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Abstract

This paperpresentswork on modellingthe qual-
itative behaviourof physical systemsof spatially
distributedparameters.The distribution of each
parameteris given asa set of observationpoints.
A metricdiagramis constructedby definingacon-
nectivity structureon the point set. The metric
diagram is used to constructa topological map
that representsthe distribution of the parame-
ter as a pattern of contiguousregions. The re-
gionsrepresentvaluesin the l)arameter’squantity
space,which is adiscretizationof its valuedomain.
Topological combinationsof parameterdistribu-
tions are used to infer the distributions of non-
observedparametersaccordingto modelsof pa-
rametercorrespondences,e.g. qualitativeversions
of equations. The spatial evolution of the sys-
tem is inferredby matchingthe scenario’sparam-
eterpatternsagainstmodelledpatternsof physical
processes.The al)proachis suitablefor modelling
common-sensereasoningin the natural sciences,
e.g. meteorology,agriculture,climate studiesand
naturalresourcemanagement.

1 Introduction

Qualitativemodelsof physicalsystemsoften focus on
describinghow various parameterswill evolve in time.
The work describedin this paperis alsoconcernedwith
how parametersevolve in space. We presentwork on
modellingthequalitativebehaviourof physicalsystems
of interactingspatiallydistributedparameters.

A distributedparameteris one that takeson different
valuesat different points in spaceas well as in time.
Many parametersdescribingthe l)hYsical world can be

This researchis supportedby the SwissNational Sci-
enceFoundation,projectno. 5003-034269.

modelledasdistributed,e.g. temperature,colour, veg-
etation type, etc.

The human part of modern weatherprediction is a
good exampleof the kind of common-sensereasoning
about spatially distributedphysical systemswe want
to model. The role of the meteorologistis to analyze,
understandand, if possible, predict the behaviourof
thespatiallydistributedparametersof theatmosphere.
The toolsare amixture of quantitativeandqualitative
methods.Wewill briefly outlinesomeimportantsteps:

• Data collection: Somekey parametersin the at-
mosphere,e.g. temperature,air pressureand rain
fall, are regularly andsimultaneouslymeasuredat a
numberof observingstations.

• Objective analysis:The collecteddatais fed into
acentral computerwherea numericalmodel is used
to calculateaprediction for a large geographicalre-
gion, in general for the next 24—72 hours. The nu-
merical model uses somekey physical laws in the
form of differential equations,but contains many
simplificationsin order to makeit tractable.

• Subjectiveanalysis: The collectedand predicted
datais plotted on separateweathermaps that are
analyzedby handby the meteorologist.

• Prediction: The meteorologistmakesaprediction
basedon both the subjectiveand objectiveanaly-
ses. Most predictions concern short time periods
andlimited geographicalregions that arenot specif-
ically cateredfor in the objective analysis,e.g. the
areaaroundan airport in the next hour.

From this description, we see that the computer-
supportednumber-crunchingof the objective analysis
is only onepart of the weatherprediction process.We
are interestedin modelling the common-sensereason-
ing that takes placein the last two phases,i.e. subjec-
tive analysisand prediction.

Good weatherpredictions are basedon a thorough
understandingof the on-going physical piocessesin



the atmosphere. The subjective analysis is time-
consumingbut necessaryin order to build a mental
modelof theseprocesses.Thismodel is called“the in-
ner weatherpicture” in [Perby, 1988], wherethemental

processesunderlying weatherprediction are discussed
in more detail.

The subjective analysisstarts with a study of the
spatial distribution of eachobservedparameter. The
observedvaluesare indicated as points on a weather
map. The meteorologistanalyzesone parameterat
a time by indicating regions of similar valueson the
map, e.g. isohars,isotherms, regions of precipitation,
fog, cloudiness, etc. The analyzedmap is used as a
meansof communicationbetweenmeteorologists,and
enablesthem to detect significant patternsof regions
that indicate which underlying physicalprocessesare
at work. This process-basedunderstandingcreatesan
expectationof how thesituation will develop,which is
comparedwith the prediction of the objective analy-
sis. The final prediction is basedon the meteorologist’s
total understandingof the situation, which has been
createdfrom various sources: knowledge of physics,
previousexperience,collected data, objective predic-
tion.

This kind of reasoningis interestingto artificial in-
telligenceresearchas it involves at least four different
researchareas:

• Model-based reasoning: The reasoningis based
on underlyinginodels of physicalphenomena.

• Spatial reasoning: The locationwhereaparame-
ter is observedis asimportant asthemeasuredvalue.

• Qualitative reasoning: Due to the sparsenessof
observeddata,assumptionsand simplifications of a
qualitativenature arenecessary.

• Diagrammatic reasoning: Diagramsare exten-
sively usedto understandcomplexsituationsand to
communicatethis understanding.

We believe that the working methodsof meteorolo-
gists are representativeof many other scientific areas
wherephysicalsystemsof spatially distributedparam-
etersare studied. Someexamplesare natural resource
management,agriculture, ecological modelling, ocean
studies,etc. We proposeto model this reasoningpro-
cessas follows:

• Interpretation phase: Building a scenarioof the
situation throughanalysisof the spatialdistribution
of individual parametersgiven assetsof observation
pointsanda modelof the physicalpropertiesof each

parameter.
• Simulation phase: Simulationof the evolution of

the situation through applicationof physicalmodels
to the scenario.The simulation phaseconsistsof a
staticand a dynamicpart:
— Static inference: Inferenceof non-observedpa-

rametersthrough combinationsof observed pa-
rametervalues.

— Dynamic inference: Inference of the spatial
evolution of parametersin termsof modifications
to their spatial distributions.

The rest of this paperdescribeseachof the above
phasesin turn, followed by a discussionwhere we put
this work into perspectiveby comparingit to other
approaches.We alsodiscusstheutility of this approach
andoutline the currentstateof researchanddirections
for future work.

2 Interpretation Phase

The goal of the interpretation phaseis to build a sce-
nario of thesituation that can be usedto detect which

physical processesare causing the situation and sim-
ulate their evolution. In accordancewith our study
of meteorologicalpractices, we propose to model the
distributed parametersindividually and useconibina-
tions of distributions to reasonabout the evolution of
the system.

A physical system of spatially distributed parame-
ters occupiesa region of space,where eachpoint can
be assigneda value for each parameter. The values
of each parameterare distributed in a specific pat-
tern within the region. A qualitative description of
this pattern is obtainedby adoublediscretization: on
the value domain of the parameterand on the space
it describes. The value domain, e.g. the set of real
numbersR~,is discretizedinto qualitativecategories,
e.g. intervals. An analogousspatial discretization is
carried out on the points in the describedspace by
grouping neighbouringpoints with equal valuesinto
largerspatial units, i.e. regions. The spatial distribu-
tion of the parameteris describedqualitatively as a

patchwork-likepattern of contiguousregions.
Figure 1 illustratesan exampleof the kind of phys-

ical system we want to model with this method.
The illustrated physicalsystem is a cross-sectionof

apart of the Earth—Atmospheresystem,which can be
describedby different physical parameters,e.g. tem-

perature, relative humidity, etc. In this scenario,the
paramnetertemperaturedivides thespaceof thephysical
system into a pattern of three regions, corresponding
to adiscretizationof thevaluedomain7Z into the sym-
bolic values{cool warm hot }. The parameterrelative-
humidity, on the other hand, divides the samespace
into a different patternof only two regions,correspond-
ing to its proper valuedomain discretization: {dry hu-
mid }.

The initial information on the distribution of a pa-
rameter is quantitative/metricand limited to the co-
ordinatesof theobservationpointsandthe valuesthat
havebeenobservedat thosepoints. Inferring the rest
of the distribution from this sparsedata requires a
nuniber of assumptions,which meansthat the result—
ing descriptionwill be qualitative in nature.



_______ i.e. a region. If the observedvaluesare riot the same,
then the two neighbouringpoints lie on the boundaries
of two different regions.

Space is a continuous medium andl consists of an
infinite number of points. Between two points, there
will thus alwayshe an intermediatepoint, making the
conceptof neighbourvery relative. Two points areonly
neighbourswith respectto somelevel of approximation
whereall intermediatepoints aredisregarded.

In the caseof observationpoint sets,it is not always
obviouswhich points areneighbours,since theycanhe
spreadout in an irregularpattern. Figure2 showsaset
of observationpoints for the parameter telnperature.
The observed values have been categorizedinto the
qualitative values { cool warm hot). The observation

points can be in two or three dimensions,depending

on which physicalsystem is being modelled.

/~ot

In order to distinguish between known quantita-
tive/metric data andapproximated/simplifiedqualita-
tive data,we divide the descriptionof the distribution
of a paramneterinto two parts: a metric diagramanda
placevocabulary. This division wasproposedasagen-
eral model for qualitativespatial reasoningin [Forbus
et al., 1987]:

Figure 2: A setof observationpoints for the parameter
temperature.

In order to know which points are neighboursand
can be compared,aconnectivity structuremust be de-
fined on the observationpoint set, i.e. a graph struc-
ture that indicates neighbourhoodrelations. A trian-
gulation providesa natural connectivity structure for
this kind of point set. A point set can be triangulated
in manydifferent ways. For the purposeof comparing
observedvaluesat neighbouringpoints,a triangulation
that minimizes the distancebetweenconnectedpoints
is the most suitable. In [Preparataand Shanios,1985],
several algorithms are given for constructingvarious
connectivity structureson point sets.

Figure 3 showsa triangulation of the point set in
figure 2, where two points are neighboursonly when
the straight line connectingthem does not intersect
any shorterline connectingtwo points.

The metric diagramof our representationis theob-
servationpoint set and a chosenconnectivity struc-
ture. It is used to construct the place vocabulary, as
describedin the next section.

The goal of the analysisof the observationpoint set
is to describethe spatial distribution of the param-
eter as a pattern of contiguousregions. This is ac—
comnplishedby comparingthe valuesobservedat neigh-
bouring points. If the same value is observedat two
neighbouringpoints,then they canbe consideredqual-
itatively equaland grouped into a larger spatial unit,
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Figure 1: A physical system of spatially distributed

parameters.
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• The metricdiagram describesthe metricandquanti-
tativepropertiesof the world to be reasonedabout.
it is usedfor thosequeriesthat cannotbe answered
by purely qualitativereasoning.

• The place vocabulary describes the same world in

qualitativeterms.
Since the metric diagramand the placevocabulary

describethe sameworld, although in different ways,
they should be compatible. This is accomplishedby
using the quantitative information in the metric dIm-
gram to calculatethe qualitative representationof the

placevocabulary.
In this approach,the metric diagram consistsof the

set of observationpoints and a suitableconnectivity
structure. The place vocabulary is a topological map
of the regionsderived from the metric diagram. The
construction of these two structuresis supportedby
a model of the specific physical propertiesof the pa-
rameter. In the following sections,we will describethe
constructionand purposeof eachof thesecomponents.

2.1 Metric Diagram: ConnectedPoint Set

2.2 PlaceVocabulary: TopologicalMap

The place vocabularydescribesthe qualitative, non-

metric propertiesof the metric diagram. Whereasthe
metricdiagramdescribesthe spatialdistribution of the
parameterasanetwork of observationpoints, theplace
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Figure 3: Metric diagram: triangulationof the point
set in figure 2

vocabularywill describethesamedistribution asapat-
tern of contiguousregions.

The plac.e vocabularyis constructedby comparing
neighbouringpoints in the metric diagram, accord-
ing to the chosenconnectivitystructure,andgrouping
points with equal valuesinto largerregions. Figure 4
showshow to detect regions in the metric diagram in
figure 3.

The connectivity structure of the detected regions
can be representedas a topological map. A topolog-
ical map is an abstractillustration of the neighbour-
hood relations betweenregions, and does not convey
any information on size or shape. Figure 5 showsthe
topological map of the regionsin figure 4.

This particular topologicalmapindicatesthe regions
that can be detectedby astraightforwardlanalysisof
the metric diagram. The next section describeshow
the topological map can be refined through the useof
a model of the parameter’sphysical properties.

2.3 Parameter Model

[)uring the interpretation phase,whenrepresentations
of individual parameterdistributions are being con-
structed,a model of thephysicalpropertiesof aparam-
eter enhancesthe information in the metric diagramri
and can lead to the inferenceof additional regions in
the topological mnapor to a refinementof it.

Figure 5: Place vocabulary: topological map of the
regionsin figure 4.

A parameteris definedby its name,unit and value
domain,which canbefinite or infinite. By dividing the
value domaininto different quantity spaces,i.e. setsof
qualitative values, the distribution of the parameter
can be describedat varying levels of detail. Examples
of quantity spacesare setsof intervalsor symbolic val-
ues. The quantity spacesdefine alternativeviews of
the value domain. The parametermodel provides in-
formation on how to map betweendifferent quantity
spacesand the valuedomain.

Thevalue domainof a parameteris modelledasbe-
ing either spatially ordered or unordered. This mod-
elling choicedependson which propertiesof the phys-
ical system onewants to convey.

Spatially ordered value domains indicate that the
spatial transition fromonevalueto anothermustfollow
theordergivenin thequantityspaceandthat therecan
be no discontinuities. This is a convenient property
since it enablesus to infer more information from the
metric diagramthan hasactually beenobserved.

The topological map in figure 5 indicatesthat the
two value regions cool and hot are neighbours. If the
value domain of the parameter,in this case tempera-
ture, is defined asspatially ordered with the quantity
space{cool warm hot}, then we caninfer the existence
of an intermediatewarm region, although this value
hasnot beenobserved. Figure 6 shows the resulting
topologicalmap.

Figure 6: A refined version of the topological map in
figure 5.

Parameterswith spatially unorderedvaluedomains
are equally commonand have the property that any

Figure 4: Regionsdetectedin the metric diagramin
figure 3.



two values in the quantity space can correspondto
neighbouringregions in the topological map. One ex-
ample is the parameterweal/icr-typewhich is an im-
portant observationin meteorology. An exampleof
a quantity spacefor this parameteris {rain thunder
cloudy fog fine). Any two regions can be neighbours,
thus it is not possibleto infer any other regionsthan
thosedetectedin the metric diagram.

The metric diagramsand topological maps con-
structedfor the distribution of eachparametermake
up a scenariodescribing the situation in a conceptual
way. This scenariowill he useddiuring the simulation

phase.

3 Simulation Phase

During the simulation phase,the constructedscenario
is used to reasonabout the spatialpropertiesand evo-
lution of the physicalsystem.

The scenariois aconceptualmodel of the situation,
wherethespatialdistributionof eachobservedparame-
ter is describedby a metric diagramand atopological
map. By modelling physical processesas topological
mapsand matchingtheseagainstthe topologicalpat-
terns in the scenario,alternative descriptionsof the

physicalsystemcanbe inferred and its evolution sim-
ulated.

The drawn inferencescan be characterizedas either
static or dynamicas follows:

• Static inference: The scenario is used to infer the
distributions of non-observedparametersthrough
combinationsof observedparametervalues.This in-
ferenceis staticsinceit leadsto alternativeviewsof
the physical systemin the form of new parameter
distributions, but existing parameterdistributions
are not modified.

• Dynamic inference: The scenariois used to infer
the spatialevolution of existing parameterdistribu-
tions, either observedor inferred. This inference is
dynamic since it will modify the representationof
existing parameterdistributions. This may trigger
further staticor dynamic inferences.

The following sections will describe how to model
staticand dynamicinferencerespectively.

3.1 Static Inference

Reasoningaboutphysicalsystemsoften meanscombin-
ing valuesof parametersin order to infer the value of
someother parameter.A combinationmodel describes
whichparametersareinvolvedand how to calculatethe
resultasa function of the paramneters’values.

The combinationmodel can be an equationor some
otherrelevantcomputablefunction of severalparame-
ters. It can he expressedeitherasaqualitative version
of an equation,e.g. using interval arithmetic, or as a
matrix of valuecorrespondences.Severalversionsof a

combinationmodel are possible to cater for all possi-
ble combinationsof quantityspacesfor the samevalue
domain,i.e. different levels of granularity.

In the caseof spatiallydistributed parameters,the
valuesto combinemustcoincidein spaceas well as in
time. As an example,considerthemeteorologicalform
of the equationof state:

P = pRT

P is pressure,p is density, R is the specificgascon-
stantandT is temperature.P, Tandp aredistributed
parameterswith spatially orderedvalue domains,that
can be discretized into intervals or symnbolic values.
R, the gasconstant,also hasa spatialdistribution in
the sensethat it is applicableat all points where the
specific gas hasa distribution. P and T are readily
observableparameters,whereasdirect observationof p
requiresquite complicatedequipment. It is thus con-
venient to infer the distribution of p from the given
equationandthe observedparameterdistributions.

P andT arealternativeviews of the sameregionin
space.By superimposingthespatialdistributions of P
andT, anew descriptionof the samespaceemergesas
apattern of regions where the valuesof both P andT
are constant. This pattern is the spatial distribution
of p. The value of p in each region is calculated by
applying theequation,or aqualitativeversion of it, to
the valuesof P and T in theseregions.

In thefollowing sections,we will describehow to con-
struct the spatialcombinationof two parameterdistri-
butions. We will also discusshow to handlethespatial
ambiguity that may arisedue to sparsedata.

3.1.1 Combined Topological Maps

In order to infer the distribution of a parameterex-
pressedas a function of other parameters,we must
know which value regionsintersect in space. For this

purpose,a combinedtopologicalmap is constructedfor
the involved parameters.

A topological map describesthe connectivity struc-
ture, i.e. neighbourhoodrelations,of the regionswithin
a single parameterdistribution. Analogously,a com-
bined topological map describesthe topological rela-
tions betweenparameterdistributions, i.e. where dif-
ferent regions intersect in space. The term for this
topological relation is overlap. Two regionsoverlapif
they haveat least onepoint in common.

The metric diagramdoesnot allow any inferenceof
theexactshapeof thedifferent valueregions. It is thus
impossibleto sayexactly where and how two regions
overlap. What can be inferred is whether two regions
are certain to overlap, whether they may overlap or
whetherthey arecertain not to overlap. This amounts
to finding out whether two regions haveat least one

loint in common,do not haveapoint in commonor it
cannotbe decidedif they havea~point in common.

The combined topological map is constructed by
combining the metric diagramnsof the parameters.In



doing this, we want to infer which valuescould have
beenobservedfor the secondparameterat the obser-
vation points of the first parameter,and vice versa.

In mnany practicalapplications,the parameterswill
havebeenobservedat thesamepoints, i.e. their metric
diagramswill bespatially equal,only the observedval-
ties will be different. E.g. in the caseof meteorology,
most parametersare observedat the sameobserving
stations. If two observationpoints are identical, then
we know that the two regions,onefor eachparameter,
that were inferred by meansof that observationpoint
are certain to overlap, since they have at least that

point in common.
However, in the general case, two parametersneed

not haveidenticalmetric diagrams. By adding the ob-
servationpoints of the secondparameterto the metric
diagramof the first, we see that eachnew point falls
within exactly onetriangle in the metric diagram,as
defined by the chosenconnectivity structure.The val-
ues observedat the points connected by the triangle
are the values that could havebeen observedat the
newly inserted point.

Figure7 showsan exampleof this situation. A point
hasbeenaddedto themetric diagramof the parameter
weather-type,which hasthe spatially unordleredquan-
tity space{rain thundercloudyfog fine). The inserted
point falls within a triangle connecting three obser-
vation points, where the values rain, fine and thun-
derhavebeenobserved.According to our assumption
thatvalue transitionstakeplacebetweenneighbouring

points accordingto the chosenconnectivity structure,
exactlyoneof thesevaluesmust havebeenobservedat
the insertedpoint.

Figure 7: Inferenceof valuesthat could havebeenob-
servedat an insertedpoint.

This is anambiguoussituation with one, two or three
alternatives,dependingon how many different values
have beenobservedat the three points connectedby
the triangle. The metric diagram does not allow us
to decidewhich of the threeregionsthe insertedpoint
belongsto. However, it doesallow us to decidlewhether
a spatial intersectionbetweenregions in two different
distributions is possibleor not.

Figure 8 showsthedifferent situationsthat can arise,
assumingthat the inserted point belongsto the met-
ric diagramof the parametertemperatureandl the oh-

servedvalue is cool. The situations correspondto the
following rules:

• Certain overlap: If two regions haveat least one
observationpoint in commonthen they are certain
to overlap.

• Possible overlap: If two regions do not haveany
observationpoint in common,but somepoint falls
within atriangle that hasled to theinferenceof the
region in theotherdistribution, then the two regions
mayoverlap.

• No overlap: If the above rules do not apply, then
the two regions are certain to be disjoint, i.e. they
do not overlap.

Figure 8: Inferenceof overlappingregions: the three
situationsdeciding whether two regionsare certain to
overlap, mayoverlapor arecertain not to overlap.

The combined topological map is constructed by
comparingeachpair of regions in the two topological
mapsaccordingto the rules mentionedabove. In case
of ambiguity, the result is a setof combinedtopological
maps,each indicating a possibleoverlapsituation.

Figure 9 showsan exampleof two topological maps,
for the parameterstemperatureand weather-type,and
one possiblecombinedtopological mapgiven theover-
lap structureindicated in table 1.

In the next section we discuss how to reduce the
occurrenceof spatially ambiguoussituations.

Figure 9: Topological mapsfor the parameterstem-
perature and weal/icr-typeand one possible comnbined
topological mapgiven the overlapstructure in table 1.

Weather— repe

Thunder

+ Cloudy Rain

Fine

One possible combination

Thunder/Cool

Cloudy/Cool Rain/Cool

Cloudy/Warm Rain/Warm

Fine/Hot

Certain overlap:
Common obser—
ration point

Inserted point



Table 1: Overlapstructurefor the topological mapsin
figure 9.

3.1.2 Controlling Spatial Ambiguity

In the previous section, we saw that combinations
of topological mapssometimescontainambiguousre-
gions, whereit cannotbe decidedwhether two regions
in the original distributions overlap or not. This am—
biguity is due to the sparsenessof datain the metric
diagram. Humanexperts,e.g. meteorologists,usedo-
main knowledge to disambiguatein this kind of situ-
ation. The following methodscan be used to handle
spatially ambiguoussituations:

• Treat the ambiguous region locally: The am-
biguity only concernsa pair of regions and is thus
local. It doesnot influencethe restof the combined
topological map, provided all other regions can be
combined without ambiguity. Reasoningcan thus
continueunambiguouslyfor alargepart of the space
of thephysicalsystem.The ambiguousregioncan be
treated locally, either by indicating its value as un-
known or by branchinginto multiple representations
of that region.

• Useproximity information to solve the ambi-
guity: In someapplications,proximity information
can be used to disambiguate.A plausiblemodel is
to let an insertedpoint belongto the region of the
observationpoint it is closestto. Figure 10 shows
an exampleof this situation.

~nder

Figure 10: Disambiguationthroughproximity: the in-
serted point is inferred to belongto the shadledregion
sinceit lies closestto that observationpoint.

• Use hierarchical parameter models to avoid
unnecessary ambiguity: Many l)arametersare
physically relevant only in conjunction with some
other parameter. By including this dlomain knowl-
edige in the model, many potentially ambiguoussit-
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uations can be avoided. Figure 11 shows an exam-
ple of such a case. Again, the example is taken
from climatemodelling and illustratesa part of the
Earth—Atmospheresystem.The systemis described
by two parameters:atmospheric-layerandsoil-type.
The parameteratmospheric-layerdivides spaceinto
regions according to the simplified quantity spac.e
{ stratospheretroposphereground }. The parameter
soil-type, with the quantity space{sand clay peat

can only describe points within regionsdescribed
by the valueground for the parameteratmospheric-
layer. Regions in the topological map of the pa-
rametersoil-typecan thusonly overlapwith regions
characterizedasground in the topologicalmapof the

parameteratmospheric-layer,andno further combi-
nationsneedbe consideredin theconstructionof the
combinedtopological map.

Figure 11: Hierarchical parametermodels reducethe
occurrenceof spatial ambiguity.

3.2 Dynamic Inference

Dynamicinferencediffers from static inferencein that
it modifies the distributions of existing parametersin-
stead of inferring new l)arameter distributions. In
physics,dynamicevolution is usually modelledby dif-
ferential equations. In qualitative physics, the tem-
poral evolution of a parameteris usally modelled as
transitions betweensubsequentlandmarkvaluesin the
quantity spaceof the parameter’svalue domain.

Analogously, in qualitative spatial simulation, the
transitions will reflect significant changesto the spa-
tial distributions of the parameters,or more precisely
changesto their topologicalmaps. Significant changes
can take place either within a distribution, by rear-
rangingthe neighbourhoodstructure of the regions,or
betweendistributions, in which casethe overlapstruc—
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ture betweenregionsis modified.
Physicalprocessesare modelledas topological pat-

terns of parameterregions that are matchedagainst
the scenario constructed during the interpretation
phase. The spatial evolution of the systemis given
asa sequenceof subsequenttopological modifications
to the parameterdistributions.

Spatially distributed parameters
often evolvethrough flow processes.\Ve will outline a
model of radiativeflow from thesunthroughthe layers
of the atmosphere.Figure 12 illustrates the situation,
which is, again,a part of the Earth—Atmospheresys-
tem, this time describedby theparametersemissivity,
transmissivityand irradiation.

Physical system

Sun~

Ozone layer
Cloudless atmosphere

Cloud

Ground

Ernissivity
High

~

~
None

Transmissii’ity
~

~e~—transparen1~
LA7most

~ I
transparent I

Opaque

Irradiation

~Tobe~

a) b) c)

Figure 12: Topologicalmapsfor somekey parameters
in a model of radiative flow.

The parameter emnissivitydescribessourcesof short-
waveradiation. Figure 12ashowsthe topological map
of the parameteremissivityin this situation, usingthe

quantity space{high none }. There is only one region
of high emissivity, namely the sun.

The parametertransmissivity indicateshow muchof
the radiation received by a region will be transmit-
ted to more distant regions. The radiation that is
not transmittedis either reflectedor absorbed,which
will increasethe temperatureof the region. How-
ever, thoseprocessesare not modelled in this exam-

pIe, which focuseson radiativeflow. The topological
map of the transmissivityregions in this situation is
given in figure 12b. Its quantity spacein this exam-

pleis {transparentalmost-transparentsemi-transparent
almost-opaqueopaque}. Therearefour different trans-
missivity regions in the scenario,correspondingto the
semi-transparentozone layer, which filters a lot of
the radiationcoming into the atmosphere,the almost-
transparentcloudlessatmosphere,a semi-transparent
cloud, andl finally the opaque ground, which absorbs

or reflectsall radiationit receivesandtransmitsnone.
The transmissivity of the sun is not relevant to this
model, so we leave the correspondingregion unspeci-
fied.

The parameterirradiation indicatesregionsthat re-
ceiveradiation. The initial distribution of this pararn-
eter in figure 12c indicatesno irradiated regions. The
model will describethe spatial evolutionof the distri-
bution of this parameter. The final distribution will
indicatewhich regionsin spacereceivemoreradiation
thanothers.

In this model, we want to reasonabout how some
regionsare shadowedby others,and thus receive less
radiation. In order to do this, it is necessaryto in-
clude the notion of flow direction in the model. Di-
rection is a spatially distributed parameterthat di-
videsthe spaceof the physicalsysteminto qualitative
vector fields with respect to someregion. Figure 13a
showsthe distributionof the parameterdirectionwith
respect to the sun, i.e. the high emissivity region in
figure 12a. Figure 13b showsanother distribution of
direction, this time with respect to the ozone layer,
i.e. the upper semi-transparenttransmissivity region
in figure l2b. Finally, figure 13c shows the distribu-
tion of direction with respectto the cloud, i.e. the
smaller semi-transparenttransmissivity region in fig-
ure 12b. The valuedomainhas beendiscretizedinto
the categories{inside beneathabove left right } which
are convenientto this model.

Physical system

Figure 13: Topological map of the metric parameter
direction with respect to different regions.

The simulationof radiativeflow proceedsin the fol-
lowing steps:

• Regionsof high emissivity match the pattern re-
quired for the physical processradiative-flow. There
is only one region that matchesthis description in

Direction
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I Inside

Direction Direction
with respect to cloud
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thetopological mapof theparameteremissivity(fig-
ure 12a), namely the sun. The region of high ernis-
sivity becomesthe source region of this instanceof
the flow process.

• Onceasourceof radiative flow has beenfound, the
regionsthat it will flow into mustbe detected. Flow
follows a spatial order, so the receiving regions will
be neighboursof the sourceregion. The sourcere-
gion hasonly one neighbour in its topological map
(figure 12a), which is indicated by the value none.
This becomesthe sink region for the flow.

• Oncethereis asource regionand asink region, the
directionof the flow can be determined. Figure 13a
shows the distribution of the parameter direction
with respect to the sourceregion, i.e. the sun. The
overlapstructure betweenthis topological map and
that of the parameteremnissivityindicatesthat the
sink region is totally containedwithin the beneath
region. This valuebecomesthedirection of the flow.

• Theoverlapstructure betweenthe topological maps
emnissivity and transmnissivity indicates that the
spaceoccupiedby the designatedsink region con-
tains severaldifferent regionsof transmissivity. The
flow will proceedgradually through theseregions.

• The first stepis the region of semi-transparenttrans-
missivity that lies closestto the source,i.e. theozone
layer. That region will receiveall the radiationsent
from the emitting region, i.e. 100%. This is indi-
cated in the model as a inodification to the topo-
logical mapof the parameterirradiation. A region
that correspondsto the ozone layer is introduced
into the irradiation distribution andgiven the value
100%, seefigure 14a. For the sakeof this example,
we will not bother with defininga quantityspacefor
the parameterirradiation, bitt simply indicate the
irradiation with approximativepercentages.

• The flow will passthrough the irradiatedregion ac-
cordingto the inferredflow direction. However,only
a part of the received radiation is transmitted, as
some of it is absorbedor reflected. Consultationof
theoverlapstructurebetweenthe parametersirradi-
ation and transmissivityindicateshow much radia-
tion will be transmitted. In this case, the irradiated
region correspondsto a region of settti-transparent
transmissivity,so we presumethat 50%of the radia-
tion passesthrough it. In the real model,a suitable
qualitativeequationwould be used.

• The flow from the current irradiated region, i.e.
the ozone layer, proceedsinto neighbouringregions
of constant transmissivity. The flow parameter
indicates that these regions must also lie beneath
the initially irradiated region. This is the case
for the cloudlessatmosphere,indicated by almost-
transparent in figure 12b.

• However, the flow model also requires that the re-
ceiving region haveno holes. The topological map

in figure 12b indicates that the almost-transparent
cloudless atmospherecontains a region of lower
transmissivity, namelya cloud. The correct region
to irradiateis constructedby removingthecloud and
the areabeneathit, accordingto the flow parameter,
from the cloudlessatmosphere.The resulting irra-
diated region is shown in figure 14b. Its value is
indicated as 50%, reflecting that someof the radi-
ation was absorbedby the precedingregion in the
flow.

• The radiation continuesto flow through the atmrto-
sphere,reachingthe cloud, the shadowedregionbe-
neath the cloud and the ground. The final distri-
bution of the parameterirradiation is shownin fig-
ure 14c.
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In this model, the existenceof a cloud resulted in
non-uniform radiation of the ground. The received
radiation will be absorbedand transformed to heat
according to the distribution of e.g. the parameter
heat-capacity,thus creating a patternfor the parame-
ter temperature.Differencesin temperatureoften trig-
ger other physical processes,e.g. seabreezes,cloud
formation, plant growth, etc. Thesearejust a few ex-
amplesof physicalprocessesthat can be modelledwith
spatially distributed parameters.

4 Discussion

This paperhasdescribedwork on modelling the qual-
itative behaviourof physical systemsof spatially dis-
tributed parameters. \Ve will put this work into per—

specti~’eby comparingit to someother approaches.
In qualitativephysicsresearch,physicalsystemsare

often modelled as sets of spatially discrete objects.

Figure 14: Steps in the inference
distribution.



The parametersare seenas attributes that describe
the objects they are associatedwith. The model de-
scribeshow the objectsinteractthroughtheir parame-
ters. Object-orientedmodelsareappropriatefor many
applications, seee.g. the thermodynamicsmodel in
[Collins andForbus, 1991].

However, in applicationslike meteorology,it is not
evident which objects the model should be built on.
The systemis more appropriately described by the
spatialdistribution of the individual parameters.The
traditional approachin physics is to model a physical
system asa setof differential equations,eachdescrib-
ing how the valueof a parametervaries asa function
of somespatial axis. By combining different dimen-
sions as needed,a full description of the parameter
is obtained. Work on usingdifferential equationsin
spatialqualitative resoninghasbeenpresentede.g. in
[Throop, 1989] and [Nishida, 1993].

A third approach,basedon topology, is given in [Cui
et at., 1992] where the processof phagocytosis,i.e.
amoebaingesting food, is modelled as a sequenceof
topological relationsbetweendiscreteregions in space.

Modelling a physical systemin terms of objects is
attractive, since it gives the mnodel a tangible touch.
It is appropriateboth for device- andprocess-oriented
qualitative simulation and the envisionedsituations
can easily be illustrated diagrammatically. However,
these models fail to convey the notion of continuous
spatial distribution, which is readily modelled by dif-
ferential equations.Models basedon explicit differen-
tial equationsare, ho~~’ever,not as readily understood
by non-expertsand arealso not availablefor all kinds
of physicalsystems.

The work presentedin this paper can be seenas a
combinationof thesetwo modelling approaches,where
the spatialdistributions of parametersaredivided into

patternsof discreteregionsthat canbe manipulatedas
objects.

The utility of qualitative models of spatially dis-
tributed physicalprocessesis manifold. Such models
would provide a reasoningcomponentfor Geographic
Information Systems(GIS) andprogramsfor scientific
visualization. They would provide a meansof commnu-
nicationbetweenprofessionals,e.g. meteorologists,by
making it easierto hand over analysesof spatial sit-
uations to the next person on the shift. Their utility
for pedagogicalpurposesis obvious. In fact, most of
the examplesin this paperhavebeentakenfrom text-
books on meteorology and climate modelling, which,
although their main purpose is usually to convey a
quantitative understandingof the atmosphere,often
devote a substantialpart of each chapter to qualita-
tive anddiagrammaticdescriptionsof atmosphericpro-
cesses.

Work on this approachcontinuesactively. The next
step will be to refine and implementthe methodsde-
scribedin this paper. Models of basicatmosphericpro-
cesses,such as radiation, conduction, convection and

advection,arebeing developed,and will be integrated
in a model of a fairly complex atmosphericprocess:
the life-cycle of aseabreeze.We arealso investigating
applicationsin agricultureand natural resourcemnan-
agement.
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