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Abstract

We outline a way of generating causal explanations from mathematical models. This approach is
derived from the causal ordering theory of Iwasaki and Simon (Iwasaki and Simon, 1986a,
1986b; Iwasaki, 1988). Rather than produce a single causality by propagating causality from
variables whose values are determined from outside the model, we allow causality to be
propagated from variables within the model which are little influenced from within the model.
This allows us to deal with wider range of models including systems with feedback, however,
multiple causal explanations may then result. However, with propagation from the "most
exogenous variables" a comparatively small number of explanation are produced which include
those of interest to domain experts. We have applied this approach to large models including an
environment greenhouse effect model. We suggest that the cost of a range of "plausible” models

is small compared to the advantages of dealing with a wider range of model types.

INTRODUCTION

Computer simulation of complex systems
based on mathematical models has long
been an area of interest. With the
emergence of high performance computers,
simulation has come to play an increasingly
important role and current models are very
large. The area now even has a name,
Computational Science. Simulation is
applied to engineering design, scientific
development and forecasting. For example
environmental modelling is an increasingly
critical activity. As knowledge based
systems continue to expand in scope and
application and their knowledge sources
continue to diversify, proper linking of KBS
and large mathematical models will become
increasing important (Kowalik, 1986).

The link between mathematical models and
KBS is problematic because these models
are mathematical. Causal reasoning is a
core method of reasoning about how

physical systems work (Iwasaki, 1988).
However, modern physics pays little
attention to causality, and mathematics does
not attempt to formalise it. One of the limits
of the mathematical models is that they
provide no explicit knowledge of how to
perform analysis or to interpret results
(Kunz er al, 1989). When we examine a
single simulation output we cannot
necessarily understand the factors involved.
We have to perturb parameters or examine a
range of behaviours or have an intimate
knowledge of the behaviour of such
mathematical equations. However, even a
simple mathematical model can have very
complex dynamic behaviour (May, 1976).

The interpretation of an equation or a
diagram is highly context-dependent. Low-
level graphical elements or abstract symbols
do not have the precise meanings that words
have in natural language. The symbols of x
and y in x = y take on different meanings
depending on the problem under
consideration.



Researchers have worked on constructing
causal explanations from mathematical
equations. Forbus (Forbus, 1984) suggests
that the causal reasoning of an equation
should be fixed a priori. Iwasaki and Simon
(Iwasaki and Simon, 1986, 1986a) assign a
causal ordering to variables given only the
equations and a list of which variables are
exogenous. That is, the initial value is
influenced from outside the system. Fixing
the causal order a priori limits the
behaviours generated, since different causal
explanations are often possible.

According to Pearl and Verma (Pearl and
Verma, 1991), the task of causal modelling
can also be viewed as an identification game
played by scientists against Nature. The
notion of causality is context-dependent,
which allows humans to decide on the

structure of the models and consequently
process them in a different way.

CAUSAL ORDERING THEORY

Causal Ordering (Iwasaki and Simon, 1986a,
1986b) is a technique for assigning an
ordering to variables given only a set of
equations and a list of which variables are
exogenous. An exogenous variable is a
variable that is influenced from outside the
system directly and produces a change to
other variables. That is it is a variable whose
initial value is fixed by the user. Their
approach is based on the theory of causal
ordering first presented by Simon in 1952
(Simon, 1952).

The theory of causal ordering defines causal
ordering as an asymmetric relation among
variables in a set of simultaneous equations.
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Figure 1. An Evaporator example

direction of causality based on the
circumstantial knowledge.

We propose a set of heuristics to transform
equations to a suitable form to produce
reasonable causal explanations. Our method
produces a number of explanations. We use
some simple heuristics to produce likely
explanations from the way people seem to
normally construct models. We further use
information form the user and other sources
to decide which particular models are of
interest. In essence we find out the same
sort of causality as the method of Iwasaki
and Simon (Iwasaki and Simon, 1986a,
1986b). However in order to find out
causality for a wide range of models, we
have to use different assumptions about the

Establishing a causal ordering involves
finding subsets of variables whose values
can be computed independently of the
remaining variables and then using those
values to reduce the structure to a smaller set
of equations containing only the remaining
variables. We illustrate the causal ordering
procedure by applying it to the evaporator
example shown in Figure 1 (adapted from
(Iwasaki, 1986a)).

The system is modelled by the equations of
Figure 2a. The equations have the following
interpretation (the constants are ci's): (1) The
rate of heat gained by the refrigerant, H, is
proportional to the temperature difference.
Tc is the condensing temperature and Tw is
the temperature in the chamber. (2) The sum




of the heat absorbed, H, and the energy of
the incoming fluid is the energy of the
outgoing fluid, where G is the ratio of
vapour to total mass in the outgoing
refrigerant, Ti and To are the temperatures
of incoming and outgoing refrigerant. (3)
The condensing temperature of the
refrigerant is a monotonically increasing
function (f) of the pressure, P. (4) The
output temperature of the refrigerant is equal
to the condensing temperature in the
refrigerator chamber.

The causal ordering procedure assigns
causal dependencies between variables by
propagation through self-contained
equations (Figure 2a-2d). Self-contained
equations are a system of n equations with
exactly n unknowns. Each matrix element is
either blank or marked as a "1". A mark in

shows how causation propagates to other
variables. By substituting the value for all
the occurrences of variables, a new self-
contained structure is obtained, until there
are no more self-contained subsets. Figure
2b - 2¢ show the derived structures of higher
orders. The variable in the minimal complete
subset of the matrix is circled in the self-
contained matrix. The final causal structure
is shown in figure 2e.

In order for causal ordering to produce a
"correct”" causal structure, each equation
must be a structural equation, i.e. it
represents a conceptually distinct
mechanism in the system. The term
"mechanism" identifies physical processes
as a kind of law and each equation is
assigned to one mechanism. Iwasaki states
that unfortunately there is no simple way to
identify that an equation is structural
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Figure 2. Equations for evaporator and the derived structure of causal ordering

row i column j means that variable xj
appears in equation i. Each row can have
one or more marks. In order to make the
system self-contained, the causal ordering
needs four additional assumptions, in the
form of additional equations. The four
additional equations are:

Ti =c3, (5)
Q=c4, (6)
P =c5, (7
Tw = c6. (8)

Each additional equation defines an
exogenous variable, which provides a causal
input to the phenomenon and is external to
the evaporator. The causal ordering is
derived from these exogenous variables and

(Iwasaki, 1986a, 1986b). Causal ordering
assumes that equations used in the model are
structural equations, and does not provide a
method for transforming equations to
structural equations. The causal ordering
theory requires a self-contained structure to
describe a system. To make a system self-
contained and to assign exogenous variables
relies upon an expert's experience and
general knowledge of the model (Top and
Akkermans, 1991). de Kleer and Brown (de
Kleer and Brown, 1986) point out that the
method of causal ordering specifies the same
ordering for all behaviours. This is
problematic as many systems have multiple
modes of functioning, each characterised by
its own distinct causal interaction. Iwasaki
and Simon (Iwasaki and Simon, 1993)
declare that the causal ordering theory is not
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Figure 3. A steady State Bathtub Example

sufficiently developed to interpret all
possible causal directions. In particular
causal ordering cannot deal with feedback.
The following section explains the problem
of the causal ordering.

CAUSAL STABILITY AND CAUSAL
CONSISTENCY

Electrical engineers use Ohm's law, and
Kirchhoff's voltage and current laws to
describe the fundamental relations among
voltage, current and resistance in a circuit.
The laws are presented as algebraic
equations, which can be manipulated (e.g. V
=IR,I=V/R,R =V/I). The equation V =
IR represents electrical conduction in a
resistor, where a voltage V volts produces a
current of / amps through a resistor R ohms.
Depending on the context, the equation can
be causally explained as either the voltage V
is causally dependent on current / and
resistor R or current / on voltage V and
resistance R. The third alternative, resistor R
is causally dependent on voltage V and
current I, does not make sense (Nayak,
1992). There is no set way of looking at it,
engineers must be able to think about it in all
possible ways, but only some of which make
sense. Sometimes people use the following
triangle to help remember the three forms of
the formula: '

I R

No one form of this equation is used more
than the others.

White and Frederiksen (White and
Frederiksen, 1990) state that the problem-
solving process that students are taught does
not necessarily facilitate an understanding of
the physical system under study. Hence their
view that qualitative theories are not
consistent concerning basic causal relations
between voltage, current, and resistance.
They argue that our mental models should
be consistent in the assumed direction of
causality among resistance, voltage, and
current in a circuit example. However many
mental models have no mapping to the
physical world - hence the mental models
won't have the same sort of causality (in
contrast to many biological models where
the causality comes first (Feldman and
Compton, 1989)). We state intuitively that
adding water (Qin) to a bathtub (Figure 3a),
increases the mass (M) of water and
increases the pressure (P), which in turn
increases the output flow rate (Qout).
However, there are a lot of things in the
physical world which are NOT intuitive -
and are often counter-intuitive. The causal
structure of the steady state bathtub may
seem counter-intuitive (figure 3c). It shows
that the output flow rate directly depends on
the input flow rate, the pressure depends on
the output flow rate, and the mass of water
depends on the pressure. The idea of current
leading voltage is another counter-intuitive
example.

Skorstad (Skorstad, 1992) states that one of
the limitations of the causal ordering theory
of Iwasaki and Simon (Iwasaki and Simon,
1986, 1986a) is context sensitivity. He
argued that the causal dependencies
produced by the causal ordering theory may
change depending on the context or scenario
in which the underlying physical system
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Figure 4. An example of Bathtub drain attached to a pump.

operates. Causal ordering uses a set of
exogenous variables to place a system in
different situations, which may change the
interactions between the system and its
environment. Thus, this restricts the
qualitative modeller by providing a fixed
causal interpretation.

Skorstad (Skorstad, 1992) defines the
meaning of causal stability "A set of
algebraic equations at a particular modelling
viewpoint is causally stable if and only if its
causal ordering is invariant with respect to
its scenario space. Such a set of equations is
unidirectional with respect to the modelling
viewpoint". A modelling viewpoint means
that the modeller makes decisions about
ontology, perspective, and assumptions
when conceptualising the phenomenon. A
scenario space is a set of possible situations
which are consistent with the equations.

Figure 4 shows a bathtub in a steady state
where a bathtub drain is attached to a pump
and the input stream is attached to a control
valve (adapted from (Skorstad, 1992)).
Skorstad notes that the context sensitive
equations in the bathtub example are:

Qin = Qout,
Qout = Qin.

The causal dependency of the above
equations changes depending on the
circumstances. In the simple scenario of
figure 3a, the output flow rate Qout is
causally dependent on the input flow rate
Qin. Howeveg, in figure 4a the output flow
rate Qout has become exogenous. The input
stream is attached to a control valve, thus the
input flow rate is no longer independent of
the system and cannot be treated as
exogenous. Skorstad argued that if an

(equation 3 of figure 4b)
(equation 3 of figure 3b) -

equation is unidirectional with respect to the
modelling viewpoint, then the equation is
causal stable equation, such as:

P=cIM. (equation 1 of figure 1b and 2b)
de Kleer and Brown (de Kleer and Brown,
1986) state that ambiguity is the single key
advantage in qualitative causal analysis. It is
not necessary to have a unique solution in
the n independent equations with n
unknowns. In fact, unique solutions occur
only rarely. Thus each solution potentially
reflects a different global functioning with a
distinct causality. Most systems are
indeterminate. Therefore qualitative causal
reasoning should be able to interpret all its
possible behaviours. This is crucial for using
the model to explain a physical system's
operation.

CONTEXT-DEPENDENT CAUSAL
EXPLANATIONS

In this section, we propose an approach to
overcome some of the limitations of the
causal ordering theory. We use equations
that are a finite set of simultaneous
equations and are from a mathematical
model that describes the dynamic behaviour
of the system. We identify variable
dependencies first, then restructure
equations to be asymmetric causal equation.
We use the term "asymmetric causal
equation” instead of "structural equation”,
because a structural equation should express
the "real" causality; our equation are
structural-like, but express "reasonable
causality” (Lee er al , 1992a, 1992b).
Causality can then be explicitly represented
in asymmetric causal equations. If the
dependency of a variable can not be fully




specified, then multiple plausible causal
behaviours are generated.

An asymmetric causal equation is an
equation which can be understood as
containing independent and dependent
variables. This asymmetry manifests itself in
that variables on the LHS are dependent on
the variables on the RHS. Hence:

(a) The output variable appears on
the LHS of the equation, it is the
variable whose behaviour is of
interest.

(b) The input or independent
variables appear on the RHS of
the equation in the model.

(¢) Dependent variable occurring
once and only once on the LHS
of the equation in the model.

(d) For a differential equation, the

important variables will be used frequently
in the model, while other variables are added
to fill in the gaps. In contrast to the causal
ordering theory by propagating from
exogenous, we deal with the causal
influences from these "lesser" variables or
"least caused" variables first. Once the
greatest number of least occurring variable
are chosen. The equation is manipulated so
that the least occurring variables are on the
RHS in the model. The remaining of the
equations are then manipulated to give an
asymmetric causal form. The first equation
is now considered fixed and the process
repeated for the rest of the equations etc.

The identification of appropriate causal
explanations from equations is highly
dependent on the problem under
consideration. As the need for second-
generation expert systems are to express
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Figure 5. Equations for evaporator and the derived structure of our method.

derivative is on the LHS of the
equation, with only one
derivative in each equation.

To reduce the number of causal alternatives
in feedback system loops, an important
heuristic is to reorganise equations by
propagating causality from the parameters
which are "the least caused". Those
variables are independent variables, which
are set by the user. We look rather for the
"most" independent variable. We start from
the equation where there are the greatest
number of such variables. We hypothesise
that this has something to do with parsimony
in scientific explanation. Model builders
often want to discover (create) the smallest
number of entities and causal connections to
explain the behaviour of a system. More

how the things work; how different
mechanisms interact; and to explain
evidence in terms of structure and behaviour
(Kuipers and Williams, 1988). In order to
explain the evaporator internal behaviour of
the total mass of the outgoing refrigerant, G,
and the outgoing temperature, To, our
system propagate variables within the
equations, which come from an evaporator
mathematical model (figure 5a), and
generates the asymmetric causal equations
(figure 5b) of the evaporator model. In
figure 5b, circles show the variables of
interests. Once the system constructs this
asymmetric causal structure for the model,
the causal graph is from the RHS of
variables direct to the LHS of variables
(figure 5c¢).




In order to express the different phenomena
interact at pressure within chamber, P, and
the total mass of outgoing refrigerant, G,
multiple causal asymmetric causal equations
are generated (figure 6b). Based on the
multiple asymmetric causal equations, the
equations could produce all plausible causal
directions. In this evaporator example, the
context sensitive equations are:

To=Tc,
Tc = To.

(equation 4 of figure 6.2a)
(equation 4 of figure 6.2b)

Its causal dependency varies depending on
its situational context. In figure 6.2a, the
condensing temperature is shown to be
causally dependent on the temperature of the
outgoing refrigerant. However, in figure

We impose the restriction that a caused or
dependent variable must appear only once
on the LHS of the equation. That is, each
equation expresses all the causal influences
on a particular parameter. Thus once the
dependent variable is determined, the causal
relationships within the equation can be
fully specified. In a feedback system,
sometimes it is difficult to identify the
dependency of variables, then we apply our
causal heuristic. Since the causal ordering
limits the equations on a self-contained
structure, i.e n equations with n unknowns,
this restricts the causal ordering theory in
finding a unique solution for the model.
Thus if the self-contained structure could not
maintain during the causality constructing
process, the implementation of causal
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Figure 6. An example of generating multiple causal asymmetric causal equations.

6.2b the temperature of the outgoing
refrigerant is causally dependent on the
condensing temperature. According to the
causal stability definition by Skorstad
(Skorstad, 1992) , the equation of the
evaporator:

H = [Tw, Tc] (equation 1 of figure 5b, 6.2a
and 6.2b)

is causally stable or unidirectional, which
holds in any scenario that might be
encountered.

ordering eventually ceased. If there is no
minimal complete subset within equations,
there is no substitution between variables in
the causal ordering theory. The self-
contained structure is not only limited
multiple possible causalities but also
restricted causal behaviour generation in
feedback loop systems.

Further, our method is able to be used for
model revision. It has the capabilities of
allowing the users to make their hypotheses,
we then backtrack through the proposed
causal graph to construct a new set of
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Figure 7. Equations with it's undirected and a minimal directed spanning

asymmetric causal equations. Thus the user
can check the consistency of the hypothesis.

The Algorithm

We present the basic algorithm that
formulates a set of equations as asymmetric
causal equations in an efficient way. The
algorithm delivers all possible causal models
if the set of equations together with the
causality information are consistent,
otherwise it generates appropriate error
messages and stops. The interpretation of the
causality information is up to the user.
Unlike the causal ordering approach, this
algorithm can be used in a system with
feedback (Lee et al , 1992a).

procedure genAsyCausalEqu
% MultiSol is a stack of storing all plausible
equation models
% FoundEqu is the equations with great number of
least occurring variables
TotalVar := empty;InputDevices =
empty;MultiSol := empty;FoundEqu := empty;
PUSH all the variables occurring in the set of
equations INTO TotalVar
while TotalVar is not empty do
search (least-occurrence-variables)and put
into InputDevices
for all InputDevices do
search (greatest-number-of-least-
occurring-variables-in-a-equ) and
put into FoundEqu
if no more FoundEqu then stop
for all equations in the FoundEqu do
set the inputDevices on
RHS and pop theinputDevices
if there are more then one
emaining variable on the
equation then
save all the possible situation
on MultiSol

else put it to LHS and push the
variable to Inputdevices
if (this conflicts with causality
information) then
backtrack to next solution
else "model inconsistent” stop
end
end
end

Complexity

In order to determine the order of magnitude
of the time-complexity of the algorithm, we
represent a set of abstract equations (figure
7(a)) together with the set of variables in an
undirected spanning tree (figure 7(b)). The
vertex represents the variable and the edges
are the connection between vertices. In order
to detect the edges, each vertex of the
undirected graph needs to be visited and the
edges incident upon each visited vertex
needs to be directed. Visiting each vertex of
a graph is equivalent to obtaining its
spanning tree. A spanning tree is any tree
consisting solely of edges in a graph G and
including all vertices of G. Thus the
complexity of our algorithm is comparable
with the Kruskal algorithm (Horowitz and
Sahni, 1976) for obtaining the minimal
spanning tree, a spanning tree with
minimum cost. Figure 7(c) show the
minimal directed spanning tree of the model.
Although our algorithm does not look for a
lowest-cost edge, we search for the greatest
number of least occurring variables for
consistency checking. Hence the complexity
of our algorithm seems to be O(n logn)
where n is the number of edges. However, if
the users provide more causal information,
its complexity will be significantly reduced.




DYNAMIC STRUCTURE
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Figure 8. The causal graph of the spring-mass system.

Our approach can be used to represent
systems of equations that are of a high order.
We reduce higher order system to first order
as first order changes with time are reasoned
about causality. It seems that normal
reasoning about causality is first order.
People reason primarily about effects over
time.

Consider the following differential equations
of a spring-mass system:

dx2/dt2 + (k/m) * x =0 (1)

where
x = displacement,
k = Hooke's spring constant,
and m = mass.

Solving for dx2/di2 yields:
dx2/dt2 = -(k/m) * x

Velocity (v) is the first derivative of
displacement (i.e. v = dx/dt). We can replace

the second order differential, dxz/dtz, with a
first order differential in terms of v:

dv/dt = -(k/m) * x

Now there are two first order differential
equations:

dx/dt=v (1)
dv/dt = -(k/m) * x 2)

The causal relations are explicitly

represented on the above equations such that

the variables on the LHS are dependent on
the variables on the RHS. The
illustration below represents the causal
diagram corresponding to the spring-
mass system.

In figure 8, an integration link, which
is an edge connecting a derivative of a
variable to the variable itself, is marked
by i. The rate of change of v is
determined by x, k and m.

DISCUSSION

Iwasaki and Simon in the retrospective
on "Causality in device behaviour" (Iwasaki
and Simon, 1993) state that the causal
ordering theory was not sufficiently
developed in that equations are not able to
interpret in all possible causal direction; that
the theory does not show how to formulate
equation models; that the theory defined
causality sometimes are not consistent with
the underlying perceived causal direction in
dynamic systems.

This paper is aimed at addressing the first
point that our proposed theory could
interpret all plausible situations that are
consistent with the equations, subject to the
underlying modelling viewpoint. Our
method is not only to identify equations,
which are context sensitive depending on the
circumstances but also uncover equations,
which are causally stable or unidirectional.
The causally stable algebraic equations
could provide the qualitative model builder
with a unique qualitative component which
holds in any scenario that might be
encountered.

Model formulation is a difficult problem in
qualitative physics (Forbus, 1984,
Falkenhainer and Forbus, 1991; Weld,
1990). In order to successfully produce
causal relations that reflect our intuitive
perception in the causal ordering theory, the
equations must be structural. Structural
equations represent conceptually distinct
mechanisms in the system being modelled.
However, deciding which equations are
structural in a given situation is an essential
problem of model formulation. Iwasaki



(Iwasaki 1988; Iwasaki and Simon, 1993)
points out that there is no simple way to
identify that an equation is structural.
However, our proposed method seems to
have identified a structural equation and to
assign a direct relationship to physical
components of the equation by using
independent and dependent variables. The
method parses the defined independent and
dependent variables within equations and
reconstructs the equations to be asymmetric
causal equations. We use the term
"asymmetric causal equation" instead of
"structural equation”, because a structural
equation should express the "real" causality;
our equation are structural-like, but express
"reasonable causality” (Lee el al, 1992a,
1992b). Causality then can be explicitly
represented in the asymmetric causal
equations. We will explore this issue more
and address it later as we haven't discovered
from where a mathematical model comes
from and from a cognitive point of view,
how a model builder constructs a
mathematical equations.

In terms of the causal relations in dynamic
systems, our proposed method and the
causal ordering theory require the
differential equations in the model to be in a
canonical form, where the derivative is on
the LHS of the equation and with only one
derivative in each equation (Iwasaki, 1988;
Lee er al, 1992a). The direction of causality
is from the variables on the RHS to the
derivate on the LHS. However, sometimes
in the dynamic physical systems where a
change in a quantity is perceived as the
cause of some other quantity, such as the
Faraday's law of induction, E = -d@g/dt,
where a change in magnetic flux (d@g/dt)
produces electromaghnetic force (E), but not
vice versa (Iwasaki and Simon, 1993). Also,
in order to represent a higher order
differential equation, our approach reduces
higher order to first order. We do so because
most higher order equations are derived
from first order equations and causality
seems to be explicitly represented in the first
order equations. However, in some dynamic
systems, such as an equation to describe the
bend of a beam:

*V/oX4 - 9*UY4 = 0,

it is difficult to reduce higher order
equations to first order equations.

We have successfully tested our proposed
method on more than 20 mathematical
models, which include all of those in the
relevant literature and some greenhouse
effect models, i.e. a very large Global
Energy Model (Edmonds and Reilly, 1983)
with 41 equations and 73 variables. In all
cases the method discovers the "correct”
causality. However, equations in
mathematical models do not model any
original causality. We need to further
investigate what class of equations (if any)
have implicit causality and what classes of
equations do not. Our heuristic does manage
to recapture the original causality where
relevant, or at least a reasonable causality
where the equation was not based on an
initial causal model. We attempt to
understand on what classes of mathematical
models this heuristic works or in what way
causality is implicit in these models. Also,
we need to assign causal effects (+ or -
signs) in the causal directions. If, for
example, air temperature increases as solar
radiation increases, then the causal link
between the two is positive (+) or
proportional. Conversely, if the level of
water in a lake decreases as solar radiation
increases, the causal link between the two is
negative (-).

CONCLUSION

Decision support systems may require the
use of existing complex mathematical
models. It is desirable to reduce the
equations of such a model to an explanatory
causal form to support decision making. We
have shown that fixing causal dependencies
in a specific context is extremely limiting to
behaviour generation. An asymmetric causal
explanation approach has been proposed to
generate causal knowledge in context. We
have shown that it is possible to support the
model builder's problem solving by
generating all the plausible causal directions
in a physical system. Our approach has
overcome some limitations of the causal
ordering theory in a feedback system. We
have presented the algorithm that formulates
equations as asymmetric causal equations.




This approach also applies to temporal
knowledge in a dynamic system.
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