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Abstract

Weoutlineawayof generatingcausalexplanationsfrom mathematicalmodels. This approachis
derivedfrom the causalordering theoryof Iwasaki and Simon (Iwasaki and Simon, 1986a,
1986b; Iwasaki, 1988). Ratherthanproducea singlecausalityby propagatingcausality from
variables whosevalues are determinedfrom outside the model, we allow causalityto be
propagatedfrom variableswithin themodel which arelittle influencedfrom within themodel.
This allowsus to dealwith wider rangeof modelsincluding systemswith feedback,however,
multiple causalexplanationsmay then result. However,with propagationfrom the “most
exogenousvariables”a comparativelysmall numberof explanationareproducedwhich include
thoseof interestto domain experts.We haveappliedthis approachto largemodelsincludingan
environmentgreenhouseeffect model. We suggestthat thecostof arangeof “plausible” models
is smallcomparedto theadvantagesofdealingwith a widerrangeof modeltypes.

INTRODUCTION

Computersimulation of complex systems
basedon mathematicalmodels has long
been an area of interest. With the
emergenceof high performancecomputers,
simulationhascometo play anincreasingly
importantrole and currentmodelsarevery
large. The areanow even has a name,
Computational Science. Simulation is
applied to engineeringdesign, scientific
developmentandforecasting. For example
environmentalmodelling is an increasingly
critical activity. As knowledge based
systemscontinue to expandin scope and
application and their knowledge sources
continueto diversify, properlinking of KBS
andlargemathematicalmodelswill become
increasingimportant(Kowalik, 1986).

The link betweenmathematicalmodelsand
KBS is problematicbecausethesemodels
are mathematical. Causal reasoningis a
core method of reasoning about how

physical systemswork (Iwasaki, 1988).
However, modern physics pays little
attentionto causality,andmathematicsdoes
not attemptto formaliseit. Oneof the limits
of the mathematicalmodels is that they
provide no explicit knowledgeof how to
perform analysis or to interpret results
(Kunz et al, 1989). When we examine a
single simulation output we cannot
necessarilyunderstandthe factorsinvolved.
We haveto perturbparametersorexaminea
range of behavioursor have an intimate
knowledge of the behaviour of such
mathematicalequations.However,even a
simple mathematicalmodel can havevery
complexdynamicbehaviour(May, 1976).

The interpretation of an equation or a
diagramis highly context-dependent.Low-
level graphicalelementsor abstractsymbols
donot havetheprecisemeaningsthat words
havein naturallanguage.The symbolsof x
and y in x = y takeon different meanings
depending on the problem under
consideration.



Researchershave workedon constructing
causal explanationsfrom mathematical
equations.Forbus (Forbus, 1984) suggests
that the causalreasoningof an equation
shouldbe fixed a priori. IwasakiandSimon
(Iwasaki andSimon, 1986, 1986a)assigna
causalorderingto variablesgiven only the
equationsand a list of which variablesare
exogenous. That is, the initial value is
influencedfrom outsidethe system.Fixing
the causal order a priori limits the
behavioursgenerated,sincedifferent causal
explanationsareoftenpossible.

According to Pearl and Verma(Pearl and
Verma, 1991),the task of causalmodelling
can alsobeviewedasan identificationgame
played by scientists againstNature. The
notion of causality is context-dependent,
which allows humans to decide on the

structureof the models and consequently

processthemin adifferentway.

CAUSAL ORDERING THEORY

CausalOrdering(IwasakiandSimon, 1986a,
1986b) is a technique for assigning an
ordering to variables given only a set of
equationsand a list of which variablesare
exogenous.An exogenousvariable is a
variablethat is influencedfrom outsidethe
systemdirectly and producesa changeto
othervariables.Thatis it is avariablewhose
initial value is fixed by the user, Their
approachis basedon the theoryof causal
orderingfirst presentedby Simon in 1952
(Simon, 1952).

Thetheoryof causalorderingdefinescausal
ordering asan asymmetricrelation among
variablesin a setof simultaneousequations.

direction of causality based on the
circumstantialknowledge.

We proposea set of heuristicsto transform
equationsto a suitable form to produce
reasonablecausalexplanations.Ourmethod
producesa numberof explanations.We use
some simple heuristicsto producelikely
explanationsfrom the way peopleseemto
normallyconstructmodels. We furtheruse
informationform the userandothersources
to decidewhich particular models are of
interest. In essencewe find out the same
sort of causalityas the methodof Iwasaki
and Simon (Iwasaki and Simon, 1986a,
1986b). However in order to find out
causalityfor a wide rangeof models,we
haveto usedifferent assumptionsaboutthe

Establishing a causal ordering involves
finding subsetsof variableswhose values
can be computed independentlyof the
remainingvariables and then using those
valuesto reducethestructureto a smallerset
of equationscontainingonly the remaining
variables.We illustrate the causalordering
procedure by applying it to the evaporator
exampleshownin Figure 1 (adaptedfrom
(Iwasaki, 1986a)).

The systemis modelledby the equationsof
Figure 2a.Theequationshavethefollowing
interpretation(theconstantsareci’s): (1) The
rateof heatgainedby the refrigerant,H, is
proportionalto the temperaturedifference.
Tc is thecondensingtemperatureandTw is
thetemperaturein thechamber.(2) Thesum
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Figure1. An Evaporatorexample



of the heat absorbed, H, and the energy of
the incoming fluid is the energy of the
outgoing fluid, where G is the ratio of
vapour to total mass in the outgoing
refrigerant,Ti and To are the temperatures
of incoming and outgoingrefrigerant. (3)
The condensing temperature of the
refrigerant is a monotonically increasing
function (f) of the pressure,P. (4) The
output temperatureof therefrigerantis equal
to the condensing temperature in the
refrigeratorchamber.

The causal ordering procedure assigns
causal dependenciesbetweenvariables by
propagation through self-contained
equations(Figure 2a-2d). Self-contained
equationsarea systemof n equationswith
exactly n unknowns.Eachmatrix elementis
either blank or markedas a “1”. A mark in

shows how causationpropagatesto other
variables.By substitutingthe valuefor all
the occurrencesof variables, a new self-
containedstructureis obtained,until there
are no more self-containedsubsets.Figure
2b - 2c showthederivedstructuresof higher
orders. The variablein the minimal complete
subsetof the matrix is circled in the self-
containedmatrix. The final causalstructure
is shownin figure2e.

In order for causalordering to producea
“correct” causal structure,each equation
must be a structural equation, i.e. it
represents a conceptually distinct
mechanism in the system. The term
“mechanism” identifies physicalprocesses
as a kind of law and each equation is
assignedto one mechanism.Iwasaki states
that unfortunatelythereis no simple way to
identify that an equation is structural

1.H=cl(Tw-Tc)
2. H = Q(c2G - (Ti - To))
3. Tc = f(P)

4.To=Tc
5.Ti=c3
6.Q=c4
7.P=c5
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Figure2. Equationsfor evaporatorandthederivedstructureof causalordering

row i column j means that variable Xj

appears in equation i. Each row can have
one or more marks. In order to makethe
systemself-contained,the causalordering
needsfour additional assumptions,in the
form of additional equations. The four
additionalequationsare:

Each additional equation defines an
exogenousvariable,which providesa causal
input to the phenomenonand is external to
the evaporator.The causal ordering is
derivedfrom theseexogenousvariablesand

Ti=c3,
Q = c4,
P=c5,
Tw=c6.

(5)
(6)
(7)
(8)

(Iwasaki, l986a, 1986b). Causal ordering
assumesthatequationsusedin themodelare
structuralequations,anddoesnotprovidea
method for transforming equations to
structural equations.The causalordering
theory requiresa self-containedstructureto
describea system.To makea systemself-
containedandto assignexogenousvariables
relies upon an expert’s experience and
generalknowledgeof the model (Top and
Akkermans,1991).de Kleer and Brown (de
Kleer and Brown, 1986)point out that the
methodof causalorderingspecifiesthesame
ordering for all behaviours. This is
problematic as many systemshave multiple
modesof functioning, eachcharacterisedby
its own distinct causal interaction. Iwasaki
and Simon (Iwasaki and Simon, 1993)
declare that the causalorderingtheoryis not



1.M=clP Qin M
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Figure3. A steadyStateBathtubExample

sufficiently developedto interpret all
possible causaldirections. In particular
causalorderingcannotdealwith feedback.
Thefollowing sectionexplainsthe problem
ofthecausalordering.

CAUSAL STABILITY AND CAUSAL
CONSISTENCY

Electrical engineersuse Ohm’s law, and
Kirchhoffs voltage and current laws to
describethe fundamentalrelationsamong
voltage,currentandresistancein a circuit.
The laws are presentedas algebraic
equations,which canbe manipulated(e.g.V
= IR, I = VIR, R = V/I). Theequation V =

JR representselectrical conduction in a
resistor,whereavoltageV volts producesa
currentof! ampsthrougharesistorR ohms.
Dependingon the context,the equationcan
be causallyexplainedaseither thevoltageV
is causally dependenton current I and
resistorR or currentI on voltage V and
resistanceR. The third alternative,resistorR
is causallydependenton voltage V and
current I, does not make sense(Nayak,
1992). Thereis no set way of looking at it,
engineersmustbe ableto think aboutit in all
possibleways,but only someof which make
sense.Sometimespeopleusethe following
triangleto helprememberthethreeforms of
theformula:

No oneform of this equationis usedmore
thantheothers.

White and Frederiksen (White and
Frederiksen,1990) statethat the problem-
solving processthat studentsaretaughtdoes
notnecessarilyfacilitate an understandingof
thephysicalsystemunderstudy.Hencetheir
view that qualitative theories are not
consistentconcerningbasiccausalrelations
betweenvoltage, current,and resistance.
They arguethat our mentalmodelsshould
be consistentin the assumeddirection of
causality among resistance,voltage, and
currentin acircuit example.Howevermany
mental models have no mapping to the
physical world - hencethe mentalmodels
won’t have the samesort of causality(in
contrastto manybiological modelswhere
the causality comes first (Feldman and
Compton, 1989)).We stateintuitively that
addingwater(Qin) to a bathtub(Figure3a),
increasesthe mass (M) of water and
increasesthe pressure(P), which in turn
increasesthe output flow rate (Qout).
However, thereare a lot of things in the
physicalworld which areNOT intuitive -

and are often counter-intuitive.The causal
structureof the steadystatebathtub may
seemcounter-intuitive(figure 3c). It shows
that theoutputflow ratedirectly dependson
theinputflow rate,thepressuredependson
theoutputflow rate,andthe massof water
dependson thepressure.Theideaof current
leadingvoltageis anothercounter-intuitive
example.

Skorstad(Skorstad,1992)statesthat oneof
the limitationsof thecausalorderingtheory
of Iwasaki andSimon (Iwasaki and Simon,
1986, 1986a) is context sensitivity. He
argued that the causal dependencies
producedby thecausalorderingtheorymay
changedependingon the contextor scenario
in which the underlyingphysical system



Figure4. An exampleof Bathtub drainattachedto apump.

operates.Causal ordering uses a set of
exogenousvariables to place a systemin
different situations,which may changethe
interactionsbetweenthe system and its
environment. Thus, this restricts the
qualitative modellerby providing a fixed
causalinterpretation.
Skorstad (Skorstad, 1992) defines the
meaning of causal stability “A set of
algebraicequationsat a particularmodelling
viewpoint is causallystableif andonly if its
causalorderingis invariant with respectto
its scenariospace.Such a setof equationsis
unidirectionalwith respectto themodelling
viewpoint”. A modellingviewpoint means
that the modellermakesdecisionsabout
ontology, perspective,and assumptions
whenconceptualisingthe phenomenon.A
scenariospaceis a setof possiblesituations
whichareconsistentwith theequations.

Figure 4 showsa bathtubin a steadystate
wherea bathtubdrain is attachedto apump
and theinput streamis attachedto a control
valve (adapted from (Skorstad, 1992)).
Skorstad notes that the context sensitive
equationsin thebathtubexampleare:

The causal dependencyof the above
equations changes depending on the
circumstances.In the simple scenarioof
figure 3a, the output flow rate Qout is
causally dependenton the input flow rate
Qin. Howevei~,in figure 4a the outputflow
rateQout hasbecomeexogenous.Theinput
streamis attachedto acontrolvalve,thus the
input flow rateis no longerindependentof
the system and cannot be treated as
exogenous. Skorstad argued that if an

Qin = Qout,
Qout = Qin.

(equation3 offigure 4b)
(equation3 of figure 3b)

equationis unidirectionalwith respectto the
modelling viewpoint, then the equationis
causalstableequation,suchas:

P = ciM. (equation1 of figure lb and2b)

de Kleer and Brown (de Kleer and Brown,
1986) statethat ambiguity is the singlekey
advantagein qualitativecausalanalysis.It is
not necessaryto have a uniquesolution in
the n independent equations with n
unknowns.In fact, unique solutionsoccur
only rarely.Thus eachsolutionpotentially
reflectsa different global functioningwith a
distinct causality. Most systems are
indeterminate.Thereforequalitativecausal
reasoningshould be able to interpretall its
possiblebehaviours.This is crucial for using
the model to explain a physical system’s
operation.

CONTEXT-DEPENDENT CAUSAL
EXPLANATIONS

In this section,we proposean approachto
overcomesome of the limitations of the
causalordering theory. We useequations
that are a finite set of simultaneous
equationsand are from a mathematical
model that describesthedynamicbehaviour
of the system. We identify variable
dependenciesfirst, then restructure
equationsto be asymmetriccausalequation.
We use the term “asymmetric causal
equation” insteadof “structural equation”,
becausea structuralequationshouldexpress
the “real” causality; our equation are
structural-like, but express “reasonable
causality” (Lee et al , 1992a, 1992b).
Causalitycan then be explicitly represented
in asymmetriccausal equations. If the
dependencyof a variablecan not be fully

1.Mc1P Qin M
2.P=Qin+c2 ~ ~,
3.Qin=Qout

Qout p
4. Qout=c3

(a) (lj) (c)



specified, then multiple plausible causal
behavioursaregenerated.

An asymmetric causal equation is an
equation which can be understood as
containing independentand dependent
variables.This asymmetrymanifestsitself in
that variableson theLHS aredependenton
thevariableson theRHS.Hence:

(a) The output variableappearson
theLHS of theequation,it is the
variable whosebehaviouris of
interest.

(b) The input or independent
variablesappearon the RHS of
theequationin themodel.

(c) Dependentvariable occurring
once and only onceon the LHS
of theequationin themodel.

(d) For a differential equation,the

importantvariableswill be usedfrequently
in themodel,whileothervariablesareadded
to fill in the gaps.In contrastto the causal
ordering theory by propagating from
exogenous, we deal with the causal
influencesfrom these“lesser” variablesor
“least caused” variables first. Once the
greatestnumberof leastoccurringvariable
arechosen.The equationis manipulatedso
that the leastoccurringvariablesareon the
RHS in the model. The remainingof the
equationsare thenmanipulatedto give an
asymmetriccausalform. The first equation
is now consideredfixed and the process
repeatedfor therestof the equationsetc.

The identification of appropriatecausal
explanationsfrom equations is highly
dependent on the problem under
consideration.As the need for second-
generationexpert systemsare to express

Figure5. Equationsfor evaporatorandthederivedstructureof ourmethod.

derivative is on the LHS of the
equation, with only one
derivativein eachequation.

To reducethe numberof causalalternatives
in feedback system loops, an important
heuristic is to reorganiseequations by
propagatingcausalityfrom the parameters
which are “the least caused”. Those
variablesare independentvariables,which
are set by the user.We look ratherfor the
“most” independentvariable.We start from
the equationwhere there are the greatest
numberof suchvariables.We hypothesise
that this hassomethingto do with parsimony
in scientific explanation.Model builders
often want to discover(create)the smallest
numberof entitiesandcausalconnectionsto
explain the behaviourof a system.More

how the things work; how different
mechanismsinteract; and to explain
evidencein termsof structureand behaviour
(Kuipersand Williams, 1988). In order to
explainthe evaporatorinternalbehaviourof
thetotal massof theoutgoingrefrigerant,G,
and the outgoing temperature,To, our
system propagatevariables within the
equations,which comefrom an evaporator
mathematical model (figure 5a), and
generatesthe asymmetriccausalequations
(figure Sb) of the evaporatormodel. In
figure Sb, circles show the variables of
interests.Once the systemconstructsthis
asymmetriccausalstructurefor the model,
the causal graph is from the RHS of
variables direct to the LHS of variables
(figure Sc).

Equations AsymmetricCausalEquations CausalGraphs

P * Tc —~To
1.H=cl(Tw-Tc) 1.H=[Tw,TcI
2. H = Q(c2G - (Ti - To)) 2.~=[H, Ti, To, QI
3. Tc = f(P) 3. Tc = [P1 Tw -~*~H
4.To=Tc 4.~[Tc] ,%~

Q Ti

(a) (b) (c)



In order to expressthe differentphenomena
interactat pressurewithin chamber,P, and
the total massof outgoing refrigerant,G,
multiple causalasymmetriccausalequations
are generated(figure 6b). Based on the
multiple asymmetriccausalequations,the
equationscould produceall plausiblecausal
directions.In this evaporatorexample,the
contextsensitiveequationsare:

Its causaldependencyvariesdependingon
its situational context. In figure 6.2a, the
condensingtemperatureis shown to be
causallydependenton thetemperatureof the
outgoing refrigerant. However, in figure

We imposethe restrictionthat a causedor
dependentvariablemust appearonly once
on the LHS of the equation.That is, each
equationexpressesall the causalinfluences
on a particularparameter.Thus once the
dependentvariableis determined,the causal
relationshipswithin the equationcan be
fully specified. In a feedback system,
sometimesit is difficult to identify the
dependencyof variables,thenweapply our
causalheuristic. Sincethe causalordering
limits the equationson a self-contained
structure,i.e n equationswith n unknowns,
this restrictsthe causalordering theory in
finding a unique solution for the model.
Thusif theself-containedstructurecouldnot
maintainduring the causalityconstructing
process, the implementation of causal

Figure6. An exampleof generatingmultiple causalasymmetriccausalequations.

6.2b the temperatureof the outgoing
refrigerant is causally dependenton the
condensingtemperature.According to the
causal stability definition by Skorstad
(Skorstad, 1992) , the equation of the
evaporator:

H = [Tw, Tc] (equation1 of figure Sb,6.2a
and 6.2b)

is causally stableor unidirectional,which
holds in any scenario that might be
encountered.

ordering eventuallyceased.If there is no
minimal completesubsetwithin equations,
thereis no substitutionbetweenvariablesin
the causal ordering theory. The self-
contained structure is not only limited
multiple possible causalities but also
restrictedcausalbehaviourgenerationin
feedbackloopsystems.

Further,our methodis ableto be usedfor
model revision. It has the capabilitiesof
allowing theusersto maketheirhypotheses,
we then backtrack through the proposed
causal graph to constructa new set of

To = Tc,
Tc = To.

(equation4 of figure 6.2a)
(equation4 of figure 6.2b)

Equations AsymmetricCausalEquations CausalGraphs

1. H=cl(Tw-Tc)
2. H = Q(c2G - (Ti - To))
3.Tc=f(P)
4. To=Tc

1. II = [Tw,Tc]
2. [H,Ti,To,Q1
3. [Tc]
4.To=[Tcj

(ib)

l.H=[Tw,Tc]
2.0= [H, Ti,To,QIl
3.~=[Tc]
4.Tc=[To]

Tc —~ P

To

Tw —*H —*G

,%+
(ic) ~ Ti

To
Tc

Tw ~ H —~ 0

(a) (2b) (2c)



Figure7. Equationswith it’s undirectedandaminimal directedspanning
asymmetriccausalequations.Thus the user

canchecktheconsistencyof thehypothesis.

The Algorithm

We present the basic algorithm that
formulatesa set of equationsasasymmetric
causalequationsin an efficient way. The
algorithmdeliversall possiblecausalmodels
if the set of equationstogetherwith the
causality information are consistent,
otherwise it generatesappropriateerror
messagesand stops.Theinterpretationof the
causality information is up to the user.
Unlike the causalordering approach,this
algorithm can be used in a system with
feedback(Leeet al, 1992a).

proceduregenAsyCausalEqu
% MultiSol is astackof storingall plausible
equationmodels
% FoundEquis theequationswith greatnumberof
leastoccurringvariables
TotalVar := empty;InputDevices:=
empty;MultiSol := empty;FoundEqu:= empty;
PUSH all thevariablesoccurring in thesetof
equationsINTO TotalVar
while TotalVaris not emptydo

search(least-occurrence-variables)andput
into InputDevices

for all InputDevicesdo
search(greatest-number-of-least-
occurring-variables-in-a-equ)and
put into FoundEqu
if nomoreFoundEquthen stop
for all equationsin theFoundEqudo

setthe inputDeviceson
RHS andpop theinputDevices
if therearemorethenone
emainingvariableon the
equationthen

saveall thepossiblesituation
on MultiSol

end
end

end

Complexity

elseputit to LHS andpushthe
variableto Inputdevices
if (this conflictswith causality
information) then
backtrackto nextsolution

else“model inconsistent”stop

In orderto determinetheorderof magnitude
of thetime-complexityof the algorithm,we
representa setof abstractequations(figure
7(a)) togetherwith the setof variablesin an
undirectedspanningtree(figure 7(b)). The
vertexrepresentsthevariableandtheedges
aretheconnectionbetweenvertices.In order
to detect the edges, each vertex of the
undirectedgraphneedsto bevisited andthe
edgesincident upon eachvisited vertex
needsto bedirected.Visiting eachvertexof
a graph is equivalent to obtaining its
spanningtree. A spanningtreeis any tree
consistingsolely of edgesin a graphG and
including all vertices of G. Thus the
complexity of our algorithmis comparable
with the Kruskal algorithm(Horowitz and
Sahni, 1976) for obtaining the minimal
spanning tree, a spanning tree with
minimum cost. Figure 7(c) show the
minimal directedspanningtreeof themodel.
Although our algorithmdoesnot look for a
lowest-costedge,we searchfor thegreatest
number of least occurring variables for
consistencychecking.Hencethecomplexity
of our algorithm seemsto be O(n logn)
wheren is thenumberof edges.However,if
the usersprovidemorecausalinformation,
its complexitywill be significantly reduced.

1.G=L-T
2. I=P-K
3.T=I*G
4. K = I
5.L=I
6. P = G

(a) (b) (c)



Our approachcan be used to represent
systemsofequationsthatareof ahigh order.
We reducehigherordersystemto first order
asfirst orderchangeswith time arereasoned
about causality. It seems that normal
reasoningabout causality is first order.
Peoplereasonprimarily abouteffectsover
time.

Considerthefollowing differential equations
of a spring-masssystem:

dx2/dt2+ (k/m) * x =0 (1)

where
x = displacement,
k = Hooke’sspringconstant,
and m = mass.

Solving for dx2/dt2yields:

dx2/dt2 = ~/m) * x

Velocity (v) is the first derivative of
displacement(i.e. v = dxldt). We canreplace
thesecondorderdifferential,dx2/dt2,with a
first orderdifferentialin termsof v:

dv/dt = -(k/rn) * x

Now thereare two first order differential
equations:

dx/dt= v
dv/dt = -(k/rn) * x

The causal relations are explicitly
representedon theaboveequationssuchthat
thevariableson the LHS aredependenton

the variables on the RHS. The
illustration belowrepresentsthecausal
diagramcorrespondingto the spring-
masssystem.

In figure 8, an integrationlink, which
is an edgeconnectinga derivativeof a
variableto thevariableitself, is marked
by i. The rate of changeof v is
determinedby x, k andm.

DISCUSSION

This paperis aimedat addressingthe first
point that our proposed theory could
interpret all plausible situations that are
consistentwith the equations,subjectto the
underlying modelling viewpoint. Our
method is not only to identify equations,
which arecontextsensitivedependingon the
circumstancesbut also uncoverequations,
which arecausally stableor unidirectional.
The causally stable algebraic equations
couldprovide the qualitativemodel builder
with a uniquequalitativecomponentwhich
holds in any scenario that might be
encountered.

Model formulationis adifficult problemin
qualitative physics (Forbus, 1984;
Falkenhainer and Forbus, 1991; Weld,
1990). In order to successfullyproduce
causalrelations that reflect our intuitive
perceptionin thecausalorderingtheory, the
equationsmust be structural. Structural
equationsrepresentconceptuallydistinct
mechanismsin the systembeingmodelled.
However, deciding which equationsare
structuralin a givensituation is an essential
problem of model formulation. Iwasaki

DYNAMIC STRUCTURE

v —~‘~ dx/dt ___L_.~. x

dv/dt

k m

Figure8. Thecausalgraphof thespring-masssystem. IwasakiandSimonin theretrospective
on “Causalityin devicebehaviour” (Iwasaki
and Simon, 1993) state that the causal
ordering theory was not sufficiently
developedin that equationsarenot ableto
interpretin all possiblecausaldirection; that
the theorydoesnot show how to formulate
equation models; that the theory defined
causalitysometimesarenot consistentwith
the underlyingperceivedcausaldirectionin
dynamicsystems.

(1)
(2)



(Iwasaki 1988; Iwasaki and Simon, 1993)
points out that there is no simple way to
identify that an equation is structural.
However,our proposedmethod seemsto
haveidentified a structuralequationandto
assign a direct relationship to physical
componentsof the equation by using
independentand dependentvariables.The
methodparsesthe definedindependentand
dependentvariables within equationsand
reconstructstheequationsto be asymmetric
causal equations. We use the term
“asymmetric causal equation” instead of
“structural equation”, becausea structural
equationshould expressthe“real” causality;
ourequationarestructural-like,but express
“reasonablecausality” (Lee el al, 1992a,
1992b). Causality then can be explicitly
representedin the asymmetric causal
equations.We will explorethis issuemore
andaddressit lateraswehaven’tdiscovered
from where a mathematicalmodel comes
from and from a cognitive point of view,
how a model builder constructs a
mathematicalequations.

In termsof the causalrelationsin dynamic
systems, our proposedmethod and the
causal ordering theory require the
differential equationsin themodel to be in a
canonicalform, where thederivative is on
the LHS of the equationandwith only one
derivativein eachequation(Iwasaki, 1988;
Leeet al, 1992a). Thedirectionof causality
is from the variables on the RHS to the
derivateon the LHS. However,sometimes
in the dynamic physicalsystemswhere a
changein a quantity is perceived as the
causeof someother quantity, such as the
Faraday’slaw of induction, E = -døB/dt,
wherea changein magneticflux (døB/dt)
produceselectromagneticforce(E), but not
viceversa(IwasakiandSimon, 1993).Also,
in order to represent a higher order
differentialequation,our approachreduces
higherorderto first order. Wedo sobecause
most higher order equationsare derived
from first order equationsand causality
seemsto be explicitly representedin thefirst
orderequations.However,in somedynamic
systems,suchasan equationto describethe
bendof abeam:

it is difficult to reduce higher order
equationsto first orderequations.

We have successfullytestedour proposed
method on more than 20 mathematical
models,which include all of those in the
relevant literature and some greenhouse
effect models, i.e. a very large Global
EnergyModel (EdmondsandReilly, 1983)
with 41 equationsand 73 variables.In all
cases the method discoversthe “correct”
causality. However, equations in
mathematicalmodels do not model any
original causality. We need to further
investigatewhatclassof equations(if any)
haveimplicit causalityand what classesof
equationsdo not. Our heuristicdoesmanage
to recapturethe original causality where
relevant,or at leasta reasonablecausality
where the equation was not basedon an
initial causal model. We attempt to
understandon whatclassesof mathematical
modelsthis heuristicworks or in what way
causalityis implicit in thesemodels.Also,
we need to assigncausaleffects (+ or -

signs) in the causal directions. If, for
example,air temperatureincreasesassolar
radiation increases,then the causal link
between the two is positive (+) or
proportional. Conversely,if the level of
waterin a lake decreasesas solarradiation
increases,thecausallink betweenthetwo is
negative(-).

CONCLUSION

Decision supportsystemsmay require the
use of existing complex mathematical
models. It is desirable to reduce the
equationsof suchamodel to an explanatory
causalform to supportdecisionmaking.We
haveshownthat fixing causaldependencies
in a specificcontextis extremelylimiting to
behaviourgeneration.An asymmetriccausal
explanationapproachhasbeenproposedto
generatecausalknowledgein context.We
haveshownthat it is possibleto supportthe
model builder’s problem solving by
generatingall theplausiblecausaldirections
in a physical system.Our approachhas
overcomesome limitations of the causal
ordering theory in a feedbacksystem. We
havepresentedthealgorithmthatformulates
equationsas asymmetriccausalequations.- ~4U/~Y4 0,



This approachalso applies to temporal

knowledgein adynamicsystem.
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