Reasoning in Logic about Continuous Systems

Benjamin J. Kuipers
Computer Science Department
University of Texas at Austin

Austin, TX 78712
kuipers@cs.utexas.edu

Abstract

An intelligent agent, reasoning symbolically
in a continuous world, needs to infer proper-
ties of the behaviors of continuous systems.
A qualitative simulator, such as QSIM, con-
structs a set of possible behaviors consis-
tent with a qualitative differential equation
(QDE) and initial state. This set of behav-
iors 1s expressed as a finite tree of qualita-
tive state descriptions. In the case of QSIM,
this set 1s guaranteed to contain the “actual”
behavior under certain circumstances. We
call this property the “soundness” of QSIM.
The behavior tree can then be interpreted
as a model for statements in a branching-
time temporal logic such as Expressive Be-
havior Tree Logic (EBTL), which we intro-
duce. Because QSIM is sound, validity of an
EBTL proposition (necessarily p) implies
the corresponding theorem about the dynani-
ical system described by the QDE. Therefore,
at least for universals, statements in temporal
logic about continuous systems can be proved
by qualitative simulation. This allows a hy-
brid reasoning systern to prove such common-
sense statements as “whal goes up (in a con-
stant gravitational field) must come down”,
or to do such expert reasoning about dynam-
ical systems as proving the stability of a non-
hinear, heterogeneous controller.

1 INTRODUCTION

The world is infinite and continuous. A logical proof is
finite and discrete. Nonetheless we want, and reason-
ably expect, to use logic to draw reliable conclusions
about continuous behavior in the world.

A qualitative differential equation (QDE) is a symbolic
description expressing a state of incomplete knowledge
of the continuous world, and is thus an abstraction of
an infinite set of ordinary differential equations. Qual-

Benjamin Shults
Department of Mathematics
University of Texas at Austin

Austin, TX 78712
bshultslmath.utexas.edu

itative simulation, using an algorithm such as QSIM
[Kuipers, 86], predicts the set of possible behaviors
consistent with a QDE and an initial state.

The QSIM algorithm generates a tree of qualitative
states representing a branching-time description of
the possible behaviors of the system being described.
Qualitative simulation can be viewed as proving a the-
oremm of a very specialized form:

QSIM F QDEAQSLate(ly) — or(QBehy,...QBeh,,)
where QDFE is a qualitative differential equation,
QState(ly) is a qualitative description of an initial
state, and each QBeh; is a sequence of qualitative
states. The QSIM Guaranteed Coverage Theorem
states that this prediction describes all possible be-
haviors of all ordinary differential equations which are
consistent with the given qualitative differential equa-
tion and initial state [Kuipers, 86]. The set of predic-
tions may, however, include spurious predictions, those
not corresponding to any real solution.

Building on the basic qualitative simulation algorithm,
a variety of methods have been developed for filtering
out additional classes of spurious behaviors, obtain-
ing tractable predictions from a wider range of models
while retaining the QSIM coverage guarantee. These
methods include deeper types of mathematical anal-
ysis, application of partial quantitative information,
appeal to carefully chosen additional assumptions, and

change of the qualitative level of description [Kuipers,
93b).

Since the qualitative model and behavior tree are ex-
pressible in logic, we can show that a logical statement
® follows from the model by showing that it follows
from the behavior tree. We do this by showing that
the behavior tree can serve as a logical model for &.

Since the qualitative behavior tree is a branching-time
description of temporal sequences, the appropriate lan-
guage for such statements ¢ is some form of modal
temporal logic [Emerson, 90]. Temporal logic aug-
ments propositional logic with operators for temporal
relations on time-varying truth-values, such as some-
times, always, evenlually, and until. Modal logic adds

operators for relations among truth-values in alternate
possible worlds (i.e., alternate behaviors), such as nec-
essarily and possibly.

We introduce Expressive Behavior Tree Logic (EBTL)
as a tool for expressing statements about QSIM be-
havior trees, and hence about the continuous systems
they describe. EBTL is a branching time temporal
logic closely related to CTL and CTL¥* [Emerson, 90].
We describe an algorithm for checking the validity of
an EBTL statement against a given QSIM behavior
tree.

Based on the QSIM Guaranteed Coverage Theorem,
we prove that for any EBTL statement & which is
universal in a sense defined below, if ¢ is true for the
qualitative behavior tree predicted by QSIM, then the
corresponding theorem holds for any ordinary differen-
tial equation consistent with the QDE that generated
the QSIM behavior tree.

There are a number of applications of model-based rea-
soning that can profit from reliable inference over the
set of all possible behaviors of a continuous system.
Since applications - such as monitoring, diagnosis, and
design - must often cope with conditions of incomplete
knowledge, the ability to reason with all possible be-
haviors of a system described by a qualitative model is
particularly valuable. A discussion of potential appli-
cations is provided in [Kuipers, 93a], and a specific ap-
phcatlon 0 the validation of heterogeneous controllers
is provided in [Kuipers & Astrém, 94] and briefly at
the end of this paper.

2 BTL AND EBTL

Behavior Tree Logic (BTL) is a branching-time tempo-
ral logic. The theory of branching-time temporal log-
ics is described in [Emerson, 90]. BTL is intended to
be an extension and customization of Computational
Tree Logic (CTL) to work with QSIM behavior irees.
We are more interested in its more expressive exten-
sion, Expressive Behavior Tree Logic (EBTL), which
is similar to CTL* [Emerson, 90]. Customization is
necessary because C'TL only applies to infinite tem-
poral structures. A QSIM behavior tree is finite al-
though it may be considered to represent an infinite
tree. (In this paper, when we say “a QSIM behavior
tree” we are referring to the actual output of the QSIM
algorithm after finite time. Therefore, although the
structure may grow without bound if QSIM were al-
lowed to run indefinitely without memory constraints,
a QSIM behavior tree in our discussion Is necessarily
finite. However, our theorems are applied to the often
infinite trees represented by these finite structures.)
Therefore, we have modified the logic so that 1t is ap-
plicable to finite QSIM behavior trees. Our definitions
are only slight modifications {(or complexifications) of
Fmerson’s definitions of C'TL and C'TL*

2.1 TERMINOLOGY AND NOTATION

In this section we define the structures related to the
theory of Iixpressive Behavior Tree Logic. QSIM he-
havior trees are distinguished motivational examples
of these structures but EBTL is applicable to a gen-
eral class of behavior trees. A QSIM behavior tree
[Kuipers, 86] can easily be compared to a temporal
structure in the sense defined in [Emerson, 90]. This
motivates the following general definition.

Definition 1 /n (I£)BTL, a behavior tree M is an
ordered lriple (S, R, L) where

S is a set of states,
R is a binary relation on S, and

L ts a labeling which maps each state s to an interpre-
tation of all atomic proposition symbols in s.

It 1s useful to view a hehavior tree as a directed graph
with node-set S and arc-set R. Without loss of gener-
ality, we can assume that a behavior tree is a tree (thus
the name), i.e. an acyclic directed graph in which each
node has at most one predecessor and there is exactly
one root. The root is the only node with the property
that it has no predecessor and every node is accessible
from it.

It may be helpful for the reader to beware of confus-
ing the structures associated with the logic EBTL (of
which QSIM behavior trees are examples) with QSIM
structures. The logic EBTL may be applied to struc-
tures other than QSIM behavior trees. When we de-
scribe the application of EBTL to QSIM trees, many
details such as the unwinding method for handling cy-
cle pointers and the labeling of states will be made
more explicit. We will try to make it clear when we
are referring to the QSIM structures.

We let A{x) denote the length of a finite ordered set .
A behavior ¥ = {sy,s1,82,...) in a behavior tree M is
any path in the behavior tree which either terminates
at a state with no R-successors or is infinite. In case x
is of infinite length, we say A{x) = oo. By a path « =
(s0, 81,82, ...y we mean that for all 0 <i < A(z) —1,
(s,, ,+1> € . I A(x) = oo then by i < A{x) — 1 we
mean i is any ll()l]ll@g_}&ll\’é’ integer. Notice that the last
state in a finite behavior ' = (s, 81, 89, ..) I8 $5()=

in this paper we do not require sy o be the root of the
behavior tree as is customary when referring to QSIM
behaviors.

For simplicity we sometimes write ¥ € M to mean
that 2 1s a behavior in M. We say the behavior » =
(s0, 81, 82,--.) sturts at the state sg, and that sy s the
first state of 1. We will say that a behavior 2’ € A’
exrtends a behavior & = (sg, s1,...,8,) In M if the first
n+1 states in &’ are (s, 81, ..., 5,). When we speak of,
one tree M being a subset of another tree M’ if every
behavior in M extends some behavior in M/, We call

a behavior roofed if it starts at the root of its tree.

We now describe the behavior quantifiers and the basic
temporal operators on propositions. We prefer to give
the reader a rough description before the formal syntax
and semantics are defined. Suppose some state sy and
behavior & starting at so are given. The two behavior
quantifiers are

(necessarily p), which is true if p is true
of every behavior starting with sg, and
(possibly p), which is true if p is true of

some behavior starting at sp.

The elementary temporal operators are (next p) and
(until p ¢).

(next p) is true of the behavior if p is true
of the behavior obtained from 2 by delet-
g its first state, and

(until p ¢) is true of z if ¢ is true of
some state in z and p is true of every
state preceding the first state in which
q 1s true. We may also call this rela-
tion strong-until, to distinguish it from
weak-until to be defined below.

Let it be stressed that these descriptions are only given
in order to give the reader a rough idea. The exact
meaning of these operators comes from the formal def-
inition of the syntax and semantics of the logic which
are in subsequent sections. We use the following ab-
breviations:
(eventually p) =

(strong-until true p)
(always p) =

(not (eventually (not p)))
(strict-precedes p ¢) =

(and (not ¢)

(strong-until (not (next g)) p))

(weak-precedes p ¢) =

(eventually (and p (next (eventually ¢))))
(strong-precedes p ¢) =

(and (strict-precedes p ¢) (eventually ¢))
(weak-until p ¢) =

(or (strong-until p ¢) (always p))
(infinitely-often p) =

(always (eventually p))
(almost-everywhere p) =

(eventually (always p))

These last two expressions seem to presume an infinite
tree. The problem of reasoning about the infinite tree
represented by a finite QSIM behavior tree is discussed
later.

The statement (strict-precedes p ¢) is true of a
behavior if p is true in some state in the behavior and
g is not true in any state previous to the first state
m which pis true. The statement (weak-precedes p
¢) is true of a behavior if ¢ is true in some state in
the behavior following some state in which p is true.
The statement (strong-precedes p ¢) is true of a
behavior if ¢ 1s true in some state in the behavior and
p 18 true in some state previous to the first state in
which ¢ is true.

An expression in BTL is formed by an application of
a behavior quantifier to a single one of the usual tein-
poral operators: always, strong-until, weak-until,
next, or eventually. EBTL is much more expressive
because it allows boolean combinations and nestings of
the behavior quantifiers and the usual temporal opera-
tors. Thus every statement in BTL is also a statement
in EBTL, but “infinitely often” and “for all but finitely
many” and other interesting statements can only be
expressed in EBTL.

Our BTL is closely related to Emerson’s CTL and our
EBTL is closely related to Emerson’s CTL*. The most
noticeable difference 1s that BTL and EBTL are appli-
cable to finite trees as well as infinite trees. Because
(E)BTL is applicable to finite trees, the temporal op-
erator next may seem ambiguous. This is so because
some states do not have a successor. Therefore, we
must distinguish between what is called strong-next
and weak-next. The statement (strong-next p) is
true of a behavior if the behavior has a second state
and p is true of that state. The statement (weak-next
p) is true of a behavior if the behavior has no next
state or if the behavior has a second state and p is
true of 1t. In our discussion, we consider next alone
to mean weak-next. However, the language includes
both terms and the user of our program may use both.

In the following two subsections we give the formal
definitions of BTL and EBTL.

2.2 SYNTAX

The formal definitions of the syntax for the tempo-
ral operators and behavior quantifiers informally de-
scribed above are given below. These definitions follow
the treatinent of CTL(*) in [Emerson, 90]. The defini-
tion of the syntax includes three state-formula genera-
tors, followed by one behavior-formula generator in the
case of BTL, but followed by three behavior-formula
generators in the case of EBTL. A state formula is
a formula which is true or false of a state and a be-
havior formula is a formula which is true or false of
a behavior. State formula in both BTL and EBTL
are generated by rules (51-S3) below. The behavior
formulee in BTL are generated by the rule (B0) below.

The behavior formula in EBTL are generated by rules
{B1-B3) below.

Definition 2 The syntax of EBTL s defined as fol-
lows.

(S1) Each atomic proposition P is a stale formula,

(S2) if p, q are state formule then so are (and p q)
and (not p),

(83) if p s a behavior formula then (possibly p)
and (necessarily p) are state formule,

(BO) if p, g are state formule then
(next p), (strong-next p), (strong-until p
q¢), (always p), (weak-until p ¢) and
(eventually p) are behavior formule.

(B1) each state formula is also a behavior formula,

(B2) if p, q are behavior formule then so are (and p
q) and (not p),

(B3) f p, ¢ are behavior formule then so are
(next p), (strong-next p), (strong-until p
q), (always p), (weak-until p ¢) and
(eventually p).

There are several things to notice here. First notice
that (B0} is subsumed by (B1) and (B3). There-
fore every expression in BTL is in EBTL. Also no-
tice that the following formula is well-formed in
both BTL and EBTL: (strong-until (possibly
(next p)) (necessarily (next p))). However,
EBTL is strictly more expressive because, for exam-
ple, (necessarily (precedes p ¢)) and (possibly
(not (weak-until p q))) are expressible in EBTL
but not in BTI,. We also allow the standard boolean
abbreviations for or and implies.

2.3 SEMANTICS

The following notation is needed before the semantics
of our logic can bhe defined. Given a behavior r =
(50,51, 52,...), for 1 < i< A(z)—1 welet z' denote the
behavior (i, 841, 8i42, ...}, which is the subbehavior
of x starting at s;. l.e. it is the behavior obtained from
z by deleting from x the first i states.

Notice that if A(z) is finite, then * is not defined for
i > A(z) — 1 and that A(z*) = A(x) — 1.

Now we are ready to give the semantics for the lan-
guage. We write M, sg = & (respectively M,z = &)
to mean that state formula & (respectively behavior
formula ®) is true in the behavior tree M at the state
sy (respectively of the behavior x). Each item below
gives the interpretation of the corresponding item in
the syntax above.

Definition 3 Ifsy s a state in M and x = (s0, 51, ...)
18 a behavior in M starting at so, then we inductively

define = as follows:

(S1) M, sy = P of and only of P is true in L(sp),

(S2) M,sp =(and p ¢) tf and only if M,sq = p and
A”[, 50 i: q,
M, sy =(not p) if and only if it is not the case
that M, sy = p,

(S3) M,sy, =(possibly p) if and only if there is a
behavior y in M starting at sy, such that M,y =
b,
M, sq F=(necessarily p) if and only if for every
behavior y in M starting at so, M,y |= p.

(B1) M,x Ep if and only if M, sy = p,

(B2) M,z =(and p ¢) if and only if M,z = p and
Mz kg,
M,z =(not p) if and only if it is not the case
that M,z = p,

(B3) M,r =(strong-until p q) ¢f and only if there
15 a nonnegatrve nleger 1 < A(x) — 1, such that
M, ;r:i_ = q and for every nonnegative inleger j < i,
M,z = p,

M,z E=(next p) if and only if A(x) = 1 or
Al{a xl k: P,

M,z =(strong-next p) if and only if A(x) > 1
and M, 2! = p,

M,z |=(weak-until p q) if and only if for ev-
ery nonnegalive integer j < A(z) — 1, if for every
nonnegative integer k < j we have M, r* =(not
q), then M, 2 |= p,

M,z [=(always p) f and only if for every non-
negative integer j < A(x) — 1, M, 27 = p,

M,z [=(eventually p) i and only if there s
a nonnegative nteger j < Az) — 1, such that

The semantics of BTL formula are the same as those
given above with (B3) giving the semantics of the for-
mule given in {B0) of the definition of the syntax.

Now that the semantics are defined, the reader will
notice that there are two definitions of the following
operators: weak-until, always and eventually. We
have given semantic definitions for these operators and
we have also defined them as abbreviations of expres-
slons involving strong-until and next. The proofs
of the equivalence of these definitions are omitted be-
cause they are straight-forward but tedious manipu-
lations of quantifiers, negation symbols, and boolean
operators.

3 QSIM AND THE
IMPLEMENTATION OF THE
LOGIC

Here we consider how the logic is implemented and
applied to QSIM. Pirst, we define the relations that
make finite QSIM behavior trees into possibly infinite

trees. Second, we show exactly how QSIM behavior
trees and the trees they represent are used as logical
models for EBTL statements. Finally, we discuss the
implementation of the program which checks the truth
of statements in EBTL against a QSIM behavior tree.
We call the program TL for “temporal logic”.

3.1 QSIM AS A MODEL FOR (E)BTL

Qualitative simulation with QSIM produces a tree of
qualitative stales, linked by successor and (lransilion
relations.! A QSIM behavior is a path in the behavior
tree, terminating at a leaf of the tree, but not nec-
essarily starting at the root state. (This differs from
normal usage.) Each state describes the qualitative
value of each wvariable appearing in the QDE model.
The qualitative value of a variable v over a state s
is of the form {gmayg, qdir), where gmag describes the
magnitude of v as equal to a landmark value or in an
open interval defined by two landmarks, and gdir is
the sign of the derivative v/ of v. By considering the
qualitative values of the variables at s, and the con-
straints in the QDE, QSIM is able to derive a number
of properties of the state, including quiescence, stabil-
ity, cycles, ete. Please see [Kuipers, 86, 94] for more
detailed information on QSIM.

A QSIM behavior tree is made a logical model for
statements in EBTL in the following way. A QSIM
behavior tree M is an ordered triple (S, R, L) where
the set S of states is the set of states in the output
of the QSIM algorithm, the set K is the union of the
QSIM successor and transition relations, and the in-
terpretation L(s) is as follows.

For the sake of brevity, we consider only the atomic
propositions associated with any QSIM state s which
are of one of the following forms:

element of

(status fag) where lag i3 an

{quiescent, stable, unstable, transition, cycle}.

Such a proposition is true exactly when lag is a
member of the QSIM structure s.status associ-
ated with the state s.

(qval v (gmag gdir)) where v s a variable of the
state s, gmag is a landmark or open interval
defined by a pair of landmarks in the quan-
tity space associated with v, and gdir is one of
{inc, std,dec, ign}. Such a proposition is true
exactly when the value of v in the state s matches
the description (gmag gdir).

The expressiveness of the application of EBTL to
QSIM could easily be increased without adding to the
complexity by adding expressiveness to this proposi-

"There is also a completion relation not discussed here,
that holds between an incomplete state description and a
complete one consistent with it. Handling this relation is a
straight-forward extension of the methods discussed here.

tional part of the language. In particular, we could
allow propositional formulae other than the two given
above. For example, we could add the ability to com-
pare the values of two variables, or to consider quan-
titative information about variable values.

By a QSIM behavior we mean a path in a QSIM he-
havior tree, not necessarily starting at the root state,
such that the last node in the path has no K-successor.
We call the state at which a behavior starts the firs
state of the behavior. In this paper, when we say “a
QSIM behavior tree” we are referring to the finite out-
put of the QSIM algorithm. That is to say, given a
qualitative differential equation and allowed a finite
amount of time to run, QSIM will return a finite tree.
The finiteness of QSIM trees may seem to be a terrible
Imitation. For examnple, expressions such as “for all
but finitely many” and “infinitely often™ would appar-
ently never be sensibly satisfied by a QSIM behavior
tree. However, a QSIM behavior tree may represent
an infinite behavior tree.

3.2 THE TREE REPRESENTED BY A
QSIM BEHAVIOR TREE

QSIM has two ways of presenting a behavior over an
infinite time-interval with a finite sequence of qual-
itative states. First, a fixed-point of a behavior is
represented by a state with status quiescent. Sec-
ond, repeated patterns in a behavior can be described
by cycles. A cycle slale i a QSIM behavior is one
that matches a previously-generated state elsewhere in
the behavior tree, so its successors are already repre-
sented by the successors of the previously-generated
state. The user may select the state-matching cri-
terion, and whether cycles must lie within a single
behavior or may Cross among behaviors. With re-
spect to the tree M represented by a QSIM behav-
ior tree M, the expressions (infinitely-often p)
and (almost-everywhere p) have exactly the desired
meaning. The solution to the problem of reasoning
about the mfinite tree in finite time is discussed later.

Definition 4 The ordered pawr (s;,s;) of states s in
a status-bound relation if either of the following lwo
conditions holds:

(1) The proposition (status quiescent) s lrue of
si, and 5; = 55 or
(2) the proposition (status cycle) is lrue of s;, and
s; ts a successor of the previous state s’ in the free
such that s = s;.

If the ordered pair {s1, s3) is an element of the set of
status-bound relations, then we say that (s,) is a
cycle relation if s7 # sa.

Definition 5 (Represented Tree) The possibly in-
finite tree M = (S| R, L)y, represented by a QSIM be-
havior tree M = (S, R, L), 1s the tree which resulls by

adding the stalus-bound relations to the sel . The
set R is the union of R with the set of status-bound
relations. The set S is the union of S and the new
states which are generated first as second elements of
status-bound relations and then by the unwinding pro-
cess. (Cf. [Emerson, 90] for a precise definition of
unwinding.) We will call the new stales copies of the
state in S to which they correspond. Each new state
inherils the interpretation L(s) of its proposition sym-
bols from the state of which it 1s a copy.

3.3 CLOSED BEHAVIOR TREES

In the best case, every behavior in the tree returned by
QSIM terminates with a quiescent or cycle state. We
will call such a tree closed. There are cases, however,
in which QSIM does not return a closed tree regard-
less of how long it is allowed to run. In cases where
QSIM returns a tree which is not closed, the Guaran-
teed Coverage Theorem does not necessarily apply. If
the behavior tree A is not closed then it is possible
that the a(/t\tual behavior of the system is not repre-
sented in M.

Using the normal QSIM simulation style, creating new
landmarks for critical values and applying a strong
cycle-match criterion (all variables have identical land-
mark values), certain systems such as the damped
spring have infinite behavior trees. In such cases, the
QSIM algorithm cannot produce a closed behavior tree
in finite time. However, by applying the envisionment
simulation style {no new landmarks and weak cycle-
match criterion), every qualitative model has a finite
behavior tree. [Kuipers, 94] discusses this and a vari-
ety of methods for obtaining tractable behavior trees.

3.4 THE PARTIAL EXTENSION OF A
BEHAVIOR TREE

Given an EBTL statement & to check against a QSIM
behavior tree A1, we can define a parlial ertension

M(®) of M,
MC M) C M

that is finite (where A7 might not he) and enocugh
larger than M to make the truth value of M, sy = @
be the same as that of M(d), s | &.

In section 3.6 we will prove that if the truth checker
is given a QSIM behavior tree M and a statement ®
m EBTL, then it returns the truth value of @ regard-
ing the generally larger tree M represented by M. As
we will see, this tree can be infinite and complex. We
think of a statement in EBTL as a question which the
user is asking about the given behavior tree. The user
expects the program to respond with the truth value
of M\, sy = @, where M is the possibly infinite tree
represented by the QSIM tree M and sy is the root of

the tree. The program TL accomplishes this by con-
structing the partial extension of the given QSIM tree
and checking the truth of the given expression on this
larger yet still finite tree. The proof is accomplished
by showing that the partial extension of the tree is
large enough to decide the question ®.

The reader may find it helpful to examine Figure 1 for
a motivation of the following definitions. The partial
extension M(®) of M depends also on &. It is con-
structed from M and ® by expanding M according to

the structure of nestings of until and next statements
in &,

Let us now give the needed definitions. Recall that
a QSIM behavior tree M is necessarily finite. The
until extent, r(until), of a behavior in M is a set
of possibly truncated behaviors in M which extend
x. The addition of these longer behaviors enlarge M
exactly enough to answer properly any propositional
until statement.

Definition 6 The until extent x(until) of a finite be-
havior x = (sq, s1, ..., 8,) is the singleton sel contain-
ing r unless (status cycle) is true of s, in which
case x(until) is the sel of paths #' in M extending x
but truncated at the first state s € ' at which the fol-
lowing property is salisfied:

The Until Property: s is not in x and either (status
quiescent) s true of s or (status cycle) s true of
s and s is a copy of some previous stale in x'.

It is important to understand that the until extent of a
behavior & in a finite QSIM tree M is a finite sel of fi-
nite behaviors. To see this we need to recall two facts.
First, QSIM behavior trees are finitely branching. Sec-
ond, eycle states occur only at the terminal states of a
QSIM behavior tree, thus there are only finitely many
cycle states in a finite QSIM tree. If some 2/ € x(until)
were infinite, it would have to pass through infinitely
many cycle states. Thus it would have to pass through
one of them more than once, contradicting the Until
Property. Since each behavior in x{until) 1s finite, and
M is finitely branching, a2 (until) must be finite.

The next extent, r(next), of a behavior 2 in M is the
set. of possibly truncated behaviors in A which are
sufficiently extended to answer a propositional next
question.

Definition 7 The next extent x(next) of a finile be-

havior ¥ = (sp,81,..,5,) s the set of paths x' in M
extending r bul truncaled at the firsl state s € x' salis-
fying one of the following properties: (status cycle)
s true of s, and s satisfies the Untid Property or
(status quiescent) is {rue at s and s is not in x.

A similar argument as the one given above shows that
the next extent of a finite behavior in a finite behavior
tree is a finite set of finite behaviors.

Mbefore unwinding

M (®)after partial unwinding

Figure 1: Partial unwinding for ® = (until p q),
along first behavior only.
Each cycle state is expanded, stopping each
branch at the second occurrence of a given cycle
state. The double circles represent cycle states.

Definition 8 We define the partial extension M(®)
generated by a lree M and an EBTL expression ® re-
cursively as follows:

If ® s a proposition then M(®) = M,

if ®is (and p q) then M(®) is the union of
M(p) and M (q).

if & s (not p), (possibly p) or
(necessarily p), then M(®) = M(p),

if ® is (strong-until p ¢) then M(®P) s
the union over each behavior r € M(p) U
M(q) of x(until), or

if ®is (next p), or (strong-next p), then
M (®) is the union over each behavior x €
M(p) of x(next).

Notice that the paths in the until and next extents of a

behavior in M are generally not behaviors in M or M.
They may, however, be behaviors in M (®) for some ®.

Our implemented prover TL, given as inputs a QSIM
tree M and an EBTL expression ®, returns true if
and only if H,s = & where s is the root state of M.
We will prove that it is enough for the truth checker
to examine M(®), which in fact is what TL does. To
be specific, we have defined the partial extension of a
behavior tree generated by a QSIM behavior tree M
and an EBTL statement @ to be at least as large as the
largest tree generated by TL in the process of checking

& on M. lt, however, should be clear that this tree
must be finite. This is true because each statement in
EBTL is finite and each QSIM behavior tree is finite.

We will prove that given an EBTL expression ¢ and a
QSIM behavior tree M, TL correctly returns the truth
or falsity of ® in the behavior tree M represented by
M in finite time.

We need a way of distinguishing, for a given subex-
pression @y of &, whether @&y is in the scope of a
necessarily or of a possibly quantifier. The defi-
nition in the next subsection fulfills this need.

3.5 IMMEDIATE SCOPE

We recursively define an occurrence of p being in the
immediate scope of a behavior quantifier as follows:

Definition 9 (Immediate Scope)

The occurrence of p in (possibly p) s in
the tmmediale scope of possibly.

If (and p ¢), (not p), (strong-until p
q), (next p), (strong-next
p), (always p), or (eventually p) oc-
curs in the timmediale scope of possibly
then these occurrences of p and q are
said to occur n the immediate scope of
possibly.

The occurrence of any EBTL expression
which can not be shown to be in the im-
mediate scope of possibly by the above
conditions is in the immediate scope of
necessarily.

Other temporal operators are treated as abbrevia-
tions of expressions involving the operators mentioned
above.

Consider the following example of an EBTL expres-
sion:

(and (possibly
(strong-until p (necessarily ¢)))
(next (possibly r)))

The and and its arguments are in the immediate
scope of necessarily as is the occurrence of q.
Also (possibly r) is in the immediate scope of
necessarily. However, the strong-until statement
and its arguments are in the lmmediate scope of
possibly.

3.6 CORRECTNESS OF THE
IMPLEMENTATION

Now we come to the promised proof. Because TL ex-
amines the partial extension M (®) of M, what we re-
ally need to prove is the following:

Theorem 1 If M s a QSIM behavior tree with root
s and ® 13 an EBTL state expression, then

= .

The proof goes by induction on the structure of ®. If
& is a proposition, then the theorems are obvious.

M,sk=® o M(®),s

Also 1t 15 clear how to handle the booleans, i.e. we
simply pass the proof on to their arguments.

If & is of the form (necessarily p) then we must
really prove the following: ﬁ, z |= p for all behaviors
r € _/\Z if and only if M(p),2’ = p for all behaviors
2’ € M(p). If ® is of the form (possibly p) then we
must prove the following: M\, x = p for some behavior
z € M if and only if M(p), 2’/
' € M(p).

So the interesting parts of the proof will be when ¢
begins with a temporal operator within the immediate
scope of either necessarily or possibly. Theorem 2

takes care of the case when a strong-until statement
occurs in the immediate scope of necessarily.

= p for some behavior

Theorem 2 If & s of the form (strong-until P
q), then Mz e for all rooted behaviors © € M

if and only if M(®), 2’ |= & for every rooted behavior
' € M(®).

Proof: (=) Suppose M,z = ® for every behavior
reM starting at the root. Let 2’ be a behavior in
M (®) starting at the root. Suppose for the sake of
contradiction that for every nonnegative integer k <
A2’y — 1, if M(®), 2% |= ¢, then there is a number
!l < k such that M(®), 2" £ p. There is a behavior =

in M which extends 2’. The existence of this behavior
in M contradicts our hypothesis.

(«<=) Now suppose that for every behavior #' € M (®)
starting at the root

M(®),z' =@ (1)

Suppose for refutation that for every behavior x in M
starting at the root, for all 1 < A(z)— 1if M, 2' = g,
then there is a nonnegatlve integer j < i such that
M, rd B p. There are two cases to consider.

First we suppose there is a rooted behavior z € M
such that for all ¢ < A(x) — 1, E/T, x' = q. Let 2/ be a
behavior in M(®) which r extends. (l.e. cut off at
1ts first state which satisfies the Until Property.} The
existence of this ¥’ € M (®) contradicts our hypothesis

(1)

Now suppose that there is a rooted behavior » € M
such that for every i < A(x)— 1 such that M, 2" |= ¢
there is a j < i such that M/ £ p and that such an

i e\usts Choose i to be the smal]est number such that
M,z k= ¢. Let j < 7 be such that M,z Ep. Lety
denote the path from the root to the first state, s; in
x'. Suppose there is a state s in y which satisﬁes the
Until Property. If such a state exists then the path
(50,51, ..,5) is a behavior in M(®). The existence of
this behavior contradicts the hypothesis (1). If there is
no state in y s«msfymg; the Until Property, then there
is some behavior z/ in M (®) which extends the path
y. This behavior once again contradicts our hypothesis
(1).

This completes the proof.

Theorem 3 takes care of the case when a strong~until
statement occurs in the immediate scope of possibly.

Theorem 3 If & is of the form (strong until p
q), then I‘her« is a rooted behavior r € M such that
M,z k= ® if and only if there is a rooted behavior

¥’ € M(®) such that M(®), 2" |= &.

Proof: (=)
call it z, in

First, suppose there is a rooted behavior,

M such that M,z |= ®. There is a path 2/ € M(®)
which 2 extends. Suppose for contradiction that for all
nonnegative integers k < A(2’) — 1 if M(®),z'* = ¢
then there is a nonnegative integer [< k sU(_h that

M(®), 2" i;/: p.
If M(®), 2" | ¢ for some k < A(x') — 1 and
M(<I> ' |/: p for some I < k then the same is true for

r € M whu h is a contradiction.

If there is no k& < A(x’) — 1 such that M(®),z’*
g, then it must he the case that for every state ¢ €
2’ M (®),t = p. Thus far, we have assumed nothing
about the behavior 2 € M except that M,z = &. We
know that for any such behavior there is a smallest
number i(x) such that M) = ¢, Let i be the
smallest of all of the i(x) ranging over behaviors & for
which M,z &= & and let 2 now denote the behavior
corresponding to 7. If there is no state, s, in the path
¥ = {50,81,.--,5i) s(msfylng the Until Property, then
there is a behavior #/ € M(®) which extends y. In
this case we are done becuase M(®),z' = ®.

If there is a state in y which satisfies the Until Prop-
erty, then we let s denote the first such state. Fi-
ther (status quiescent) or (status cycle) must
be true at s (or s has no successors). In the former
case we are done becuase the path (sy,s1,...,8) is a
behavior in M{®). In the latter case, we delete from y
the state of which s i1s a copy and the states between
it and s. What remains of the path y is again a trun-
cated path in Aﬁ, but a shorter path, and M,z = & for
any path z € M which extends y. But this contradicts
our assumption that the state s; € x was the nearest

state to the root satisflying these conditions.

(<) Now suppose there is a behavior ' € M(®) such
that M(®), 2’ = ®. There is a behavior » € M which
extends x’. Thus we are done.

This completes the proof.

Stmilar theorems follow for next expressions and the
other temporal operators can be treated as abbrevia-
tions of these two.

Therefore, it Is enough for the truth checker to exam-
ine only M (®) when trying to check M, sy |= ®. Since
the until (or next) extent of a behavior in a QSIM tree
starting at any state is finite and each EBTL expres-
sion is finite, the truth checker will terminate with the
correct answer.

4 THE MAIN THEOREM

Our main theorem states that, under appropriate hy-
potheses, the answer that T'L gives to an EBTL state-
ment concerning a QSIM behavior tree will be true
of the solution to any differential equation consistent
with the qualitative differential equation which pro-
duced the QSIM behavior tree.

Before we state our main theorem we need some nota-
tion, definitions and a lemma. We define the parity of
a position in an EBTL expression as follows:

Definition 10

The first operalor in any EBTL erpression
given to TL is in a posttion of parily 0.

If (mot p) occurs in a position of parity n €
{0, 1}, then p s in a position of parily
n+1 (mod 2).

If (O p) or (O p ¢) occurs in a posttion of
partty n € {0,1} and O s some tempo-
ral, boolean, or modal operalor other than
not, then p and g occur in positions of
paridy n.

Recall that (implies p ¢) is an abbreviation of (not
(and p (not ¢))) so if (implies p ¢) occurs in a
position of parity n € {0,1} then pis in a position of
parity n+ 1 (mod 2) and ¢ is in a position of parity
n. This follows the use of “positive” and “negative”
position in [Wang, 60].

Definition 11 An EBTL erpression & s said lo be
universal if every occurence of the behavior quantifier
possibly is in a position of parity 1 and every occur-
rence of the behavior quanlifier necessarily is in «
posttion of parity 0.

With a little thought, the reader will see that if a for-
mulais universal, then the truth checker should exam-
ine the entire tree in order to establish the truth of the
formula. This is the motivation for the definition.

If @ is a universal formula in EBTL, then & denotes
the linear-time behavior formula obtained from & hy
deleting all occurrences of the hehavior quantifiers.
For example, if

® =(necessarily
(strong-until p (necessarily ¢))),

then
¢’ =(strong-until p q).

We are now ready to proceed to the details of our
main theorem. We say a real-valued function, u, sai-
1sfies a given QSIM qualitative behavior description if
the qualitative description of the function matches the
given qualitative behavior. The following theorem is
proved in [Kuipers, 86].

Theorem 4 (Guaranteed Coverage) lLet [7 = () be
an ordinary differential equation with solution w, a
real valued function. Let C be a QDE with which
I = U is consistent. Let M be the QSIM behavior
lree generated by the QSIM algorithm applied to (.
If M s closed, then u_salisfies some QSIM behavior
r = (sp,51,80,...0 in M where sy is the root stale of
M.

Theorem 5 (The Main Theorem) Lel @ be a uni-
versal slate formula in EFBTL. Let uw and M be as in
the hypotheses of the Guaranteed Coverage Theorem.
Let sy be the root state of M. If M(®),sy = &, then
@' is true of the qualitative description of u.

Proof: Suppose M (®), sy = &, as in the hypotheses
of the theorem. By definition, ®' is a behavior formula.
For simplicity, let us start by replacing every occurence
of the temporal operators weak-until, always,
precedes, strong-precedes, infinitely-often,
almost-everywhere, and eventually with ex-
pressions involving only the temporal operator
strong-until and next. (Since M is closed, it makes
no difference whether we consider next to be strong or
weak.) This is made possible by the abbreviations on
page 3. So now ¢’ is a behavior formula whose only
temporal operators are next and strong-until. By
the Guaranteed Coverage Theorem and the fact that &
is universal, it is enough to show that &' is true of ev-
ery behavior in M starting at sy. So, by the results in
section 3.6, we need only to show that M(®'), x = &’
for every behavior x in M (®') starting at sy. So let
he a behavior in M (®) starting at sy. We will induct
on the complexity of ®'. Unless otherwise noted, ref-
erences to (S1-S3,B1-133) refer to the definition of the
semantics.

If @ is an atomic proposition, then & is a state for-
mula by {81) of the definition of the syntax of EBTI..
Since @ Is a propositional state formula, & = &' (Cf.

(53) of the definition of the syntax of EBTL). There-
fore M(®'),x = @’ by hypothesis and we are done.

Suppose @ is of the form (and p ¢). Then we reduce
to the case of showing M{(p),» = p and M(q),» k= q.

Suppose @ is of the form (not p). Then we reduce
to the case of showing that it is not the case that

M(p),z = p.

Suppose @ is of the form (strong-until p ¢). We
reduce to showing that for some nonnegative integer
J < A(z) — 1 and for all nonnegative integers k < j,
M(q), ' = ¢ and M(p), 2" = p.

Suppose ¢’ is of the form (next p) where p is a be-
havior formula. It must be the case that A{z) > 1,
otherwise M,z | @ could not have been true (Cf.
(B3)). Thus we reduce to proving M (p),z' = p.

In each case we have reduced @’ to a more simple ex-
pression. The obvious induction argument on the com-
plexity of & finishes the proof.

5 APPLICATIONS OF EBTL AND
QSIM

EBTL may be useful any time QSIM is used. QSIM
has been used to simulate controllers, human organs
and disease, abstract and real physical systems, electri-
cal circuits, population dynamics, chemical reactions,
ete.

5.1 PROVING PROPERTIES OF
CONTROLLERS

Kuipers & Astrom [1994] have used TL and QSIM o
prove properties of heterogeneous control laws. A het-
erogeneous controller is a nonlinear controller created
by the composition of local control laws appropriate
to different operating regions. Such a controller can
be created in the presence of incomplete knowledge of
the structure of the system, the boundaries of the op-
erating regions, or even the control action to take. A
heterogeneous control law can be analyzed, even in the
presence of incomplete knowledge, by representing it
as a qualitative differential equation and using qualita-
tive simulation to predict the set of possible behaviors
of the system. By expressing the desired guarantee
as a statement in EBTL, the validity of the guarantee
can be automatically checked against the set of possi-
ble behaviors. Kuipers & Astrom [1994] demonstrate
the design of heterogeneous controllers, and prove cer-
tain useful properties, first for a simple level controller
for a water tank, and second for a highly nonlinear
chemical reactor.

It should be noted that [Moon, et. al., 92] used C'T1L to
prove a guarantee for a discrete-time control system.
EBTL and QSIM make it possible to apply temporal

logic to continucus-time control systems, and indeed
to dynamical systems in general.

The program TL is equally easily appled to the be-
havior trees output by QSIM extensions such as NSIM
and Q2, which use quantitative bounding information
and produce quantitative bounds on the predictions.
For these applications a slight extension of the propo-
sitional part of the language is helpful. We add the
ability to include numerical information in the state
propositions. This added expressiveness does not add
to the complexity of the algorithm.

The progrant can be and has been used on terminals
which do not support the graphics needed to see QSIM
trees. In these circumstances, the user can learn ev-
erything he may need to know about a QSIM tree by
evaluating a few carefully chosen EBTIL statements.

5.2 TL AS A DEBUGGING TOOL FOR
QSIM MODELS

Because QSIM is not complete, a QSIM tree may con-
tain behaviors which do not correspond to real behav-
iors. Therefore, the truth of an EBTIL statement (e.g.
one beginning with the quantifier possibly), does not
imply the truth of the corresponding statement in an
actual behavior. This apparent limitation, however,
can be and has been used as a debugging tool. For ex-
ample, if the QSIM user knows that a certain sequence
of eventls cannot occur in a real behavior, he can use
TL to find out if that sequence of events occurs in any
of the hehaviors in the QSIM tree. The implemented
program T allows EBTL formule to have side effects.
Therefore, it can be used to print out the undesirable
behaviors or states which satisfy a certain EBTL for-
mula. In the actual T1L: code, there are features which
male this process very easy.

5.3 EXAMPLES

We demonstrate the use of TL to ask and answer ques-
tions about two simple models: the undamped oscilla-
tor, whose behavior tree is rooted in the mitial state
8S; and the dammped oscillator, whose hehavior tree is
rooted in the state DS.

Undamped Oscillator The simple spring con-
serves energy, so all behaviors are cycles, as shown by
the behavior tree tn figure 1. The three behaviors dif-
fer according to whether the amplitude of the oscilla-
tions passes a predefined landmark value. The queries
shown demonstrate that the simple spring never be-
comes quiescent, always reaches a cycle state, and
necessarily has an infinite sequence of events crossing
r = 0 in opposite directions.

(TL S8 ’(necessarily

(always (not (status quiescent)))))
=> T

(TL 8S ’(necessarily (eventually (status cycle))))
=> T
(TL 88 ’(necessarily
(and (infinitely-often (qval x (0 inc)))
(infinitely-often (qval x (0 dec))))))
=> T
(TL 88 ’{necessarily
(infinitely-often
(precedes (qval x (0 dec))
(qval x (0 inc))))))
=> T

Damped Oscillator The damped spring loses en-
ergy. The first behavior is a cycle representing a de-
creasing oscillation. The second two are partial cycles
followed by “nodal” convergence to quiescent states at
the origin (indicated by circled dots in the behavior
tree). This finite behavior tree represents an infinite
family of behaviors, oscillating a finite number of half-
cycles around the origin before “nodal” convergence.
Each of the universal questions asked about the simple
spring behavior is false of the damped spring, but the
corresponding existential statements are true.

(TL DS
=> T
(TL DS ’(possibly (eventually (status cycle))))
=T
(TL DS ’(possibly (eventually (status quiescent))))
=> T
(TL DS ’(possibly
(and (infinitely-often (qval x (0 inc)))
(infinitely-often (qval x (0 dec))))))
=> T
(TL DS *(possibly
(infinitely-often
(precedes (qval x (0 dec))
(gval x (0 inc))))))
= T

6 FUTURE DIRECTIONS

QSIM and EBTL can be combined to help in the de-
sign of a QDE. One possibility is to allow EBTL for-
mule as part of the input to the QSIM program. In
this case, QSIM would only generate those behaviors
which are models for the EBTL formula. l.e. QSIM
would test the satisfiability of the conjunction of the
EBTL formule. This would allow a qualitative model
to be described jointly by a QDE and an EBTL de-
scription of its behavior.

The limiting case, with an EBTL specification of the
desired behavior and no QDE, raises an intriguing
possibility. QSIM would predict all behaviors consis-
tent with continuity and the EBTL specifications. A
recently-developed program called MISQ takes as in-
put a set of qualitative behaviors and produces the
minimal QDE capable of producing that behavior
[Richards, et al, 92]. This would be useful, for exan-
ple, to a controller designer who knows that he wants
certain qualitative events to occur, not to occur, or
to occur infinitely often. By providing this specifica-
tion in the form of EBTL formulz, this combination
of EBTL, QSIM, and MISQ might be able to design
the appropriate QDE model.

Work is currently being done with the goal of automat-
ically generating natural explanations of the structures
associated with QSIM. This requires the detection of
certain common features in physical systems, e.g. neg-
ative feed-back loops, oscillation, etc. While EBTL is
useful for many parts of this process, more expressive-
ness is clearly required.

In particular, it will be important to compare (not
just quantify over) behaviors and states, and to com-
pare and quantify over variables in the QDE. In some
cases this can be done in EBTL, though awkwardly.
It would not be enough to build EBTL on a first-order
logic instead of a propositional logic, since quantifica-
tion to compare behaviors, states or variables must be

' (possibly (always (not (status quiescent)))))scoped outside of the modal and temporal operators.

This would undoubtedly have a substantial impact on
complexity.

7 MISCELLANY

7.1 COMPUTATIONAL COMPLEXITY

Checking the validity of statements in BTL 1s poly-
nomial, and EBTIL is exponential, in the size of the
statement. However, since the statements are typically
not enormous, the more important constraint is that
validity checking is linear in the size of the behavior
tree.

7.2 CODE

The code for QSIM is available via anonymous ftp at
cs.utexas.edu in the directory ftp/pub/qsim. The
up-to-date version of T1 will be included with the re-
lease of QSIM hy KR’94.

7.3 RELATED WORK

Related work has been done in applying temporal log-
ics to various models. Some of the logics developed
have been able o express more quantitative time in-
formation. Since QSIM does not express information
about the “real” length of time intervals, these lan-

guages are not practicable in our situation. We specif-
ically mention for example [Jahanian, 88]. In this pa-
per, real time systems are modeled in the Modechart
language. Statements in Real Time Logic can be
checked against a Modechart model. Real Time Logic
is undecidable in general but certain classes of state-
ments are shown to be decidable. These languages are
suited for time-critical systems. However, if all that is
important is the order of events, then languages such
as CTL* are sufficiently expressive. In [Moon, 92],
statements in CTL are checked against state transition
graphs generated from programmable logic controller
ladder diagrams. The specific application in [Moon,
92] is to chemical process control. Possibly the most
work has been done in applications of temporal log-
ics to computer processes such as parallel computing,.
[Emerson, 90] and [Lichtenstein, 84] are examples of
such work. [Collins, 89] took an early step in the ap-
plication of temporal logic to QSIM.

7.4 HISTORY

In 1989, Kuipers began discussing the application of
branching-time temporal logic to QSIM with David
W. Franke and E. Allen Emerson. In 1990, Kuipers
wrote the code on which TL is based. In 1992-93
Shults added the finite unwinding of cycle states and
discovered the new theorems presented in this paper.

8 CONCLUSION

This paper has presented a method using modal and
temporal logic to prove properties of the behavior of
a continuous physical system. If the user can describe
a physical system in terms of a set of qualitative con-
straints, then by using QSIM and TL, he or she can
prove theorems about the behavior of any real sys-
tem consistent with those constraints. We therefore
provide a meaningful and sound interpretation for the
phrase, “proof by simulation.”

We expect that this link between logic-based and
simulation-based inference methods will support a va-
riety of hybrid reasoning techniques that could be of
substantial value.

Acknowledgements

We would like to thank Daniel Clancy, Sowmya Ra-
machandran, Rich Mallory, Jeff Rickel and Robert
Schrag for fruitful discussions.

The work of Benjamin Kuipers and the Qualitative
Reasoning Group at the Artificial Intelligence Labora-
tory, The University of Texas at Austin is supported
in part by NSF grants IR1-8904454, IR1-9017047, and
IRI-9216584, and by NASA contracts NCC 2-760 and
NAG 9-665.

The body of this paper was previously presented to a

different audience as [Kuipers & Shults, 1994].

References

e Tim Collins. A Temporal Logic for QSIM. un-
published term paper. 1989.

o . Allen Emerson. 1990. Temporal and modal
logic. In Handbook of Theoretical Computer Sci-
ence, (J. van Leeuwen, ed.), Elsevier Science Pub.

B. V./MIT Press, 1990, pp. 995-1072.

o David W. Franke. 1991. Deriving and using de-
scriptions of purpose. IEEE Ezpert, April 1991,
pp. 41-47.

e Farnam Jahanian and Douglas A Stewart, A
Method for Verifying Properties of Modechart
Specifications. Proceedings of the Real-time Sys-
tems Sympostum. Huntsville, AL December 1988,

e Benjamin J. Kuipers. 1986. Qualitative simula-
tion. Artificial Intelligence 29: 289 - 338.

e Benjamin J. Kuipers. Reasoning with qualitative
models. 1993. Artificial Intelligence 59: 125-132.

e Benjamin J. Kuipers. Qualitative simulation:
then and now. 1993. Artificial Inlelligence 59:
133-140.

o Benjamin J. Kkuipers. 1994. Qualitative Rea-
soning. Modeling and Stmulation with Incomplete
Knowledge. Cambridge, MA: MIT Press, in press.

e B. J. Kuipers and K. Astrém. 1994. The com-
position and validation of heterogeneous control
laws. Automatica 30(2): 233-249.

e B. J. Kuipers and B. Shults. 1994. Reasoning in
logic about continuous systems. In J. Doyle, L.
Sandewall, and P. Torasso, editors, Principles of
Knowledge Representation and Reasoning: Pro-
ceedings of the Fourth International Conference
(KR-94), Morgan Kaufmann, San Mateo, CA.

e O. Lichtenstein & A. Pnueli. 1984. Checking
that finite state concurrent programs satisfy their
linear specifications. Twelfth Annual ACM Sym-
postum on Principles of Programming Languages,
pp. 97-107.

e [. Moon, G. J. Powers, J. R. Burch & E. M.
Clarke. 1992. Automatic verification of sequen-

tial control systems using temporal logic. AIChE
Journal 38(1): 67-75.

e Bradley I.. Richards, Ina Kraan and Benjamin
J. Kuipers. 1992, Automatic abduction of
qualitative models. Proceedings of the National
Conference on Artificial Intelligence (AAAI-92),
AAAL/MIT Press, 1992.

e Hao Wang. 1960. Toward Mechanical Mathemat-
ics. reprinted- in Automation of Reasoning I. ed.

Jorg Siekmann and Graham Wrightson. Springer-
Verlag 1983 pp. 244-264.

