want a spe-
cial purposemodeling systemfor spring-blocksystems
only, we can makethemodeling systemgenerateasin-
gle model that works for any number of blocks. As
the numberof blocks increases,the model would need
moredatastoragebut themodel itself doesnot become
larger. This kind of approach to scaling up a model-
ing systemhasadvantageof beingable to model and
simulate a complex physical system without the size
problemof ageneratedmodel, but hasdisadvantageof
losing the breadthof physicalsystemscoveredby the
modeling system.

Second, selecting relevant model fragmentswould
becomea more important issue in scalingup. Includ-
ing additionalpropertiesof anobject, suchaselectrical
or thermal properties,in the descriptionof an entity
as slots doesnot causea problem in selectingmodel
fragmentsbecausewhen ORACLE determinesthe rele-
vanceof amodel fragmentto agiven problemit checks
whether eachvariable of the model fragmentis men-
tioned asanentity propertyor variableof theproblem
statementor derivable from them. The difficulty is in

selectingamodelfragment amongmultiple modelfrag-
mentswith sameor similar variablesbut with different
assumptions. In the current implementation,model
fragmentsareindexedby the mfslots of entities,with
more frequently relevant ones first, and thereforethe
search processis sensitiveto the order of the model
fragments. We maywant a more efficient method for
organizingmodel fragmentswhich will facilitate iden-
tifying andretrievingrelevantmodel fragments.

The third problem in scaling up is related to the
size of a generatedmodel. As amodel gets bigger, it
would becomemore difficult to understandthe model
or to validate its solution. Having ORACLE provide
an explanationof its solution, or checkingthe solution
againstthat of an approximatemodel or experimental
datawill help understandor validate the model.

Related Work
Falkenhainerand Forbus (1991) describe a form of
compositional modeling where a device model is au-
tomatically formulated by composinga setof relevant
modelfragmentswhichareinitially obtainedby match-
ing the termsof a query to adomain theoryand then
elaborated later. There are severaldifferencesbetween
our work andtheirs. In ORACLE we distinguishmodel
fragmentsfrom entities; model fragmentsareused for
describingphysicalphenomenaandentities for objects
(both compositeand primitive); model fragmentsare
indexedby the “mf” slot of an entity. In Falkenhainer
and Forbus’ approach,model fragmentsare used for
describing all the phenomena,objects, and devices,
and are organizedinto mutually exclusivesets called
assumptionclasses. When the classcondition holds,
one and only one of the assumptionsassociatedwith
theclassmust hold andthemodel fragmentcontaining
that assumptionmust be includedin a model. Once

themodelfragmentswith appropriateassumptionsare
selected,the processof instantiating the model frag-
mentsand assembling them is straightforward. While
a compositeobject in ORACLE can consistof anyhet-
erogeneous parts, a unique minimal covering of parts
takenfrom a singlepart-of hierarchyis requiredto ex-
ist in their approachto generatea simplest possible
model. They do not have a capability of handling
detailed structural relationsamong parts and choos-
ing appropriatereferenceframes for parts,and there-
fore cannothandle complex motions such as motion
of multiple objects. For behavior generationFalken-
hainerand Forhususeeitherqualitativesimulation by
QPE (Forbus 1990) or quantitativesimulation by nit-
meric simulation, whereaswe usenumeric sinmlation
or analytic method.

In (Nayak 1992), Nayak describesa method to con-
struct a device model by selecting an appropriate
model for eachcomponentof the device using struc-
tural, behavioral,andexpectedbehavioralconstraints.
In his system, a model is formulated by composing a
setof model fragments,asin ours. However,theusesof
themodels producedby the two systemsaredifferent.
While ORACLE constructsamodel to predict motions
of physicalsystems,his systembuilds a model to ex-
plain causal relationsbetweenparametersof a device.
Another differenceis that he usesorderof magnitude
reasoningfor behaviorgenerationwhile we usenumeric
simulation. His orderof magnitudereasoningmethod
is restrictedto generatingthe behaviorat afixed point
in time, but we can predict the behaviorchangingwith
time as well as the behaviorat afixed point in time.

The SIGMA system developedat NASA Ames Re-
searchCenter(Keller and Rimon 1992)is atool which
aids ascientist-userin building a model. After thein-
teraction with the user, it producesamodel specified
in dataflow graphand executesthemodel to compute
a unknownquantity. Like ORACLE, SIGMA organizes
andrepresentsdomain knowledgein frame structures.
However, it is a user-assistantsystem rather than an
autonomousmodel-building system, and hasseveralre-
strictions in constructingandexecutingamodel, which
ORACLE doesnot have. For example,multiple quanti-
ties cannotbe computedat the sametime becauseit
cannotsolvemore than oneequationssimultaneously,
and the types of equationsare restricted to algebraic
equationsor first-order ordinarydifferentialequations;
model fragmentscannothe put togetherin an arbitrary
orderdueto thestrict hackchainingcontrol strategyof
its model building process. It converts the input val-
ues into a common,consistentset of scientific units,
hut does not have a provision to transforma vector
quantity measuredin one referenceframe to another,
which is necessaryin dealingwith moving objects.

The MSG system developedby Ling et at. (1993)
generatesmathematical models for analyzing heat
transfer behavior. The approachof the MSG system
to building amodel is similar to that of ORACLE in the



sensethat it is compositional.However, therearesev-
eral differences. While ORACLE focuses on modeling
physicalsystemsinvolving motion, MSG models phys-
icalsystemsinvolvingheatflow. Therefore,thedomain
knowledgethe two systemsuseare different. A second
differenceis that ORACLE representstheknowledgeex-
plicitly in general,declarative form, but much of the
knowledgethat the MSG system usesis embeddedin
thesystemaspartof itsalgorithm. A third differenceis
that, while ORACLE generatesamodel andthensolves
the equationsof the model to predict the behaviorof
agivenphysicalsystem,MSG presentlydoesnot solve
theequationsof its generatedmodel.

Another relevant line of work concernsmodel selec-
tion (Addanki ci at. 1991; Weld 1992), or model sim-
plification (Yip 1993;Falkenhainer1993), rather than
model generation.

Yet anotherrelatedworksconcernsimulation gener-
ation insteadof modelgeneration.The SIMLAB systeni
(Palmer andCremer1991)producesa simulatorfrom
a user-providedphysics model. Given a mathemati-
cal model of a physical phenomenonand instructions
for solving theresulting equations,SIMLAB transforms
the model into an executablesimulation code to ana-
lyze the phenomenon.However, the userstill has the
burdenof creatingthe mathematicalmodel. The pro-
grambuilt by Berkooz ci at. (1992) is similar to SIM-
LAB. It is basicallya compiler for translatingdiffer-
ential equationsexpressedin mathematicaland pro-
gramming constructs into an executablecode. The
SINAPSE system (Kant 1992) also automaticallytrans-
forms a given model into a program in desired lan-
guage, though again the human usermust createthe
input model.

A numberof mechanicaldevicesimulatorsarecoin-
merciallyavailable,suchasADAMS (Dawson1985),and
DADS (Haug 1989). Theseprograms,like most simula-
tors, incorporatephysicsknowledgesuch asNewton’s
lawsof motiondirectly into algorithmsratherthan rep-
resentingthem explicitly. The simulatorsinclude pow-
erful algorithmsfor forming andsolving the equations
of motions for a wide variety of mechanisms,but lack
the flexibility that ORACLE hasto explicitly instantiate
generalmodel fragmentsin particular situations.

PreviousAl researchin spatial reasoningabout me-
chanical devices (Faltings 1987; Gelsey 1989; 1994;
Joskowiczand Sacks1991) ha,s devoted considerable
attention to reasoningabout contacts between solid
bodies,aproblemORACLE doesnot presentlyaddress.
Like thecommercialsimulators,theseprogramsincor-
porateknowledgeof physicalphenomenadirectly into
algorithmsrather thanattemptingto explicitly instami-
tiate generalmodel fragmentsin particular situations,
as ORACLE does.

Future Work
There are several directions in which the work de-
scribed in this paper can he extended. In the cur-

rent implementation of ORACLE, there are only cer-
tain classes of entities and model fragmentsavailable
in theknowledgebase. Adding more model fragments
and entities would expand the types of physical sys-
temscoveredby ORACLE. It would also he a valuable
test for the extensibility of the system.

Problems which do not involve new physical phe-
nomena, but require model fragments with differ-
ent assumptionsor representationswill involve minor
changes. For example, the two model fragments for
spring forces presently assumealinearspring with liii-
ear damping. To model nonlinearsprings, we need to
addanew modelfragmentwith different equationsand
assumptions. The typesof springs should be consid-
ered when an if_addedprocedurechoosesbetweenthe
two model fragmentsof spring forces.

Somespatial reasoningproblemscan be solved by
qualitative interpretation of the quantitative models
produced by ORACLE. For example,qualitative de-
scription of motions (such as translational,rotational,
oscillatory, or tumbling) can be easily obtained by
postprocessingthe simulation results of the models.
Coverageof spaceof a moving object, any regularity
of the coverageover time (suchas monotonically de-
creasingcoverageof adampedspring),or possiblecon-
tact/collision with other moving objects (intersection
of the coveragesduring sametime intervals) can also
he producedby postprocessingthesimulation results.

When somethinggoeswrong during problemsolving
(e.g.,amodel cannothe solved dueto fewer equations
than unknowns), ORACLE currently prints the dead-
end situation, asksfor further information, andquits.
The userhas to figure out the causeof the problem
andrerunthe programwith newinformation. In order
for ORACLE to suggest possible directions to fix the
problem, it must havea capabilityof reasoningabout
equationsand unknowns.

Conclusion

The model of generalmotion in three dimension is dif-
ficult to formulateby hand but important becauseof
its relevanceto many practical applications, includ-
ing computergraphics,robotics, anddesign.We have
made important progress in automating the model—
building processfor physical systems with multiple
moving objects in arbitrary configurations by devel-
oping a new methodwhich usesbasic domain knowl-
edge. The method ha.s beenimplementedin a work-
ing program called ORACLE and testedin the domains
of mechanicaldevicesandsailboats. Given a descrip-
tion of aprobleminvolving a movingphysicalsystem,
ORACLE automatically identifies relevant model frag-
ments,instantiatesthemfor theparticular entitiesand
physicalphenomenain the problem,composesthe in-
stantiatedfragments to form a model, and simulates
the model to solvetheproblem. Knowledgeof physical
phenomenais representedwith model fragmentswhich
can he sharedand reusedby many models. Most of



the knowledgeis just thesamefundamentalequations
that appearin anystandardmechanicstextbook,with
their implied semanticsof vectorsandframesof refer-
ences. Starting with the most basic, simple concepts
in the domain of mechanics,ORACLE can still gener-
ate a powerful model for complex motions. This is a
new methodwhich solvesseveralproblemswith exist-
ing AT modeling work on motion by: (1) explicit han-
dling of vector quantities andframesof reference;(2)
simultaneoushandling of multiple equations(algebraic
or differential, linearor nonlinear);and(3) declarative,
algorithm-neutralrepresentationof physicsknowledge.

As discussedearlier, therearemanyprogramsdevel-
opedfor reasoningaboutmotionof mechanicaldevices.
However,the programsdo not solveproblemsin agen-
eral methodfrom basic physicsprinciples, hut rely on
specificmethodsspecializedfor certainclassesof prob-
lems. Letcher (1976), for example,usesa numerical
procedureadaptedfrom Newton-Raphsoniteration to
find the optimumsailboatvelocity with the maximum
componentin the wind direction, or the sailboatve-
locity whichwill balanceall theforces. ORACLE solves
the samesailboatproblemswithout requiringspecial-
purposeproblemsolving methods,as it does for other
mechanicaldevices.
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