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Abstract

The thought experiment methodology is a re-
cently developedtechniquefor qualitativereason-
ing. Thoughtexperimentsinvolve four main steps:
(i) simplification of the original problem, (ii) so-
lution of the simplified problem, (iii) conjecture
the result of the original problem basedon the
solution of the simplified version,arid finally (iv)
verification that the conjectureis correct. This
methodologyhasbeenimplementedand hasbeen
applied successfullyto problems involving static
electricity, themotion of chargedpendulums,fluid
flow, and thermodynamiccycles. The purposeof
this paperis to analyzethis techniqueusingprob-
abilistic models

Introduction
Imaginary, simplified situations are often analyzedby
human problem solvers in order to understandthe
principlesbehind more realistic situations. In physics,
this techniqueis sometimesreferred to as a thought
experiment{Prigogine~ Stengers1984].

As art example of a thought experiment, consider
how to solvethe following problem.

A certain amount of charge is placed on a con-
ductor. What ultimately happensto the charge?
Where does it go?

There are sophisticatedways to solve this prob-
lem, but a beginning physics student can often
determinethe solution in the following way.

1. We know that evena small amount of charge
in the macroscopicsenseinvolves a huge nuni-
her of particles. Despite this, we simplify the
problemto two chargedparticles.

2. Using the fact that like chargesrepel andother
elementaryknowledge, we solve the problem
for two chargedparticles. We concludethat the
particlesseparateuntil they reachthesurfaceof
the conductor. If chargecannot leave the con-
ductor (no sparks)the answerto the simplified
problemis that the chargemovesto the surface
andstaysthere.

3. We conjecture that the solution to the sim-
plified problem is essentiallythe same as the
solution to the original problem.

4. The previous step produces a result but we are,
perhaps,uncomfortablewith it. Did we over-
simplify’? Just to check, we askourselvesif it
would makeanydifferenceif we hadthreeparti-
cles or four. Solving theserelatedproblems we
discoverthat the resultwasthesame.With this
amount, of verification we feel that the result
very probablyapplieseven to a large numberof

particles.

The above exampleis an informal thought experi-
mnent. It involved the following four steps: siinplifica-
lion, solution, conJecture,and verification. Since the
verification methodemployedin this casewasnot rig-
orousit is termed heuristicverification.

Wehaveformalizedthis method arid useit for qual-
itative physics problem solving. It has been imple-
merited in Prolog in asystemcalledTEPS[Hibler 1992;
Hibler & Biswas 1992b; Flibler & Biswas 1989]. TEPS
standsfor Thougut ExperimentProblemSolver.

In this paperwe analyzethe operationof a thought
experiment problem solver. We will construct some
elementary,probabilistic modelsof the thought exper-
iment problemsolving processanddeterminesomeof
its characteristics.

First, we describethe thought experiment method-
ology in more detail.

Next, we consider a thought experiment for which
there is oneright answerandri possiblewrong answers.
The thought experimentis verifiedusing heuristicver-
ification. which meansthat a total of s different sim-
ulations agree. Weanalyze the probability, P[C A],
that the answeris correctgiven that all ssimulations
agree.This might be termedthe validity of the heuris-
tic verification. This analysis allows us to provide a
condition for heuristic verification to work, to discuss
the expectedbehaviorof heuristicverification, and to
considerthe effect of fine versuscoarsedescriptions.

Finally, we analyze thought experimentsin termsof
the expected time, ~ for achievinga verified result.
The important quantity in this analysisis the dice-



tiveness,E~,of eachindividual thought experiment.A
theorem is proved which indicatesthe order in which
thoughtexperimnentsshould be performedbasedon ef.
fectiveness.Estimation of effectivenessis discussed.

Thought Experiments
The purposeof this section is to describethe steps
in the thought experiment methodology in a brief,
straightforwardway. The thoughtexperimnientmethod-
ology hasbeendescribedin a more formal, mathemat-
ical mannerelsewhere[Hibler& Biswas 1989].

The thought experiment problem solver (TEPS)
which we haveimplementedusesa qualitative reason-
ing systembasedon ForbusQualitative ProcessThe-
ory [Forbus 1984; Hibler & Biswa.s l992a~however,
thought experimentmethodologyis very flexible. The
purposeof this paper is to analyzethis methodology
andnot any particular implementation.We will men-
tion someother possibilities for implementationaswe
discussthe stepsof the thought experimentprocess.

Simplification
The first stepin athought experimentinvolves simpli-
fication. Simplifications are problem transformation
rules provided to theproblemsolverby thesystemde-
signer. Somesimplifications rules are domain specific;
others are domain independent. Practical simplifica-
tion strategiesand a partial catalogof useful simplifi-

cationsarepresentedin [Hibler 1992].
As anexampleof asimplification, the thoughtexper-

imenit mentionedin the introduction used Population
Reduction. The Population Reductionsimplification
mapsany problem specificationwith multiple identi-
cal objects to a problem specification with only two
objects. This state is simpler becausethere are fewer
variablesinvolved, amid it is computationally mucheas-
ier to determinethe time evolution of the behaviorof
the system.

Another example of a simplification is the Simple
Stereotypemethod. Simple stereotypesareeasily built
into modules describingobjects or processes. They
representsimpler versions of the object or process.
Other examplesof simplifications which havebeeninn-
plementedin TEPS include Monte Carlo, Combined
Change, Variable Blockingand Superposition..Monte
Carlo simplification is based on randomly sampling
the stategraph. CombinedChangesamplesthe state
graph basedon the way variables change. Variable
blocking is a method for ignoring variables thought
to be irrelevant. Superpositioncombinesresults from
separatesubproblemsbut hasbeenimplementedonly
for special cases. Someother possiblesimplifications
which havenot beenimplementedarediscussedin [Hi-
bIer 1992].

Many abstraction techniques developedby others
could be consideredas simplifications in our sense.
If heuristic verification is usedwith these techniques
they might lie applied in caseswhere the validity

of the abstraction is questionable.Examplesinclude
Onitological Perspective[F’alkenhainer& Forbus 1990],
Structural Consolidation[Weld & Addanki; Falken-
hairier & Forbus 1990], TemporalAbstraction[Kuipers
1987], arid Aggregation[Weld1986]. The Exaggeration
methodof Weld[Weld 1988] can definitely be consid-
ereda simnphificationin our sense.

Solution

The nextstep in a thought experimentinvolves “solv-
ing” the simplified model. This mneansthat the prob-
1cm solver must containareasoningenginewhich takes
a problem specificationamid reasons aboutit to produce
some“results”.

The TEPS ReasoningEngine TEPS takes as in-
put a specification of a qualitativestate of a physical
system. A qualitativestate is a collection of qualita-
tive values,onefor eachof the variablespertaining to
thesystenn.Qualitativevaluesconsisteither of special,
qualitatively significant landmarkvaluesor of intervals
betweentwo adjacentlandmark values[Forbus1984],

The dynamical behavior of the system is described
by director indirect influenceswhichcancausechanges
of qualitativestate.Theycorrespondroughly to quali-
tative versionsof differentialequationsandqualitative
versionsof functional relationships.

Given a problem specification in TEPS we can sim-
ulate the time evolution of the systemby generatinga
graph of qualitative stateswhich can be reachedfrom
the original state. This is known as a reachableenvi-
sionment.

Other Reasoning Engines Other reasoningen-
ginescould be usedas the basisfor a thought experi-
ment problem solver. Examplesinclude riot only other
qualitative reasoningsystemssuch as the of Kuipers
[Nuipers, 1986] or de Kleer and Brown[de Kleer &
Brown 1984], bitt also numericalsimulation systemns.

For a nummierical reasoningsystem the input would
comisist of the initial state arid the dymiamical equa—
tiomis. The resultwould consist of theentire numerical
simulation of the system’strajectory in phasespace.

Description of Results The thought experinnent
problem solver is designedto answerspecific equations
about a physicalsystemngiven an initial statefor that
system. We arethusnot concernedaboutthe output of
the reasoning system directly because it usually does
not constitute an answer to a question. What does
constitute a possible answeris specified by somede-
scriptioii function, I). D is sometimescalled a descrip-
tioni basis. We will assume that any query only hasa
finite number of possibleanswers. D can be thought
of as a function which classifiesthe results produced
by the reasoningengineinto oneof a finite number of
categories,one for each possible answer. Thus even
if our reasoningengineusesnumericalsimulation the
descriptionof the results is qualitative.



In the exampleinvolving chargeplaced in a conduc-
tor the description function takes the output of the
problem solver and categorizes it by giving a list of re-
gionswhich contain a nonzeroamountof chargein the
final state.

TEPS contains a library of descriptionfunctions;
however, a description function can also be input for a
particular problem.

Conjecture
A conjecture is a guessabout the description of the
result of the original problem based on the solution
obtained on the simplified version of the problem. We
will assume in this paper that the conjecture is always
that the description function classifies the result of the
simplified problem the same way that it would have
classified the result of the original problem. In other
words, the same description is produced.

Verification
Verification can be rigorous or heuristic. It could even
be empirical. Rigorous verification requires establish-
ing a formal proof that the conjecture is true. This
is usually difficult. Empirical verification consists of
comparing the predictionswith what actually occurs
in the real world. Often, this approachis not practi-
cal. Themost commontype of verification is heuristic.
With this type of verification other simplifications are
tried, and the resulting conjectures are compared with
the original conjecture. If they agree, we acceptthe
conjecture as a reasonable belief.

The Validity of Thought Experiments
The first concern of our analysis is the validity of
thoughtexperiments.Do they, in fact, give the correct
answer? Our certainty in any particular casewill de-
pendon theverification methodused.If exact verifica-
tion is availablethen we can be surewhetherthe result
is correct. More has been said about exact verification
elsewhere[Ilibler1992]. Many usesof thought exper-
iments involve heuristic verification. Heuristic verifi-
cation seemsintuitively reasonable;however,we need
to clarify some of the ideas behind it. In order to do
this, we explorea probabilistic model of heuristicveri-
fication, and determine the probability that a thought
experimentis correct given that it is heuristically ver-
ified. From this we determinethe actual requirement
for heuristic verification to be useful. Wealso examine
the effect of independent versus depemident confirma-
tion and of fine versus coarse descriptions on validity.

Probabilistic Models
To create a simple model of the thought experiment
process we make several assumptions.

A probabilistic model requires the definition of a
problemspace.Let S be the set of all problemswhich
the problemsolver with its particular library of pro-
cesseswill accept. We will assumethat we sample

the problems using some fixed probability distribution.
The probability distribution we use is left implicit and
is not specified in the notation. The key assumption is
that the probability distribution is fixed. Based on this
sampling, we can discuss the relative frequency with
which events which are functions of specific problems

occur and associate probabilities with these events. In
a like manner we cant define probabilities on any subset
of S.

Consider any simplification method together with its
associated conjecture and verification methods. When
these methods are applied to a randomly selected prob-
lem from the problemnspacewe obtain a thought ex-
periment which we can characterize probabilistically.

A key assumption states that solving a problem
consistsof performing separate,independentthought
experimentsuntil one is verified. This independent
thought experimentassumptionimplies that we are ig-
noring the useof complementarymodels and inheri-
tancein this analysis.Since theuseof additional infor-
mation by inheritancein generalhelpstheperformance
of the problenn solver it is safe to say that the simple
analysisprovidesa conservativeestimateof complex-
ity of the problemsolving task,and,in mnost cases,the
actual resultswill be better.

Correctness Probability
Assume that the thought experiment processuses.s
simulations whose results are compared. Our descrip-
tion of the results classifies those results into n + I
possible categories. One of those categories is correct.
In other words, if we hadappliedtheclassificationto a
full simulationof theoriginalproblemthe resultwould
have been in that category. The other mm categories are
wrong. Weusesmall letters c and w

1
. . . w,~to denote

the correct answer and the mm wrong answers. Let C de-
note the event that all s simulations have the correct
answer. Let A denote the event that all s simulations
have the same answer. Let W denotethe event that

all s simulations have a wrong answer. We indicate
intersectionsof the aboveevemitsby writing the letters
together.

The thoughtexperimentis heuristicallyverified if all
s simulations have the same answer. Thus the proba-

bility of interest is P[C I A], the probability that the
answer is correct given that all simulations agree. We
know that

P[C A] = P[C]/P[A]

if the simulations agree they mmiust obviously agree
andbe corrector agreeand be wrong. These possibil-
ities are disjoint. Thus P[A] = P[AC] + P[AW]; but
P[AC] = P[C] so we can rewrite P[C IA] as

where

P[CIA] = 1/(1 + B) (1)

P = P[AW]/P[C]. (2)



The smaller R is, the better the accuracyof our
thoughtexperiment;thelarger B is, the worsetheac-
curacy.

To obtain more insight we analyze the components
of R. Let a be any answer,either thecorrect answerc
or anyof the w

1
. . , w,~wrong answers. The probability

of getting answer a in all s simulations is

Pi[a I (0)a] P
2

[a I (1)a] P
3

[a I (2)a}. . . P
8

[a I (s - 1)a]

The notation P~[a I (j)a] denotesthe probability
that we obtain result a on simulation i, having had (j)
a’s on all the previous j simulations. Wecall this the
probability for a confirmation of answer a. P[a I (0)a]
isjust P[a]. Using this formula we obtain

P[C]=Pi[cI(0)c] ‘~[cI(s—1)c]

P[AW] = Pi[wi I (0)wi]. . . P~[wnI (s — l)wi] (4)

+ Pi[w
2

I (0)w
2

]. . . P
3

[w
2

I (s — 1)w
2

]

+ Pm[wr, I(0)w~]. . .P
3

[w~I (s i)w~].

Using equations3 and 4 we cantrewrite equation 2
as a sum of products of ratios of probabilities. It is
convenient to write 2 as

R=r~+r~+...+r~

where rk is the geometric mean of P~[wk I (i —

1)wk]/Pj[c I (i — 1)c] over the different simulations.
i.e.

= ((Pl[wk I (0)w~]/Pi[c I (0)c])...

(P
3

[wk I (s - 1)wk]/P
3

[cI(s - 1)cD)’~

We must be careful to note that rk dependson s.
Next, let us assume r > rj,, so there exists an upper

bound on the r~,ratios for all s. In that caseR < nr~
so equation 1 becomes

P[CIA]> 1/(1+nrs)

(6)

A sufficient requiremnentfor the heuristicverifica-
tion method to work is that on the averageover
all simulationsthe probability for a confirmation
of thecorrectanswerbegreaterthanthe probabil-
ity for a confirmation of any single wrong answer
by somefixed amount.

(Theaveragementionedis the geometricmean.)

If we assumethat the heuristic verification require-
ment is satisfiedthenequation 7 holdsandr < 1. This
implies that the probability that the thought exper-
innent is correct is boundedfrom below by a nnono-
tonically increasing‘function of the numberof success-
ful verifications. In fact, given enough verifications
P[C I A] will be arbitrarily closeto 1.

(3) On the otherhandif evenoneof thegeometricmeans
in equation 5 is boundedfrom below by a quantity
greaterthan one, then for largeenough s, additional
verificationsmake P[C I A] worse and not better. If
someof the rk are one and any othershavean upper
bound less than one then P[C I A] eventuallystabilizes
at a value beyond which no improvementis possible
with additional verifications.

DependentVersus Independent
Confirmation

(5) The confirmation probabilities P~[a (i — 1)a] will re-
duce to P~[a]if eachsimulation, i, used is indepen-
dent of the previous (i 1) simulations. This is of-
ten not the case, however. The simulations used in
heuristic verification are often simulationsfor models
producedby lessextremeversionsof the saniesimplifi-
cation method. The productionof an answer,a, using
oneversionmight be correlatedwith the productionof
a by another version. This is why the confirming P~
must be expressed in terms of conditional probabilities.

If heuristicverification useslessextremeversionsof
thesamesimplification mnethodto verify answersthen
how might the conditional probabilities for the right

and wrong answersbehave? First, it is very plausi-
ble to believethat P~[cI (i —. 1)c] is very closeto 1 if
i > 1. In this casethe preceding(i — 1) simulations
haveproducedcorrectanswers.The ith simulation in-
volvesa more realistic (lesssimplified) model than tIme
preceding ones amid it is basedon the same type of
simplificatiomi which producedcorrect results in these
cases.Thus it would be expectedto producea correct
answer. Second,P~[wkI (i — 1)wk] should eventually
decline as i increasessimply becausethe models be-
come more realistic as i increases. Unifortumiately the
correlationproducedby usingthe samemethodmight
makethis decline slow.

Fine Versus Coarse Descriptions

A last considerationconcernsthe questionof whether
a coarse or a fine description is more reliable. The
explicit factor of mm in equation 7 suggests that the

smaller the number of alternatives in our description

(7)

This equationis sufficiently importantthat we reit-
eratewhat the quantitiesmeanin words. A thought
experiment is performed for which there is 1 right an-
swer and n possible wrong answers. The thought ex-

perimentis verified using heuristic verification, which
meansthat a total of s different simulations agree.
P[C I A] is the probability that the answeris correct
given that all s simulations agree. r is a type of bound

on the probability of obtaining anysinglewronganswer
versus the probability of obtaining the right answer.

Thismodel demonstratescertainbasicpointsabout
thought experiments which we discuss below.

Heuristic Verification Requirement
The conditions for equation 7 to hold are so impor-
tant that we expressthem asthe heuristicverification
requirement:
Heuristic Verification Requirement:



of results the larger P[C I A] is. This assumption
is soniewhat dangerous because r will depend on n
also. For example, assumen = 3 and eachsimula-
tion has the sameprobabilities: P[c] = 3/9, PNvi] =
I’[wi] = P[w

3
] = 2/9. If we halve the number of cat-

egoriesby combining c with w
1

and w
2

with w
3

we
obtain P[c’] = 5/9, P[w~]= 4/9, and n = 1. In the
first case,r = P[w~]/P[c] = 2/3; in the secondcase
r = P[w~]/P[c’] = 4/5. Any raising of r dominatesthe
lowering of n if s is high enough. On the other hand,
ifs is small enoughthen coarsercategoriesare better.
For example, if s = 1 then P[C I A] is just P[c] and
when categoriesare combined it is always trite that
P[c’] > P[e] so coarsercategoriesare better.

Efficiency of Thought Experiments
Thenext issueafter correctnessof thought experiments
is their efficiency comparedto a direct solution of the
problem. We analyze thought experimentsin terms
of the expectedtime, TE, for achievinga verified re-
stilt. From this we prove a theoremshowinghow to
achievemaximum efficiency. We then derive upper
boundson the probability that a thought experiment
fails to be verified and on time averagetime required
for athought experiment.We nextdescribehow to es-
timate efficiency parametersand give a heuristic rule
for maximizing efficiency. Finally, we discusspractical
efficiency issues.

Time Requirements
Let 7’~ be the total time required for the nth thought
experiment. This time includesthe time requiredfor
simplification, conjecture,and most importantly, the
time required for verification. Verification may require
a considerableamountof time sinceit usually involves
solving at leastone other simplified model. Let P~be

the probability that the nth thought experimentfails.
We assumetheseprobabilities are independent.Thus
we assumnethought experimentsare not only function
ally, but alsostatistically independent.With theseas-
sumptions,the expectedtime, TE, requiredfor a suc-
cessfulthought experimentis

TE=TI +T
2

P
1

+T
3

P
1

P
2

+T
4

P
1

P
2

P
3

+... (8)

Thus, TE dependson the whole sequenceof thought
experimentswhich might be performed.

The probability, ~ that the problem solver fails to
obtain amiy verified solution is just

P~=P
1

P
2

...P,~, (9)

where mm is the number of possible thought expeni
nnentswhich may be performed.

Let us briefly consider the mneamminlg of equations8
and 9. If there were an infinite series of possible
thoughtexperimentsn would approachinfimuty. If each
of the P~were bounded from above by a number less
than 1 then ~ would approach zero. In this case,
we would expect the problem solver to always obtain

a verified solution. Sincewe do not actually have an
infinite seriestime problemnisolver may fail. TE repre-
sents the average time takento either obtain a verified
solution or to fail.

Thought Experiment Ordering
Our first application of equation 8 for ?~jis to prove
the thought experimentordering theorem.

Let the time required to solve the problem by di-
rect qualitative simulation be S~we define the ef-
fectiveness,E~,of a thought experiment to be E~=
(S

0
/Tj)(l — Pt). Thesignificanceof thus definition will

be seen later.

Thought Experiment Ordering Theorem

A sequenceof independentthought experiments
will havea minimumexpectedtimefor achievinga
verified result if the sequenceis performedin order
of effectivenessfrom most effective to least efiec-
live.

Proof:
Considerthought experiment i and i + I which are

adjacentin the sequencefor ‘EE used in equation 8.
if we interchangetheorder in which theseexperiments
areperformedthe only terms in the series which change
are the terms involving Tl~and ~+i.

‘I~(originai) = 2~(P
1

.. . P~
1

)+7i+
1

(P
1

..

Tn(e.rchanged) = ‘1~+n(Pm. . . Pj
1

) +

7i(Em .. .P~
1

)I~~
1

+ R

By algebraic mamiipulation we discover that
‘I~j(exchanged) < TR(original) if and only if

— P~÷
1

)> (I/T)(l — Pt). Multiplying by
we obtain time following exchangelennma:

Exchangelemma: TE(exchanged)< Tj~(original) if
amid only if E

1
+j > E~.

We prove the ordering theorennby contradiction. If
an optimalsequencewerenot in the ordergiven by the
theoremthemi by theexchangelemnmawe couldimprove
the sequence. This would contradict the assumption
that the sequencewasoptinrial. Q.E.D.

Upper Bounds
Probability of Failure First, let us a.ssume that we
employ only siniplificatiomi methodswhich are useful.
If we have a finite number of simnphifications, we have a
finite nunmiber of P~representingprobability of faihmre.
Oneof theseP~hasa maximnumvalue; call it I’. Any
siniphification methodwhich producesthought experi-
mimentswhich alwaystend to fail verification (P~= 1) is
dropped from a problemsolver as useless.Therefore,
P is an upperboundon theprobability of failure of any
simplification amid this tipper bound is less than one.
Wecall this the usefulnssa.5silmption, equations 10,
II.



P

P <1

The usefulness assumption provides an upper bound
on the probability of failure, Pp, of a thought experi-
ment given in equation9.

Pp ~

As pointedout earlier,assumptionof 10 and11 guar-
anteesthat as the number of thought experimentsin-
creases,the probability of failure, Pp, may be madeas
small aswe please.

Average Time Next, let us determine an upper
bound for Tp. This will dependon a bound for time
T~aswell as a boimnd for the P~.We assumnethat for
all i,

There might be some thought experimentswhich
couldgo on foreverwithout reachinga conclusion.This
would bedueto thefact that thequalitativesimulation
did not terminate. In practiceany thoughtexperiment
which goeson too long can be terminated and verifi-
cationconsideredto havefailed. Thus assumption13
is, in fact, acceptable.

Given equations10, 13 and the fact that all quan-
tities are positive, an upper bound for Tp is T~~
T+ TP+ TP

2
+.... This is not an infinite series, but

it. is approximatedby an infinite seriesif manydiffer-
ent simnplificationsarepossible. Furthermore,since all
termsarepositive the infinite seriesis certainly an up-
per bound. We havean ordinary geomnetricseriesamid
simmceP < 1 it converges.Thus

Tp<T/(1—P). (14)

The improvementratio over straight simulation is
5~/77~. Using 14 we have a lower bound on this of

> (S
0

/T)([ — P). This bound is just an effec-
tivenesscalculatedusingT, andP; thus, it providesUS

with an interpretationi of the effectiveness of a thought
experiment. The significanceof the effectiveness,E~,
of thought experiment i is that if every thought ex-
periment,k, is no worsethami the given experiment,i,
(S

0
/Tk > SJTj, amid Pk < P~)therm the thought exper-

imentproblemsolveris fasterthan straight simulation
by a factor of at leastE~.

Estimation of Parameters
Canwe obtain estimatesfor parameterssuch asP~and
Tj which characterizethought experiments? This is
oneof the most importanit issuesfor practicalapplica-
tions. Oneapproachis to simply assumevariousvalues
for theseparametersfor the sakeof theoreticalanaly-
sis. Another approachis to attempt to makeempirical
estimatesfor them evenif they are crude.

In order to makeempirical estimates,we must dis-
tinguish betweenspecific thought experimnentswhich

are attemptsto solveuniqueproblemsamid the simphi-
(10) fication methodswhich are used in the thoughtexper-
(1I~ iments. Any specific thought experimenteither sue-

ceedsor it doesn’t. If we repeatit we always get the
same result. A simimphification metliod on time other
hand, may produce a verifiable result if used in one
thought experiment but not in anothen. If we have

~12~ enoughexperiencewith a thoughtexperimentproblem
solver we can collect rough statistics to indicate time
frequencywith which a givensimplification method is
usefuliii giving verifiable results.We canalsoestimate
the time improvementratio S0/T1for thought experi-
ments usinga given simnpliflcation. The estimatesare
crude becausethe successof a simplification method
may dependon the type of problem, i.e., the charac-
teristicsof the individual problem space. If the prob-
lem solver hasnot encounteredasimilar type of prob-
lem before, the frequencybasedestimatemay not be
very reliable. Another reasonfor the estimatesheimig
crudeis that previouslyencounteredproblemsmay riot
constitutea randonnior sufficiently largesamnpleof the

problemspace.
Next, let us makesonic estimatesof ~ in termsof

more basicquantities. A thought experimentinvolves
a simplification and a generalizationstep. The sim-
plification step involves finding a simplified version of
the problemand performing a qualitative simulation
on that simplified version. Finding a simplified ver-
sion takes a constantannmount of timne which is small
connparedto the time required to perfornn the qua!—
itative simulation. The generalizationstep involves
making a conjecture amid verifying that conjecture.
Making a conjecturetakesa constantamountof time
which is small comparedto the timrme required for a
qualitativesi mnulatiomi. lgnoring thesesmall quantities

= Si + V~.S~is the time required for qualitative

simulation, and %‘~ is the time requiredfor verification.
To nnakeour estimate for T~more useful we must

make some rough estimatesconcerning verification.
Verification usually involves performing at least one
additional qualitative simulation am! connparinmgthe
resultsto time previoussimulation. Making the simnipli—
lication and comparingthe results would take asmall
amount of time comparedwith S~.Our estimatefor
~ becomes‘I’~ = nS~where mm is the number of qual-
itative simulations performed and S~is time average
time taken for each. A reasommableestimnatefor n is
2. The results of the original sinnulation are checked
by comparingwith oneadditional simulation. In some
casesmm could be 1. This would mean that the re-
sult would be comparedwith the resultsfrom previous
failed thonmght experimentsfor the sannie problem. It
would alsomakeanalysismore difficult asthe thought
experimentswould no longerbe independent.Whether
a thoughtexperimentsucceededor failed would depend
on theorderingof thought experiments.In some cases
the simplification method might specify an mm greater
than 2 but theseare probably rare. Consideringboth

(13)



theseeffects an estimateof 2 seemsreasonable. We
will assumeTi = S,~the analysiswould not begreatly
different if 3 or someother small numberwerechosen.

The effectivenessof a thought experimentbecomes
E~= (S~/S~)(1— P~)/2.S

0
/S~can be coimsideredthe

averageamount of simplification achievedby the sim-
plification methodused in the ith thoughtexperiment.
It representsan averagetime improvementfactor in us-
ing thetwo simplified simulationsin thethought exper-
iment versussimulatingthe original problem. This pa-
rameteris importantbecausewe canoftenranksimpli-
fication methodsby (S~/S~).Examinationof two sim-
plification methodswill often indicate which is more
extremeand should thereforeyield a larger value of
(S

0
/S~).0mm the otherhand, knowledgerequiredto es-

timate P~may be more difficult to obtain. In this sit-
uation, the thought experimentordering theoremsug-
geststhe following heuristicordering rule:

Heuristic Ordering Rule:
If independent simplification methods can be
ranked by degree of simplification, but no infor-
mation is available about verification probabilities
then a thought experimentproblem solvershould
try the simplification methodsin order of degree
of simplification from strongestto weakest.

If S is an upperboundon the time any of the qual-
itative simulations might take then we can estimate
equation14 by:

TB <2S/(1 — P).

We want the thought experiment method to take
lesstime than solving the original problemdirectly by
qualitative simulation. If qualitative simulation of the
original problem takes time S

0
, we requireSO/TB > 1.

This means that we would like our upper bound to be
suchthat (S

0
/S)(1— P)/2 > 1; perhaps much greater

than 1. Since S is an upper boundon the S~,Se/S~5
alower boundon the amount of simplification used in
any individual thought experiment.

Practicality
Are thought experimentspractical? Unless absolute
verification is available even a successfulthought ex-
periment provides only a reasonableconclusion and
not a certainone. Thus, this methodwill be usedonly
when direct simulation is not feasible, usually because
it would taketoo long. This is, in fact, the casewith
most real world problems. In order for the thought
experiment problem solver to be worthwhile we must
be able to find simplifications which havean effective-
nesswhich is greaterthan one,preferablymuchgreater
than one. In order to achievethis we needan extreme
degree of simplification with reasonable probability of
verification. For example, if probability of verification
is at least 1/5 then P is 4/5 and we need a degree of
simplification (Se/S) > 10. Experiencewith TEPS
is too limited to take any estimatesvery seriously;

this is a possibility for future research. With TEPS
so far, thevaluesfor P arenormally lessthan onehalf.
It seems likely that sinnplifications would be dropped
from a problem solver if they fail verification in the
greatmajority of cases.

It might be argued that we need exhaustivestatis-
tical testimig to determinethat the effectivenessfor a
givem1 simplification is adequatelyhigh to be of use.
This is not true if the degreeof simplification provided
by the simplification method is high enough. In that
case,demonstrationof evena few successfulverifica-
tions makesit reasonableto believe that E~is large
enough. For example,if (S~S~)> 100 then E~> 1
if (1 — P~)> 0.02; if (S~/S~)> 1000 then E~> 1 if
(1 — P~)> .002; if (S

0
/S~)> 1,000,000then E~> 1 if

(I — P~)> .000002. Since(1 — P~)representsprobabil-
ity of successfulverification evena very few successful
examplesindicate that theeffectivenessis high enough
if the degreeof simplification is really large.

Conclusions
We haveprovidedapreliminary theoreticalframework
for the thought experimentmethodology. This frame-
work combined with the empirical experience with
TEPS suggests that this is a viable technique. It does
not replace conventional methods of qualitative reason-
ing but rather augments them. Further development
of this techniqueseemsdesirable.

Therearemanypossibilities for future development.
Analysis of known simplification techniquesand devel-

(15) opment of new onesis an important areaof research.
Theoretical analysesof simplifications should be at-
temptedif possibleand statistics on practical effects
should be obtained. On a practicalside, it would be
useful to explore thought experimentproblemsolvers
as a basis for tutoring systems.The simplified model
automatically generatedby the problem solver could
bea basisfor helpingstudentsunderstandthe original
problem.
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