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Abstract

This paper introduces a “qualitative” problem
solving task that humans are adept at, but one
which has not received much attention within the
qualitative physics community. This is the task
of predicting the operation of a simple mechan-
ical device, in terms of spatial behaviors of its
compouents, from a labeled schematic diagram
of the device showing the spatial configuration
of its components and a given initial condition.
Using the example of a pressure gauge we define
this task, present a cognitive strategy for solving
such problems, and describe the architecture of a
corresponding computer model.

Introduction

We often use spatial information implicit in diagrams
to make inferences. The task of qualitative behavior hy-
pothesis from device diagramsis a case in poinl: given
the labeled schematic diagram of a device that shows
the spatial configuration of its components and an ini-
tial condition or behavior, predict the operation of the
device by hypothesizing the behaviors of its compo-
nents.
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Figure 1: A Behavior Hypothesis Problem: Pressure
Gauge

Consider someone examining the cross-sectional di-
agram of a device, such as the pressure gauge shown in
fig. 1, and reasoning about its operation. This requires
that he or she reason about spatial processes occurring

*Current address:  Knowledge Systems Laboratory,
Stanford University, 701 Welch Rd., Palo Alto, CA 94304,
narayan@ksl.stanford.edu.

inside the device. Information used in this type of rea-
soning is of two kinds: wvisuael and conceptual. Visual
information is obtained from the diagram, and includes
spatial configurations and shapes of the device and its
components. Conceptual information comes from the
domain knowledge of the reasoner, and includes pre-
dictive knowledge used for making hypotheses about
the device’s operation.

In such reasoning situations diagrams clearly serve
as compact .representations of spatial information.
However, this is only part of the story of the role
diagrams play in this task. Diagrams also facilitate
the indexing of relevant problem solving knowledge.
Furthermore, diagrams support mental visualizations
of spatial behaviors of device components during the
course of reasoning. It has been shown that such
mental visualizations guide human reasoning along the
direction of causality as perceived from the diagram
(Hegarty 1992).

This cognitive capability for “qualitative” visual rea-
soning from diagrams has not hitherto received much
attention in the qualitative physics literature!. The
automation of visual reasoning can be of benefit in
a variety of domains and applications: in automat-
ing expert reasoning using phase diagrams (Yip 1991),
in developing instructional or demonstration systems
whose operation is easily explainable and understand-
able (Tessler, Iwasaki & Law 1993), and in developing
systems whose reasoning spans multiple ontologies or
models (Fishwick et. al. 1994, Kiriyama & Tomiyama
1993), to cite a few examples.

This paper describes an approach to automating vi-
sual reasoning about devices from diagrams. The rea-
soning task is defined first. Then hypotheses about the
pressure gauge in fig. 1 that human subjects generated
m an experimental study are presented. Following this,
we develop a cognitive process model for this task and

"With the exception of Funt’s early work (Funt 1980)
and the more recent REDRAW system (Tessler, Iwasaki &
Law 1993). The work of Forbus and colleagues (Forbus,
Nielsen & Faltings 1987) on using a metric diagram for
spatial reasoning addressed a different capability than the
one being considered here.
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Figure 2: Subjects’ Hypotheses

enumerate behavior hypothesis steps for the pressure
gauge according to this model. Finally, the architec-
ture and control algorithm of a computer system de-
signed for this task are described.

Hypothesizing Behaviors from Device
Diagrams

We conducted a set of protocol analysis (Ericsson &

Simon 1993) experiments with five subjects solving six

qualitative behavior hypothesis problems each. Ver-

bal data (concurrent verbal reports) and gestural data
were collected during the course of problem solving and
analyzed. Details of these experiments can be found
in (Narayanan, Suwa & Motoda 1994). What is of rel-
evance here are the behavior hypotheses generated by

the five subjects for the problem shown in fig. 1.

Fig. 2 shows these hypotheses, with the arcs indicat-
ing the order in which the hypotheses were generated.

The main goal of these experiments was to character-
1ze how visual information from the diagram and con-
ceptual information (prior knowledge) interact and in-
fluence the direction of reasoning during problem solv-
ing. Though the solutions that the subjects provided
were not always complete and contained inaccuracies,
the analyses we carried out - both of the task and the
data collected - indicated that the diagram played two
important roles during problem solving.

e It facilitated the imdexing and recall of both fac-
tual knowledge regarding components and inferen-
tial knowledge using which the reasoner generated
new hypotheses.

e It supported visualizations of hypothesized spatial
behaviors of components, which in turn enabled the
reasoner to detect effects of these behaviors.

Air in spaceB leaks
out siowly.

about the Pressure Gauge

Based on task and data analyses (Narayanan, Suwa &
Motoda 1993), we developed a cognitive process model
of problem solving in this task. It is shown in fig. 3.
It explicates the visual reasoning strategy employed in
solving qualitative behavior hypothesis problems. No-
tice that reasoning proceeds in cycles. At first, short
term memory contains only the given initial condition.
So reasoning starts with a component and its behav-
ior mentioned in the initial condition. In later cycles,
a component and its behavior to focus on are selected
from among the hypotheses in short term memory. The
diagram facilitates the indexing and recall of relevant
knowledge in two different ways: (i) attending to a
component may cue some relevant factual information
about it which 1s either recalled from long term mem-
ory or retrieved from the diagram, and (ii) configura-
tional and shape mformation about components from
the diagram together with prior knowledge about com-
ponents and behaviors allow the indexing and recall
of inferential knowledge. New hypotheses are gener-
ated in three ways: (1) by deliberating about effects of
non-spatial behaviors, (it) by observing the diagram to
locate connected/contacting components and deliber-
ating about how these will be affected by spatial behav-
tors, or (iii) by mentally visualizing spatial behaviors,
detecting interactions among components that result,
and deliberating about effects of these interactions. In
each of these cases, the application of the recalled infer-
ential knowledge creates new hypotheses in short term
memory.

Now let us reconsider the problem in fig. 1 and enu-
merate steps of reasoning according to this process
model to generate one solution to the problem.

1. Consider the given initial condition.

2. Observe from the diagram that holeA opens to
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Figure 3: A Cognitive Process Model of Behavior Hypothesis from Device Diagrams
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duce motion in a movable component. 15. Observe from the diagram that the other end of the



spring is connected to the cylinder.

16. Recall the inferential knowledge that a force applied
on a spring will either compress it or expand it de-
pending on the direction of the force.

17. Infer that the spring will compress.
18. Consider the air inside spaceB.

19. Observe from the diagram that spaceB is an open
cavity with holeB.

20. Recall the nferential knowledge that if gas inside
an open cavity Is pushed, it will escape through the
cavity’s openings.

21. Infer that air in spaceB will exit through holeB3.

22. Now that all immediate effects of the hypothesized
piston motion have been considered, visualize its up-
ward motion and the spring’s compression.

23. Recall the inferential knowledge that as a spring gets
compressed or expanded, it will exert an increasing
force in the opposite direction.

24. Infer that the spring will exert a force on the piston
which, at some point, will equal the force exerted by
the pressurized gas on the piston.

25. Observe from the diagram that this may happen be-
fore or after the piston reaches holeB; consider each
case.

26. In the former case, infer that the piston will stop
somewhere below holeB.

27. Infer that the spring compression will cease.

A similar enumeration can be done for the other case,
generating the following behavior hypotheses: the pis-
ton will reach holeB and allow the pressurized gas to
escape; this will decrease the force the gas is exert-
ing on the piston, making it move downwards until a
new equilibrium between the gas and spring forces is
achieved; this will prevent the gas from escaping, in-
crease its pressure, and the piston will start moving
upward; this cycle will then repeat.

Architecture of a Visual Reasoning
System

In this section we describe an architecture for a vi-
sual reasoning system designed to solve qualitative be-
havior hypothesis problems from diagrammatic repre-
sentations by emulating the cognitive processes oul-
lined previously. It has five main elements: a graphical
user interface, a knowledge base, a rule base, a work-
ing memory, and an inference engine (see fig. 4). The
knowledge base contains two kinds of representations:
one which stores descriptive knowledge about the com-
ponents of a physical device using knowledge structures
such as frames that organize knowledge around each
component type, and another that stores knowledge
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Figure 4: An Architecture for Visual Reasoning

about the shape and geometry of components and de-
vices in a spatially distributed fashion. When a prob-
lem to be solved is given by the user, the user inter-
face stores descriptive and spatial parts of the problem
specification in the descriptive and visual representa-
tions in the knowledge base. Then inference is initiated
by the inference engine. It generates new inferences
by accessing and manipulating information from both
kinds of representations in the knowledge base in ac-
cordance with rules selected from the rule base. The
rule base contains inference rules with an if-part and
a then-part. The if-part of a rule describes conditions
regarding properties of components which may be ver-
ified by accessing the descriptive representations, and
conditions regarding the shape, geometry and configu-
ration of components which may be verified by access-
ing and manipulating information stored in the visual
representations. The then-part of a rule contains new
inferences that may be asserted in the working memory
if conditions in the if-part are satisfied. The generated
inferences/hypotheses are stored in the working mem-
ory.

The descriptive representations in the knowledge
base contain conceptual information and the visual
representations contain spatial information.  Con-
ceptual information includes both general knowledge
about types of components in the domain and partic-
ular knowledge about the components of the device
in the input problem. This information is stored in
knowledge structures called “conceptual frames” that
organize such information around component types.
The spatial information consists solely of the shape,
geometry, and spatial configuration of the components
of the device in the input problem, information that a
diagram of the device typically captures. This infor-
mation is represented in two ways: one by “diagram
frames” which are data structures similar to frames or
records storing spatial information, and the second by
means of filling in appropriate labels in appropriate el-



ements of a two-dimensional array. This array may be
seen as directly representing space, spatial configura-
tions of components, their shape and geometry. Fig. 5
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Figure 5: Problem Representation

shows how a device 1s represented using descriptive and
visual representations. It also shows how conceptual
frames, diagram frames, and the array representation
are related.

A behavior hypothesis problem can be provided to
the system by specifying, via the graphical user in-
terface, the components of the device to be reasoned
about, any relevant conceptual knowledge about these
components, the device diagram, and an initial con-
dition involving behaviors of the device’s components.
The user interface program takes this specification, and

1. stores conceptual information about the device’s
components in descriptive representations in the
knowledge base;

2. uses given information about component types to
link this knowledge with general knowledge about
various types of components that already exists in
the knowledge base;

3. takes the specification of the device diagram and
converts 1t into a form suitable for representing as
visual representations in the knowledge base;

4. represents this above information using both dia-
gram frames and array representation; and

5. takes the initial conditions and stores these in the
working memory in a last-in-first-out queue (hence-
forth referred to as LIFO-Q).

Thus, from the input specifications the user interface
program generates an internal representation of the
form shown in fig. 5.

Each inference rule in the rule base has three parts:
an antecedent or if-part containing conditions that re-

fer to descriptive information and/or visual informa-
tion, a consequent or a then-part containing new in-
ferences that the system hypothesizes to hold if the
conditions in the if-part have been verified, and side-
effects, which are procedures that manipulate both de-
scriptive and visual representations in the knowledge
base and which get activated when the corresponding
rule is fired. Fig. 6 shows a sample inference rule. The
rules contained in the rule base can be classified into
the following four categories: rules whose if- and then-
parts refer only to conceptual frames; rules whose if-
and then- parts refer only to diagram frames and the
array representation; rules whose if- and then- parts
refer to conceptual frames, diagram frames, and the
array representation; and rules for carrying out infer-
ences about inequalities and numbers.

The working memory is the computational equiva-
lent of short term memory, except that it is not subject
to capacity limitations of human short term memory.
The LIFO-Q of inferences/hypotheses is maintained in
the working memory. It also contains all new informa-
tion generated during the course of problem solving.

The reasoning steps carried out by the inference en-
gine fall into the following seven classes:

I. Diagram Observation (DO). Access the diagram
frames and/or the array representation to find and
retrieve spatial information;

2. Factual Retrieval (R): Retrieval of general knowl-
edge from descriptive representations.

3. Inference Rule Retrieval (IR): Indexing and retrieval
of relevant rules from the rule base.

4. Conceptual Inference (C). Making an inference
based only on conceptual information from descrip-
tive representations in the knowledge base.
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Visual Inference (VI): Making an inference based
only on spatial information from the visual repre-
sentations in the knowledge base.

6. Hybrid Inference (HI): Making an inference based
on both conceptual information and spatial infor-
mation.

7. Visualization (V). The operation of simulating a
spatial behavior by incrementally modifying the vi-
sual representation of the device diagram.

It should be evident that these operations use three
different kinds of information: conceptual information
from the descriptive representations, spatial informa-
tion from the visual representations, and associative in-
formation in the form of inference rules from the rule
base. Similarly, these operations produce inferences
that may be classified as conceptual, visual or hybrid.

In order to facilitate accessing and manipulating the
visual representations, a set of “visual operations” are
made available to the inference engine. Visual oper-
ations are procedures for accessing and manipulating
both types (diagram frames and the array representa-
tion) of visual representations. These are of four kinds:




(“visual”

{

(assert (fill ?var-1[gas] ?var-3[space]))

If a gas enters a space that is enclosed except for the opening through which
the gas is entering, then the gas will fill inside that space.

(and (“descriptive” (enter ?var-1[gas] ?var-2[opening] ?var-3[space]))
(equal (openings? ?var-3[space]} (?var-2[opening]))))

Side effects: (1) Add the value of the variable ?var-1[gas] to the “contains” slot of
the conceptual frame of ?var-3[space] in the descriptive representation;
(2) Add the label of ?var-1[gas] to the array cells representing
?var-3[space] in the visual representation;

Figure 6: An Inference Rule with Side Effects

basic operations, indexing operations, scanning opera-
tions and visualization operations.

Basic Operations:
Read(z,y) returns labels | of the array element with
index (z,y); Write(z,y,]) marks the array element with
index (2, y) using labels I; Two additional operations,
erase(z,y) and tesi(r,y), can be defined in terms of the
previous two as: erase(x,y) = write(x,y,¢); test(x,y) =
false if read(x,y) returns ¢, true otherwise.

Indezing Operations:
Indexing operations generate indices or addresses of
array elements. At least four such operations are re-
quired.
Directional indexing: given an index (z,y) and a direc-
tion?, generate the sequence of indices of cells which
fall in that direction from (z,y).
Boundary indexing: given an index (z,y) and a symbol
s, generate a sequence of indices of cells, each of which
1s adjacent to the previous one and contains s in its
label.
Newghborhood indexing: given an index (z,y), generate
the sequence of indices of its neighborhood cells. The
exact definition of neighborhood may vary.
Fill indezing: given an index (z,y), generate a se-
quence of indices of cells such that these gradually
cover the area surrounding (&, y).
Combining indexing routines with basic operations cre-
ates procedures that can be used to build the scanning
and visualization operations described below.

Scanning Operalions:
Scanning operations use indexing operations to gener-
ate indices of array elements and basic operations to
test those elements for various conditions. At least
three different kinds of scanning operations are re-

*Sixteen discrete directions are defined on the array,
with each differing from the next by 22.5 degrees; this is an
arbitrary choice.

quired.

Directional Scanning: Given a starting point in the ar-
ray, a direction, and one or more conditions, test all
array elements from the starting point that fall along
the given direction for the given conditions.
Boundary Following: Given a starting point on a
boundary and one or more conditions, follow the
boundary from the starting point and test the bound-
ary elements for the given conditions.

Sweeping: Given a line in the array, a direction, and
one or more conditions, test all array elements that
would be covered if the line were to be moved in the
given direction, for the given conditions.

Visualization Operations:

Visualization operations manipulate components in
the array representation. At least the following
four are required: Move(component, direction), Ro-
tate(component, direction), Delete(component) and
Copy(component).

Figs. 7 and 8 together show the control process un-
derlying the inference engine’s operation. This pro-
cess was developed from the model in fig. 3 by re-
placing mental representations and mental operations
by corresponding knowledge representations and op-
erations on those representations. For example, the
storage and selection at the beginning of each cycle
of a hypothesis (involving a component and its behav-
ior) from short term memory is implemented using the
LIFO-Q data structure in the working memory. The
inferential knowledge that is indexed and recalled from
long term memory during deliberation is represented
as productions with antecedent conditions and con-
sequents. Similarly, the computational process that
corresponds to mental visualization is a simulation of
spatial behaviors by applying visual operations on the
array-based visual representation of the diagram and
scanning for component interactions in the cells of the
array. The immediate effects on connected/contacting
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Figure 7: Control Algorithm

components of a spatial behavior can also be detected
by a similar computational process: simulating the be-
havior for a small number of steps and scanning for
interactions.

This inference method is a mixture of rule-based rea-
soning and diagram-based reasoning. The left path-
way in the flowchart in Fig. 7 describes rule-based rea-
soning and the right pathway describes diagram-based
reasoning. At the start, reasoning begins in the for-
ward reasoning mode, acting on the first element in the
LIFO-Q. Reasoning changes to a diagram-based mode
when either (i) the current inference is a hypothesis
regarding the spatial behavior of a component and its
immediate consequences on other components need to
be determined, or (ii) it is a hypothesis regarding a
spatial behavior whose immediate consequences have
already been determined. In the case of (i) a simula-
tion of the behavior for a few steps is carried out. This
will detect any immediate consequences of that spatial
behavior on any nearby components. These detected

effects are stored in the LIFO-Q, and forward reasoning
will resume at the beginning of the next cycle. In the
case of (ii), we have a behavior whose immediate con-
sequences (which might be other behaviors by affected
components nearby) have already been determined. So
the next step will be to simulate this behavior and its
consequences using the visual representations. In this
case, the simulation will not be terminated after a few
steps. Instead, it will proceed until a spatial interac-
tion between components is detected. Once an interac-
tion is detected, its effects are determined, and stored
in the LIFO-Q. Forward reasoning will resume in the
next cycle. This is an overview of the control process.

Conclusion

This paper presented a study of visual reasoning from
diagrams in qualitative behavior hypothesis tasks. We
began with a definition of the task, following which re-
sults from experimental studies were discussed. Anal-
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yses of this task and a close examination of hypotheses
generated by human subjects allowed us to formulate
a cogmtive process model of problem solving in this
task. Using this model as a basis we showed how an
example problem could be solved. Then we described
a control process and the computational architecture
of a visual reasoning system designed to solve behav-
1or hypothesis problems using diagrammatic represen-
tations. Elements of this architecture were explained.
Implementation of a prototype of this system is cur-
rently in progress.
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