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Abstract

The thought experiment methodology 1s a re-
cently developed technique for qualitative reason-
ing. Thought experiments involve four main steps:
(i) simplification of the original problem, (ii) so-
lution of the simplified problem, (iii) conjecture
the result of the original problem based on the
solution of the simplified version, and finally (iv)
verification that the conjecture is correct. This
methodology has been implemented and has been
applied successfully to problems involving static
electricity, the motion of charged pendulums, fluid
flow, and thermodynamic cycles. The purpose of
this paper is to analyze this technique using prob-
abilistic models

Introduction

Imaginary, simplified situations are often analyzed by
human problem solvers in order to understand the
principles behind more realistic situations. In physics,
this technique is sometimes referred to as a thought
experiment|[Prigogine & Stengers 1984].

As an example of a thought experiment, consider
how to solve the following problem.

A certain amount of charge 1s placed on a con-
ductor. What uliimately happens io the charge?
Where does it go?

There are sophisticated ways to solve this prob-
lem, but a beginning physics student can often
determine the solution in the following way.

1. We know that even a small amount of charge
in the macroscopic sense involves a huge num-
ber of particles. Despite this, we simplify the
problem to two charged particles.

2. Using the fact that like charges repel and other
elementary knowledge, we solve the problem
for two charged particles. We conclude that the
particles separate until they reach the surface of
the conductor. If charge cannot leave the con-
ductor (no sparks) the answer to the simplified
problem is that the charge moves to the surface
and stays there.
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3. We conjecture that the solution to the sim-
plified problem is essentially the same as the
solution to the original problem.

4. The previous step produces a result but we are,
perhaps, uncomfortable with it. Did we over-
simplify? Just to check, we ask ourselves if it
would make any difference if we had three parti-
cles or four. Solving these related problems we
discover that the result was the same. With this
amount of verification we feel that the result
very probably applies even to a large number of
particles.

The above example 1s an mformal thought experi-
ment. It involved the following four steps: simplifica-
tron, solulion, conjecture, and wverification. Since the
verification method employed in this case was not rig-
orous it is termed heuristic verification.

We have formalized this method and use it for qual-
itative physics problem solving. It has been imple-
mented in Prolog in a system called TEPS[Hibler 1992;
Hibler & Biswas 1992b; Hibler & Biswas 1989]. TEPS
stands for Thought Experiment Problem Solver.

In this paper we analyze the operation of a thought
experiment problem solver. We will construct some
elementary. probabilistic models of the thought exper-
iment problem solving process and determine some of
its characteristics.

First, we describe the thought experiment method-
ology in more detail.

Next, we consider a thought experiment for which
there is one right answer and n possible wrong answers.
The thought experiment is verified using heuristic ver-
ification. which means that a total of s different sim-
ulations agree. We analyze the probability, P[C' | A],
that the answer is correct given that all s simulations
agree. This might be termed the validity of the heuris-
tic vertfication. This analysis allows us to provide a
condition for heuristic verification to work, to discuss
the expected behavior of heuristic verification, and to
consider the effect of fine versus coarse descriptions.

Finally, we analyze thought experiments in terms of
the expected time, T, for achieving a verified result.
The important quantity in this analysis is the effec-



tiveness, E;, of each individual thought experiment. A
theorem is proved which indicates the order in which
thought experiments should be performed based on ef-
fectiveness. Estimation of effectiveness i1s discussed.

Thought Experiments

The purpose of this section is to describe the steps
in the thought experiment methodology in a brief,
straightforward way. The thought experiment method-
ology has been described in a more formal, mathemat-
ical manner elsewhere[Hibler & Biswas 1989].

The thought experiment problem solver (TEPS)
which we have implemented uses a qualitative reason-
ing system based on Forbus Qualitative Process The-
ory [Forbus 1984; Hibler & Biswas 1992a); however,
thought experiment methodology is very flexible. The
purpose of this paper is to analyze this methodology
and not any particular implementation. We will men-
tion some other possibilities for implementation as we
discuss the steps of the thought experiment process.

Simplification

The first step in a thought experiment involves simpli-
fication. Simplifications are problem transformation
rules provided to the problem solver by the system de-
signer. Some simplifications rules are domain specific;
others are domain independent. Practical simplifica-
tion strategies and a partial catalog of useful simplifi-
cations are presented in [Hibler 1992].

As an example of a simplification, the thought exper-
iment mentioned in the introduction used Population
Reduction. The Population Reduction simplification
maps any problem specification with multiple identi-
cal objects to a problem specification with only two
objects. This state is simpler because there are fewer
variables involved, and it is computationally much eas-
ier to determine the time evolution of the behavior of
the system.

Another example of a stmplification is the Simple
Stereotype method. Simple stereotypes are easily built
into modules describing objects or processes. They
represent simpler versions of the object or process.
Other examples of simplifications which have been im-
plemented in TEPS include Monie Carlo, Combined
Change, Variable Blocking and Superposition. Monte
Carlo simplification i1s based on randomly sampling
the state graph. Combined Change samples the state
graph based on the way variables change. Variable
blocking is a method for ignoring variables thought
to be irrelevant. Superposition combines results from
separate subproblems but has been implemented only
for special cases. Some other possible simplifications
which have not been implemented are discussed in [Hi-
bler 1992).

Many abstraction techniques developed by others
could be considered as simplifications in our sense.
If heuristic verification is used with these techniques
they might be applied in cases where the validity

of the abstraction is questionable. Examples include
Ontological Perspective[Falkenhainer & Forbus 1990],
Structural Consolidation|Weld & Addanki; Falken-
hainer & Forbus 1990], Temporal Abstraction[Kuipers
1987], and Aggregation[Weld 1986]. The Exaggeration
method of Weld[Weld 1988] can definitely be consid-
ered a simplification in our sense.

Solution

The next step in a thought experiment involves “solv-
ing” the simplified model. This means that the prob-
lem solver must contain a reasoning engine which takes
a problem specification and reasons about it to produce
some “results”.

The TEPS Reasoning Engine TEPS takes as in-
put a specification of a qualitative state of a physical
system. A qualitative state is a collection of qualita-
tive values, one for each of the variables pertaining to
the system. Qualitative values consist either of special,
qualitatively significant landmark values or of intervals
between two adjacent landmark values[Forbus 1984].

The dynamical behavior of the system is described
by direct or indirect influences which can cause changes
of qualitative state. They correspond roughly to quali-
tative versions of differential equations and qualitative
versions of functional relationships.

Given a problem specification in TEPS we can sim-
ulate the time evolution of the system by generating a
graph of qualitative states which can be reached from
the original state. This is known as a reachable envi-
sionment.

Other Reasoning Engines Other reasoning en-
gines could be used as the basis for a thought experi-
ment problem solver. Examples include not only other
qualitative reasoning systems such as the of Kuipers
[Kuipers, 1986] or de Kleer and Brown[de Kleer &
Brown 1984], but also numerical simulation systems.

For a numerical reasoning system the input would
consist of the initial state and the dynamical equa-
tions. The result would consist of the entire numerical
simulation of the system’s trajectory in phase space.

Description of Results The thought experiment
problem solver is designed to answer specific equations
about a physical system given an initial state for that
system. We are thus not concerned about the output of
the reasoning system directly because it usually does
not constitute an answer to a question. What does
constitute a possible answer is specified by some de-
scription function, D. D is sometimes called a descrip-
tion basis. We will assume that any query only has a
finite number of possible answers. D can be thought
of as a function which classifies the results produced
by the reasoning engine into one of a finite number of
categories, one for each possible answer. Thus even
if our reasoning engine uses numerical simulation the
description of the results is qualitative.



In the example involving charge placed in a conduc-
tor the description function takes the output of the
problem solver and categorizes it by giving a list of re-
gions which contain a nonzero amount of charge in the
final state.

TEPS contains a library of description functions;
however, a description function can also be input for a
particular problem.

Conjecture

A conjecture is a guess about the description of the
result of the original problem based on the solution
obtained on the simplified version of the problem. We
will assume in this paper that the conjecture is always
that the description function classifies the result of the
simplified problem the same way that it would have
classified the result of the original problem. In other
words, the same description is produced.

Verification

Verification can be rigorous or heuristic. It could even
be empirical. Rigorous verification requires establish-
ing a formal proof that the conjecture is true. This
is usually difficult. Empirical verification consists of
comparing the predictions with what actually occurs
in the real world. Often, this approach is not practi-
cal. The most common type of verification is heuristic.
With this type of verification other simplifications are
tried, and the resulting conjectures are compared with
the original conjecture. If they agree, we accept the
conjecture as a reasonable belief.

The Validity of Thought Experiments

The first concern of our analysis is the validity of
thought experiments. Do they, in fact, give the correct
answer? Our certainty in any particular case will de-
pend on the verification method used. If exact verifica-
tion is available then we can be sure whether the result
is correct. More has been said about exact verification
elsewhere[Hibler 1992]. Many uses of thought exper-
iments involve heuristic verification. Heuristic verifi-
cation seems intuitively reasonable; however, we need
to clarify some of the ideas behind 1t. In order to do
this, we explore a probabilistic model of heuristic veri-
fication, and determine the probability that a thought
experiment is correct given that it is heuristically ver-
ified. From this we determine the actual requirement
for heuristic verification to be useful. We also examine
the effect of independent versus dependent confirma-
tion and of fine versus coarse descriptions on validity.

Probabilistic Models

To create a simple model of the thought experiment
process we make several assumptions.

A probabilistic model requires the definition of a
problem space. Let S be the set of all problems which
the problem solver with 1ts particular library of pro-
cesses will accept. We will assume that we sample

the problems using some fixed probability distribution.
The probability distribution we use is left implicit and
is not specified in the notation. The key assumption is
that the probability distribution is fixed. Based on this
sampling, we can discuss the relative frequency with
which events which are functions of specific problems
occur and associate probabilities with these events. In
a like manner we can define probabilities on any subset
of S.

Consider any simplification method together with its
associated conjecture and verification methods. When
these methods are applied to a randomly selected prob-
lem from the problem space we obtain a thought ex-
periment which we can characterize probabilistically.

A key assumption states that solving a problem
consists of performing separate, independent thought
experiments until one is verified. This independent
thought experiment assumption implies that we are ig-
noring the use of complementary models and inheri-
tance in this analysis. Since the use of additional infor-
mation by inheritance in general helps the performance
of the problem solver it is safe to say that the simple
analysis provides a conservative estimate of complex-
ity of the problem solving task, and, in most cases, the
actual results will be better.

Correctness Probability

Assume that the thought experiment process uses s
simulations whose results are compared. Our descrip-
tion of the results classifies those results into n + 1
possible categories. One of those categories is correct.
In other words, if we had applied the classification to a
full simulation of the original problem the result would
have been in that category. The other n categories are
wrong. We use small letters ¢ and wy ... w, to denote
the correct answer and the n wrong answers. Let C de-
note the event that all s simulations have the correct
answer. Let A denote the event that all s simulations
have the same answer. Let W denote the event that
all s simulations have a wrong answer. We indicate
intersections of the above events by writing the letters
together.

The thought experiment is heuristically verified if all
s simulations have the same answer. Thus the proba-
bility of interest is P[C | A], the probability that the
answer is correct given that all simulations agree. We
know that

P[C | 4] = PC]/P[A]

If the simulations agree they must obviously agree
and be correct or agree and be wrong. These possibil-
ities are disjoint. Thus P[A] = P[AC] + P[AW]; but
P[AC] = P[C] so we can rewrite P[C | A] as

P[CIA] = 1/(1+ R) (1)

where

R = P[AW]/P[C]. (2)



The smaller R is, the better the accuracy of our
thought experiment; the larger R is, the worse the ac-
curacy.

To obtain more insight we analyze the components
of R. Let a be any answer, either the correct answer ¢
or any of the wy ... w, wrong answers. The probability
of getting answer a in all s simulations is

Pila ] (0)a] Pyla | (1)a] Psla | (2)a]... Psla | (s — 1)d]

The notation P;[a | (j)a] denotes the probability
that we obtain result a on simulation 7, having had (7)
a’s on all the previous j simulations. We call this the
probability for a confirmation of answer a. Pla | (0)a]
is just Pla]. Using this formula we obtain

P[C]= Pile] (0)c]... Pile | (s — 1)¢] (3)

PlAW] = Pilwr | (Qwi]... Ps[wr | (s — Dwy] (4)
+ Pilws | (0)ws]. .. PsJws | (s — 1)wy]

+ Pilwn | (O)wy] ... PsJw, | (s — Dwy].

Using equations 3 and 4 we can rewrite equation 2
as a sum of products of ratios of probabilities. It is
convenient to write 2 as

R=ri+4+ri+.. . +r) (5)

where r; is the geometric mean of Pfwy | (i —
Dwg]/Bile | (¢ — 1)¢] over the different simulations.
lLe.

re = ((Prlwg | (0)w]/Pife | (0)e]) ... (6)
(Pslwr | (s = Dwi]/Pylel(s = De])/?

We must be careful to note that ry depends on s.

Next, let us assume r > ry so there exists an upper
bound on the rg ratios for all s. In that case R < nr*
so equation 1 becomes

PIC | 4] > 1/(1 4 nr*) (7)

This equation is sufficiently important that we reit-
erate what the quantities mean in words. A thought
experiment is performed for which there is 1 right an-
swer and n possible wrong answers. The thought ex-
periment is verified using heuristic verification. which
means that a total of s different simulations agree.
P[C | A] is the probability that the answer is correct
given that all s simulations agree. r is a type of bound
on the probability of obtaining any single wrong answer
versus the probability of obtaining the right answer.

This model demonstrates certain basic points about
thought experiments which we discuss below.

Heuristic Verification Requirement

The conditions for equation 7 to hold are so impor-
tant that we express them as the heuristic verification
requirement:

Heuristic Verification Requirement:

A sufficient requirement for the heuristic verifica-
tion method to work is that on the average over
all simulations the probability for a confirmation
of the correct answer be greater than the probabil-
ity for a confirmation of any single wrong answer
by some fixed amount.

(The average mentioned is the geometric mean.)

If we assume that the heuristic verification require-
ment is satisfied then equation 7 holds and r < 1. This
implies that the probability that the thought exper-
iment 1s correct 1s bounded from below by a mono-
tonically increasing function of the number of success-
ful verifications. In fact, given enough verifications
P[C'| A] will be arbitrarily close to 1.

On the other hand if even one of the geometric means
in equation 5 is bounded from below by a quantity
greater than one, then for large enough s, additional
verifications make P[C | A] worse and not better. If
some of the 7 are one and any others have an upper
bound less than one then P[C | A] eventually stabilizes
at a value beyond which no improvement is possible
with additional verifications.

Dependent Versus Independent
Confirmation

The confirmation probabilities Pila | ( — 1)a] will re-
duce to F;la] if each simulation, i, used is indepen-
dent of the previous (i — 1) simulations. This is of-
ten not the case, however. The simulations used in
heuristic verification are often simulations for models
produced by less extreme versions of the same simplifi-
cation method. The production of an answer, a, using
one version might be correlated with the production of
a by another version. This is why the confirming P;
must be expressed in terms of conditional probabilities.

If heuristic verification uses less extreme versions of
the same simplification method to verify answers then
how might the conditional probabilities for the right
and wrong answers behave? First, it is very plausi-
ble to believe that Pic | (i — 1)¢} is very close to 1 if
i > 1. In this case the preceding (i — 1) simulations
have produced correct answers. The ith simulation in-
volves a more realistic (less simplified) model than the
preceding ones and it is based on the same type of
simplification which produced correct results in these
cases. Thus it would be expected to produce a correct
answer. Second, Pifwg | (1 — 1)wy] should eventually
dechine as 7 increases simply because the models be-
come more realistic as i increases. Unfortunately the
correlation produced by using the same method might
make this decline slow.

Fine Versus Coarse Descriptions

A last consideration concerns the question of whether"
a coarse or a fine description is more reliable. The
explicit factor of n In equation 7 suggests that the
smaller the number of alternatives in our description



of results the larger P[C | A] is. This assumption
is somewhat dangerous because r will depend on n
also. For example, assume n = 3 and each simula-
tion has the same probabilities: Ple] = 3/9, Plwy] =
Plws] = Plws] = 2/9. If we halve the number of cat-
egories by combining ¢ with w; and we with ws we
obtain Pl¢’] = 5/9, Plw}] = 4/9, and n = 1. In the
first case, r = Plw;]/Plc] = 2/3; in the second case
r = Plw{]/P[c'] =4/5. Any raising of » dominates the
lowering of n if s is high enough. On the other hand,
if s i1s small enough then coarser categories are better.
For example, if s = 1 then P[C | A] is just Ple] and
when categories are combined it is always true that
Plc’] > P[e] so coarser categories are better.

Efficiency of Thought Experiments

The next issue after correctness of thought experiments
is their efficiency compared to a direct solution of the
problem. We analyze thought experiments in terms
of the expected time, Tg, for achieving a verified re-
sult. From this we prove a theorem showing how to
achieve maximum efficiency. We then derive upper
bounds on the probability that a thought experiment
fails to be verified and on the average time required
for a thought experiment. We next describe how to es-
timate efficiency parameters and give a heuristic rule
for maximizing efficiency. Finally, we discuss practical
efficiency issues.

Time Requirements

Let T), be the total time required for the nth thought
experiment. This time includes the time required for
simplification, conjecture, and most importantly, the
time required for verification. Verification may require
a considerable amount of time since it usually involves
solving at least one other simplified model. Let P, be
the probability that the nth thought experiment fails.
We assume these probabilities are independent. Thus
we assume thought experiments are not only function-
ally, but also statistically independent. With these as-
sumptions, the expected time, Tg, required for a suc-
cessful thought experiment is

Te =Ty +ToPy + T3P Py + TyP\PyPs + ... (8)

Thus, T depends on the whole sequence of thought
experiments which might be performed.

The probability, Pp, that the problem solver fails to
obtain any verified solution is just

Pp =P Py... Py, (9

where n is the number of possible thought experi-
ments which may be performed.

Let us briefly consider the meaning of equations 8
and 9. If there were an infinite series of possible
thought experiments n would approach infinity. If each
of the P; were bounded from above by a number less
than 1 then Pp would approach zero. In this case,
we would expect the problem solver to always obtain

a verified solution. Since we do not actually have an
infinite series the problem solver may fail. Tg repre-
sents the average time taken to either obtain a verified
solution or to fail.

Thought Experiment Ordering
Our first application of equation 8 for Tx is to prove
the thought experiment ordering theorem.

Let the time required to solve the problem by di-
rect qualitative simulation be S,; we define the ef-
fectiveness, F;, of a thought experiment to be E; =
(S./T;)(1 — P;). The significance of this definition will

be seen later.
Thought Experiment Ordering Theorem

A sequence of independent thought experiments
will have a mintmum expected time for achieving a
verified resull if the sequence is performed in order
of effectiveness from most effective 1o least effec-
tive.

Proof:

Consider thought experiment 7 and 7 + 1 which are
adjacent in the sequence for T used in equation 8.
If we interchange the order in which these experiments
are performed the only terms in the series which change
are the terms involving T; and Tiy;.

Tr(original) = Ty(Py ... Pi_1)+Tiy (P ... Pisy )P+ R

Tg(exchanged) = Tip(Pr...Pio1)+

Ti(P1...Pi_)Pis1 + R

By algebraic manipulation we discover that
Tr(exchanged) <  Tg(original) if and only if
(1/Tig1)(1 = Piga) > (1/T;)(1 — P;). Multiplying by
S, we obtain the following exchange lemma:

Exchange lemma: Tg(ecxchanged) < Tgloriginal) if
and only if Fypq > F;.

We prove the ordering theorem by contradiction. If
an optimal sequence were not in the order given by the
theorem then by the exchange lemma we could improve
the sequence. This would contradict the assumption
that the sequence was optimal. Q.E.D.

Upper Bounds

Probability of Failure First, let us assume that we
employ only simplification methods which are useful.
If we have a finite number of simplifications, we have a
finite number of P; representing probability of failure.
One of these P; has a maximum value; call it P. Any
simplification method which produces thought experi-
ments which always tend to fail verification (P; = 1) is
dropped from a problem solver as useless. Therefore,
P is an upper bound on the probability of failure of any
simplification and this upper bound is less than one.
We call this the usefulness assumption, equations 10,
11




P <P (10)
P<1 (11)

The usefulness assumption provides an upper bound
on the probability of failure, Pp, of a thought experi-
ment given in equation 9.

Pp < P" (12)

As pointed out earlier, assumption of 10 and 11 guar-
antees that as the number of thought experiments in-
creases, the probability of failure, Pp, may be made as
small as we please.

Average Time Next, let us determine an upper
bound for Tg. This will depend on a bound for the
T; as well as a bound for the P;. We assume that for
all ¢,

T, <T. (13)

There might be some thought experiments which
could go on forever without reaching a conclusion. This
would be due to the fact that the qualitative simulation
did not terminate. In practice any thought experiment
which goes on too long can be terminated and verifi-
cation considered to have failed. Thus assumption 13
is, in fact, acceptable.

Given equations 10, 13 and the fact that all quan-
tities are positive, an upper bound for T 1s T <
T+ TP+ TP?+ . ... This is not an infinite series, but
it 13 approximated by an infinite series if many differ-
ent simplifications are possible. Furthermore, since all
terms are positive the infinite series is certainly an up-
per bound. We have an ordinary geometric series and
since P < 1 it converges. Thus

Tp <T/(1-P). (14)

The improvement ratio over straight simulation is
S,/Tg. Using 14 we have a lower bound on this of
Sof/Tr > (S,/T)(1 — P). This bound is just an effec-
tiveness calculated using 7', and P; thus, it provides us
with an interpretation of the effectiveness of a thought
experiment. The significance of the effectiveness, £;,
of thought experiment ¢ is that if every thought ex-
periment, k, is no worse than the given experiment, 1,
(So/Ty > S,/T;, and Py < P;) then the thought exper-
iment problem solver is faster than straight simulation
by a factor of at least F;.

Estimation of Parameters

Can we obtain estimates for parameters such as P; and
T; which characterize thought experiments? This is
one of the most important issues for practical applica-
tions. One approach is to simply assume various values
for these parameters for the sake of theoretical analy-
sis. Another approach is to attempt to make empirical
estimates for them even if they are crude.

In order to make empirical estimates, we must dis-
tinguish between specific thought experiments which

are attempts to solve unique problems and the simpli-
fication methods which are used in the thought exper-
iments. Any specific thought experiment either suc-
ceeds or it doesn’t. If we repeat it we always get the
same result. A simplification method on the other
hand, may produce a verifiable resnlt if used in one
thought experiment but not in another. I we have
enough experience with a thought experiment problem
solver we can collect rough statistics to indicate the
frequency with which a given simplification method is
useful in giving verifiable results. We can also estimate
the time improvement ratio S,/7; for thought experi-
ments using a given simplification. The estimates are
crude because the success of a simplification method
may depend on the type of problem, i.e., the charac-
teristics of the individual problem space. If the prob-
lem solver has not encountered a similar type of prob-
lem before, the frequency based estimate may not be
very reliable. Another reason for the estimates being
crude is that previously encountered problems may not
constitute a random or sufficiently large sample of the
problem space.

Next, let us make some estimates of 7; in terms of
more basic quantities. A thought experiment involves
a simplification and a generalization step. The sim-
plification step involves finding a simplified version of
the problem and performing a qualitative simulation
on that simplified version. Finding a simplified ver-
sion takes a constant amount of time which is small
compared to the time required to perform the qual-
itative simulation. The generalization step involves
making a conjecture and verifying that conjecture.
Making a conjecture takes a constant amount of time
which s small compared to the tune required for a
gualitative simulation. Ignoring these small quantities
T, = S, + V;. S; is the time required for qualitative
simulation, and V; is the time required for verification.

To make our estimate for 7, more useful we must
make some rough estimates concerning verification.
Verification usually involves performing at least one
additional qualitative simulation and comparing the
results to the previous simulation. Making the simpli-
fication and comparing the results would take a small
amount of time compared with S;. OQur estimate for
1; becomes T; = nS! where n is the number of qual-
itative simulations performed and S/ is the average
time taken for each. A reasonable estimate for n is
2. The results of the original simulation are checked
by comparing with one additional simulation. In some
cases n could be 1. This would mean that the re-
sult would be compared with the results from previous
failed thought experiments for the same problem. Tt
would also make analysis more difficult as the thought
experiments would no longer be independent. Whether
a thought experiment succeeded or failed would depend
on the ordering of thought experiments. In some cases
the simplification method might specify an n greater
than 2 but these are probably rare. Considering both




these effects an estimate of 2 seems reasonable. We
will assume T; = S7; the analysis would not be greatly
different if 3 or some other small number were chosen.

The effectiveness of a thought experiment becomes
E; = (So/SH(1 = P;)/2. S,/S] can be considered the
average amount of simplification achieved by the sim-
plification method used in the ith thought experiment.
It represents an average time improvement factor in us-
ing the two simplified simulations in the thought exper-
iment versus simulating the original problem. This pa-
rameter is important because we can often rank simpli-
fication methods by (S,/5!). Examination of two sim-
plification methods will often indicate which is more
extreme and should therefore yield a larger value of
(S,/5!). On the other hand, knowledge required to es-
timate P; may be more difficult to obtain. In this sit-
uation, the thought experiment ordering theorem sug-
gests the following heuristic ordering rule:

Heuristic Ordering Rule:

If independent simplification methods can be
ranked by degree of simplification, but no wnfor-
mation 1s available about verification probabilities
then a thought experiment problem solver should
try the simplification methods in order of degree
of simplification from strongest to weakest.

If S is an upper bound on the time any of the qual-
itative simulations might take then we can estimate
equation 14 by:

Tg < 25/(1 - P). (15)
We want the thought experiment method to take
less time than solving the original problem directly by
qualitative simulation. If qualitative simulation of the
original problem takes time S,, we require S,/Tg > 1.
This means that we would like our upper bound to be
such that (S,/S)(1 — P)/2 > 1; perhaps much greater
than 1. Since S is an upper bound on the S;, S,/S is
a lower bound on the amount of simplification used in
any individual thought experiment.

Practicality

Are thought experiments practical? Unless absolute
verification 1s available even a successful thought ex-
periment provides only a reasonable conclusion and
not a certain one. Thus, this method will be used only
when direct simulation is not feasible, usually because
it would take too long. This is, in fact, the case with
most real world problems. In order for the thought
experiment problem solver to be worthwhile we must
be able to find simplifications which have an effective-
ness which is greater than one, preferably much greater
than one. In order to achieve this we need an extreme
degree of simplification with reasonable probability of
verification. For example, if probability of verification
is at least 1/5 then P is 4/5 and we need a degree of
simplification (S,/S) > 10. Experience with TEPS
Is too limited to take any estimates very seriously;

this 1s a possibility for future research. With TEPS
so far, the values for P are normally less than one half.
It seems likely that simplifications would be dropped
from a problem solver if they fail verification in the
great majority of cases.

It might be argued that we need exhaustive statis-
tical testing to determine that the effectiveness for a
given simplification 1s adequately high to be of use.
This 1s not true if the degree of simplification provided
by the simplification method is high enough. In that
case, demonstration of even a few successful verifica-
tions makes it reasonable to believe that E; is large
enough. For example, if (S,S;) > 100 then E; > 1
if (1—P;) > 0.02;if (S,/5;) > 1000 then E; > 1 if
(1= P;) > .002; if (5,/S;) > 1,000,000 then E; > 1 if
(1—P;) > .000002. Since (1 — F;) represents probabil-
ity of successful verification even a very few successful
examples indicate that the effectiveness is high enough
if the degree of simplification is really large.

Conclusions

We have provided a preliminary theoretical framework
for the thought experiment methodology. This frame-
work combined with the empirical experience with
TEPS suggests that this is a viable technique. It does
not replace conventional methods of qualitative reason-
ing but rather augments them. Further development
of this technique seems desirable.

There are many possibilities for future development.
Analysis of known simplification techniques and devel-
opment of new ones is an important area of research.
Theoretical analyses of simplifications should be at-
tempted 1if possible and statistics on practical effects
should be obtained. On a practical side, it would be
useful to explore thought experiment problem solvers
as a basis for tutoring systems. The simplified model
automatically generated by the problem solver could
be a basis for helping students understand the original
problem.
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