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Abstract

This paper introducesa “qualitative” problem
solving task that humansarc adeptat, but one
whichhasnot receivedmuchattentionwithin the
qualitative physics community. This is the task
of predictingthe operationof a simple mechan-
ical device, itt tertits of spatial behaviorsof its
components,front a labeledschematicciiagranm
of the device showing the spatial cotmfigttration
of its component.sand a gtven initial condition.

Using theexampleof a pressuregaugewe defttie
this task,presenta. cognitivestrategyfor solving
such problems,anti describethearchitectureof a

correspondingcomputermodel

In ion
We often usespatial information implicit in diagrams
to makeinferences.The task of qualitative behaviorhy-
pothesisfrom devicediagrams is a casein point: given
the labeled schematicdiagramof a device that shows
thespatial configuration of its componentsand an ini-
tial condition or behavior, predict the operationof the
device by hypothesizing the behaviorsof its contpo—
nents.

F’igure 1: A Behavior hypothesis Problem: Pressure
Gattge

Considersomeoneexatuint ig the cross—sectiottaldi-
agramof a device,such as tIme pressuregaugeshown itt

fig. 1, andreasoningabotmt its operation. Ibis requires
tha.the or she reasonaboutspatial processesoccurring
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insidethe device. Information used in this type of rea-
soning is of two kinds: visual and conceptual. Visual
information is obtainedfrom thediagram,andincludes
spatia.l configurationsand shapesof the deviceand its
components.Conceptualinformation comesfrom the
domain knowledgeof the reasoner,and includespre-
dictive knowledge used for making hypothesesabout
the device’soperation.

In such reasoningsituations diagramsclearly serve
as compact representationsof spatial information.
however, this is only part of the story of the role
diagramsplay in this task. Diagrams also facilitate
the indexing of relevant problem solving knowledge.
Furthermore,ci ia.gramssupport mental visualizations
of spatial behaviorsof device componentsduring the
course of reasoning. It has been shown that such
rrmentalvisualizationsguidehumanreasoningalongthe
direction of causality as perceivedfrom the diagram
(Hegarty 1992).

This cognitivecapability for “qualitative” visual rea-
soning from diagramshasnot hitherto receivedmuch
attention in the qualitative physics literature1. The
automation of visua.l reasoningcan be of benefit in
a variety of domains and applications: in automat-
ing expert reasoningusing phasediagrams(Yip 1991),
in developing instructional or demonstrationsystems
whoseoperation is easily explainableand understand-
able(Tessler,Iwasaki& Law 1993), and in developing
systemswhosereasoningspansmultiple ontologiesor
models (Fishwick ct al. 1994, Kiriyama ~ Tomiyama
1993), to cite a few examples.

This paperdescribesan approachto automatingvi-
smtal reasoningabout devicesfrom diagramns.The rca-
soiling task is defitied first. Thenhypothesesaboutthe
pressuregaugein fig. I that humansubjectsgenerated
in an experimentalstudy arepresented.Following this,
we developa cogitit.ive processmodel for this task and

tWitli the exceptionof Font’s early work (Funt 1980)

and themorerecentREDRAW system (Tessler, Iwasaki&t

Law 1993). The work of Forbus and colleagues(Forbus,
Nielsen ~UFaltings 1987) on using a metric diagram for

spatial reasoningaddresseda different capability than time
onebeingconsideredhere.
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Subject 1

Gas at high pressure
enters spaceA.

Pressure inside
spaceA increases

Piston r~ovesupward

Piston reaches holeB

Pressur increase
in spaceA stops

Gas lea s out
through hobO.

Piston starts to
move down.

Piston oscillates
up and down
near hobO.

Subject 2 Subject 3

Gas at high pressure
enters spaceA.

SpaceA expands.

Piston moves upwar

Spring compresses.

SpaceB contracts.

Air in spaceB leaks
out through holeS.

Piston stops below
holeB.

Suigect 4

Gas at high pressure
enters sfaceA.

Gas pus~esair
inside s~aceA.

Piston ,n~vesupward.

Air in spaceB leaks
out thro

1
gh holeB.

Spring compresses.

Spring gets
tully oon~pressed.

Piston stops.

Gas inpJt stops.

Subject 5

Figure 2: Subjects’ Ilypothesesabout tile PressureGauge

enumeratebehavior hypothesissteps for (lie pressure
gaugeaccordimig to this model. Finally, the architec-
ture and comttrol algorithm of a computersystemde-
signedfor this task arc described.

HypothesizingBehaviorsfrom Device
Diagrams

We condluctedia set of protocol analysis (Ericsson&
Simon 1993)experimentswith five subjectssolving six
qualitative behavior hypothesisproblems each. Ver-
bal data(comicuiremitverbal reports) amid gesturaldata
werecollectedduriitg time courseof problemsolving andl
analyzed. Details of theseexperimentscan be found
in (Narayanan,Suwa& Motoda 1994). What is of rel-
evancehere are the behaviorhypothesesgemieratedby
time five suh~ectsfor the problem shownin fig. I

Fig. 2 showsthesehypotheses,with (lie arcsindica,t—
ing the order in which the hypothesesweregenerated.

The main goal of theseexperimentswa,s to character-
ize how visual information from the chiagraniand con—
ceptuaiinformnation (prior knowledge)interactand itt—
fluencethe direction of reasoningduring problemsolv-
ing. Though the solutions that the subjectsprovidedl
were not always completeand containedinaccuracies,
the analyseswe carried ot.mt — both of the task and the
datacollected — imtdicat,ed that the dl iagra.ni played two
importantroles dluri ng problem solving.

• It facilitated the indexing and recall of both fac-
tual knowledgeregarding componentsand inferen-
tial knowledgeusing which the reasottergenerated
new hypotheses.

• It st.ipported visualizations of hypothesized spa,tia.l
behaviorsof compomments,which itt ttimn etiahledi the
reasonerto detect effectsof thesebehaviors.

Basedon task amid data analyses(Narayanan,Suwa &
Motoda 1993), we developedacognitiveprocessmodel
of problemsolving in this task. It is shown in fig. 3.
It explicatesthe visual reasoningstrategyemployed in
solving qualitativebehaviorhypothesisproblems.No-
tice that reasomiingproceedsin cycles. At first, short
term memory containsonly the giveninitial condition.
So reasoningstarts with a componentand its behav-
ior mentionedin the initial condition. In later cycles,
a componentamid its behavior to focus oii areselected
from amongthehypothesesin short termmemory. The
diagramfacilitates the indexing and recall of relevant
knowledge iii two different ways: (i) attending to a
componentmay cuesomerelevantfactual information
about it which is either recalled from long term mem-
ory or retrieved from the diagram,and (ii) configura-
tional arid shapeinformation about componentsfrom
thediagramtogetherwith prior knowledgeaboutcoin-
ponentsand behaviorsallow the indexing and recall
of inferemitial knowledge. New hypothesesare gener-
atedin three ways: (i) by deliberatingabouteffectsof
non-spatialbehaviors,(ii) by observingthediagramto
locate connected/contactingcomponentsand deliber-
atimig abouthow thesewill beaffectedby spatialbehav-
iors, or (iii) by mentally visualizing spatial behaviors,
detectitig interactionsamong componentsthat result,
amid deliberatingabouteffectsof theseimiteractions. Itt
eachof thesecases,tile applicationof therecalledinfer-
entialknowledgecreatesnew hypothesesin short term
mnemnory.

Now let us reconsiderthe problemin fig. 1 and enu-
merate steps of reasoning according to this process
model to generateomie solution to the problem.

1. Considerthe given imntial condition.

Gas at high pressure
enters spaceA.

Pistorr
T

moves upward

Air in IpaceB leaks

Out through holeS.

It gas pressure It gas pressure
is greater than is less than
spring resistance, spring resistance,

Piston reaches Piston reaches

beyond holeS, below holeS.

Gas leaks out Sprin~resistance

ot holeS, equals
gas pressure.

Piston stops.

Gas at high pressure
enters spaceA.

Gas pushes
inside spaceA.

Air in spaceS leaks

It the gas input lithe gas inpuit
is slow, is sudden,

Spring compresses Cylinder break
slowly.

Piston moves
upward slowly.

Air in spaceS teaks

out slowly.

2. Observe fm’omn the diagram that holeA opens to



L SelectacomponentC andits hypothesizedbehaviorB from short termmemory J~

[Shift focusto C D

[~~dingto C maycuerelevantinformationaboutC that is currentlymissing

I If so, andif this information is visual in nature,
shift focusto theappropriatepartof C in the r ~so, and if this informationis not visual in nature,

I diagram in orderto locateand retrievethemissing j indexinto long termmemoryandrecall relevant

L information ~J[~prior knowledgeto fill in this information

[t~B is non~spamia~] [i~isspatiai~

I Considerany immediateeffectsof B on ‘)
1

1f B doesnot have any immediateeffects

I componentsthatareconnected I I on othercomponents,or if sucheffects
I to or in contactwith C asobse~ed I L havealreadybeenconsidered, J
L from thediagram ________________J

I Mentally visualizeB andanyother

L spatialbehaviorscausedby if1
Determinecomponentswhich

~be affetctedby C andB ] I

I Watch out for componentsinvolved

in thebehaviorsbeingvisualized J
~~~racting with othercomponents

1
lf suchcomponentsarefound,useinformationaboutthesecomponentsfrom thediagramandprior

knowledgeaboutthebehaviorsunderconsiderationto indexandretrieverelevantinferentialknowledge:
I Deliberateabouthow thesecomponentswill beaffected;Generatehypothesesaboutnew behaviors

Lhat result, by applying therecalled inferentialknowledge;Storenew hypothesesin shortterm memory

If therearehypothesesin short term memorythathavenot yet beenconsidered,

Figum’e 3: A CogmntiveProcessModel of Behavior hypothesisfromn Device Diagrams

spaceA. 9. Recall time factual knowledgethat the piston is mov-
able in a pistomi-cyhimidler assembly.

3. hnfer tha.t the pressurizedgaswilh enterspaceA.
10. Observethe piston in the diagramand infer that it

4. Observefrom the diagram that spacei~is a closed is free to moveup or down.
cavity.

11. Imifer tha.t time pistomi ~viil moveupward.
5. Recall the immferentiahknowledgethat if apresst.mm’izedl 12. Observefrom the diagram that the piston is con-

gas is containedin a cavity, it will exem’t a. force in
the normal direction omi walls of the cavity. nected to a. spring a.mid is in contact with air in

spaceB;comisider each in turn.
6. Obsem’vefromtm the dhiagramlithat, the cyhimidem’ audi h.)is 13. Recall the infememitial knowledgethat if a component

tomi form walls surroumidimigspaceA. is connectedto another,and theformer startsmov-

7. Infer that a. force imi the nominal dhirect.ioti will he itig in onedlirectioml, it will exerta forceon the latter
exertedoil the pistomi amid cylinder by thepressurized iti the sa.medirection.
gas. 14. Infer that wheni the piston startsmoving upward, it

8. Recall time inferential knowledge tha.t force can in- will exertan upwardforce on the spring.
ducenmotiomt in a movablecomponent. 15. Observefrom the diagramnthat the other end of the



spmuig is connectedito the cyhimider.

16. Recall the imiferentiah knowledgethat a forceapplied
omi a spring will eithiem’ comilpressit or expatldh it de—

pemidlimig on the dhirectiont of the force.

17. lnfem’ tha.t time spm’ing will compm’ess.

18. Comisider the aim’ in.sidhe spaceil.

19. Observefrom the diagm’a.mii that spacefl is an open
cavity with holeB.

20. Recall the imiferential hdnowhedlgethat mf gas insidhe
an open cavity is ptmshledh, it. Will escapethrough the
cavity’s openings.

21 . hmmfer that air in spaceRwill exit thm’ough hoheB.

22. Now that all inmmnedia,teeffects of tIme hypothtesized
pistomi motiomi haveheemicomisidered,visualizeits up-
ward motiomi audi the spring’s compression.

23. Recall the immferemitiah knowledigethat asaspm’ing gets
cOmTipressedor expamidedi, it will exert aim increa.sing
force in the oppositedirectiomi

24. Infer thia.t the spring will exert a. fom’ce on the piston
which, at smite poimmt, will equa.lthe fom’ce excitedby
the pressurizedga.son the pistomi.

25. Observefront the dia.granntha.t this may happenbe-
fore or after thepiston teacheshoiel3’, comisidem’ each
case.

26. 1mm tue foninier case, infem’ that time piston will stop
somewherebelow hoheB

27. Intfer that, time spring compressionwill cease.

A sitilula,m’ emiumem’a.t,monca.n be chomie for the othem’ case,
gerteratimigtime following behavior hypotheses:time pis-
ton will reachhioleB audi allow the pm’eSsumm’izedi ga.s to
escape; this will dleci’easethte foi’ce tIme ga.s is exert—
inig oil the h.)ist.on, making it. move dlowmiwa,rdstu ntil a
new eqtiihihritmm betweenthe gas amid spring forces is
achieved; tht is will prevent. tIme gas front escapimig,iii—
creaseits pressure anih the piston will start mnovmg
upward; this cycle will thenm repeat.

Architecture of a Visual Reasoning
Systen’i

Imi this section we dhescribean a,m’chtit,ectkmre for a vi—
sima.h reasoningsystemdhesignedht.o solvequalitativebe-
havior hypothesispm’oblenlsfront dhia.gra.mnnnat.icrepre-
sentationsby emnuha.tinmgthe cognitive processesout—
lined previously. It hma.s five main elememmts: a. gm’aphmical
userinterface,a knowledgebase, a. rule base, a work—
immg mnemory,and aim itmferemice emmgimme (see fig. 4). TIme
kmmowieehgebasecontainstwo kimtdhs of i’epresemmta.t.ions:
omm which stoicsdlescm’iI.tive Idnowledgeabom.mt the com—

pomiemitsof a physicaldlevicemusingktlowhedhgestm’uctures
ni cit as frames that organizeknowledge arottn di each
cotllponetit type, a.tidh anothiem’ that stoics kmmowledge

Figure 4: Ant Architecturefor Visual Reasoning

abo-uttheshapeamid geometryof comrmponmentsandde-
vices in a spatially distributed fashion. When a prob-
lemn to be solved is given by the user, the user inter-
facestoresdiescriptiveandspatialpartsof the problem

specificatiomi in the descriptive and visual representa-
tiomis in time knowledgebase.Theninferenceis initiated
by the inference engine. It generatesnew inferences
by accessingamid manipulatinginformation from both
kinuds of representationsin the knowledgebasein ac-
cordanmcewith rules selectedfrom the rule base. The
rule basecontaimis immferencerules with an if-part and
a themi-part. The if-part of a rule describesconditions
regardingpropertiesof connponentswhich maybe ver-
ified by accessingthe descriptive representations,and
commditiomis regardingthe shape,geometryand configu-
ration of conipomientswinch may beverified by access-
ing amid ma.mupulatimmginformatiorm storedin the visual
repmeseuitatiomms.‘I’hme then-partof a rule containsnew
inferencesthat may be assertedin time workingmemory
if comiditionsmt the if-part are satisfied. The generated
inferetices/iypothesesarestored in (lie workimig memn-
ory.

Time diescriptive repm’esetitations in the knowledge
base commtain commceptual information amid the visual
representat,iomisconmta.in spatial information. Con—
ceptnmal informna.tionm includes both general knowledge
about types of comnpomuentsin the doniain and partic-
ular knmowiedhgeabout the componentsof the device
in tIme input problem. This information is stored in
knowledgestructurescalled “conmceptuahframes” that
organize such inmfornmation around componenttypes.
The spatial imiformation consistssolely of the shape,
geometry,andl spatial configurationof the components
of tue dievice in tIme input prohlenn,informnation that a
dhiagramliof time dievice typically captures. This infor-
timatioui is repm’esemitedhin two ways: omme by “diagrani
frames” which atedatastructuressimnilar to framesor
recordsstoring spatial imiformation, and the secondby
mmmeansof fihhimmg in appm’opria.telabelsin appropriateci—



emlientsof a two—dhinlensiomiaha.m’ra.y. This armaymna.y he

seeml as directly reu.resemitimigspace,spatial conmfigura—
tions of comnponents,tlmeir shapeamid geomnetry.Fig. 5

showshow a. dieviceis u’epresemit.edumsimig diescriptiveand
visua.l representations, it also shows how conceptual
frames,dia.gramnframes, amid the array represemmtatiomi
ate related!.

A behaviom’ Imypothesis pm’ohlemn can be providedl to
the systeull by specifying, via, the gu’a.phiicah uset’ in-
terface, the conlponeuitsof tie dievice to be reasonedi
about, amiy relevantcoilceptuaI knowledlgeaboutthese
contiponents, the dhevice dhia.gra.nl, amid! ant immitial comm—
ditionm involvinig behaviorsof the device’scomponents.
The userinterfaceprogra.mim takesthis specificatioti,andh

I. stores conceptual ituformnat,ion about the device’s
componmemmts in dlesct’iptive repi’esemlt.at.ions mum tIme
kuiowhedgebase;

2. uses given imiformnatiomi about componenttypes to
hnk timis knowledigewith gemiera.h kilowledge about
various typesof componentsthat alrea.diy exists itt

tile Idnowledgebase;

3. takes the specifica.tiomt of the device dliagram amid
converts it. into a. form stiita.bhefor rept’esentimmgas
vistual represemitationsin the kmiowledhgebase;

4. representsthis above imifomnmatiomt using bot.lt dia—
grann framesand! a.rray represetitatiomi; atldl

5. takes time itmitial condit.iomts aumd stom’es t.lmese in time
workimig mnemnom’y m tm a last-i mm-li t’st-otmt. queue (hence-
forth referred to as LIFO—Q)

Thus, from the imipu t specifications(lie tmsem’ mnt.em’fa.ce
program gemlera.t.esati intertia.l t’epresent.atiotmof time
form simown in fig. 5.

1.~a.chiimifeu’euice muIc iii the nile basehas timm’ee parts:
an anmtecedemmt.or if—part. comit.a.iningcomudit.iotis that me—

fer to descriptive imlformation and/or visual informa-
tion, a consequentor a then-part contaimmingnew in-
ferencesthat the system hypothesizesto hold if tlle
comlditions in the if-part ilave beenverifiedl, andside-
effects, which are proceduresthat manipulateboth de-
scriptive and visual representationsin time knowledge
baseamid which get. activated when the corresponding
rule is fired. Fig. 6 showsa sampleinferencerule. ‘l’he
rules coiltained in the rule basecan be classified into
the following four categories:rules whoseif- and then-
parts refer omliy to conceptualframes; rules whose if-
amid then- parts refer ommly to diagram frarrmesand the
array representatioml; rules whose if- anmd then- parts
refer to conceptualframnes, diagram frames, and the
array m’epresentationm;amid rules for carrying out infer-
emmcesaboumt inequmahitiesamid numbers,

‘I’ile workimlg memory is the computationalequiva-
lent of siiort termmemory,exceptthat it is not subject
to capacityhmitations of human short term memory.
The LbFO-Q of inferences/hypothesesis maintainedin
time workingmemory. It also containsall new informa-
tion generatedduring the courseof problemsolving.

TIme reasomlingstepscarriedout by the inferenceen-
gimme fall itito the foilowimig sevenclasses:

1. Diagram Observation (DO): Access the diagram
framesamid/or the array representationto find and
retrieve spatial itlformation;

2. Factual Retrieval (R): Retrieval of general knowl-
edgefront descm’iptive repm’esentations.

3. InferenceRule Retrieval(Ill); lnd!eximlg amid retrieval
of relevantrules from the rule base.

4. Conceptual Inference (C): Makimmg aul inmference
basedoully on conceptualinformation from descrip-
tive representationsin the knowledgebase.

5. Visual Inference (VI): Making an inference based
onmhy oum spatial imlformilatioml from tile visual repre-
sentationsiii time knowledgebase.

6. Iltjbrid Inference (III,): Making an inference based
oui both coimceptuahimlfornmationm amid spatial infor-
unation.

7. Visualization (1/,): Tile operation of simulating a
spatial beilavior by incrementallymodifying the vi-
sual representationof the devicediagram.

It Simoumidi be evidleult that these operationsmisc three
dhiffem’emmtkimmds of imiformation: conceptualimiformation
fronl tile descriptive representatiomls,spatial informa-
(mimi from the visumalrepresentations,andassociativein-
fommnma.tion imi time fornn of inferencerules from the rule
base. Similarly, theseoperationsproduce inferences
that tmmay be classified asconceptual,visual or hybrid.

1mm ordier to facilitate accessimigand manipulatingthe
visua.h repi’esemmtatiouls,a set of “visual operations” are
nmmadle available to the imlfem’ence emiginme. Visual oper—
atiomms are procedumresfor accessingand manipulating
both types (dha.gu’a.mnframesamid the array representa—
tionm) of visual repm’esemmtatiomms.Timeseareof four kinds:

Figtmu’e 5: Pm’obhemrm Ftepresentatioum



Figum’e 6: An InferenceRule with Side Effects

basicoperations,iimdexing operatiomls,scanningopera-
tions and visuahizatiomi operatioums.

Basic Opera/ions:
Read(’x,y)returns labels I of the array element with
index(x, y); Write(x,y,l,) marhdsthearray elememmt.with
index (x, y) using labels I; Two ad!dhtionmaloperationms,
erase(x,y)atid test~x,),cam~he defined itl terms of the
previoustwo as: erase(x,y)= wnite(x,y4t); test(x,y) =

falseif read(x,y) returnms~, true otherwise.
Indexing Operations:

Indexing operations genmerateindices or addressesof
array elements. At least four such operationsare re-
quired.
Directional indexing: given an index (x, y) andadirec-
tion2, generatethe sequenceof indices of cells which
fall in that directioml from (x, y).
Boundaryindexing: given an indhex (x, y) auld a symbol
s, generatea sequenceof imldices of cells, eachof wliicim
is adjacentto the previousomie and! commtaimis 5 uI its
label.
Neighborhoodindexing: given ant index (x, y), generate
the sequenceof indices of its mleighmborhoodlcells. ‘Tie
exactdefinitioul of neighmhorhioodhmay vary.
Fill indexing: given aim imldleX (x, y), generatea. se—
quienceof indices of cells such that timese gradlually
coverthe ai’ea. surrotmndimmg(x, y).
Connbiningimldiexiulg roumtines with basicopera.tioniscre-
atesproceduresthat cart be used to build the scanmmlimlg
andvisualizationoperationsdescribed!below.

ScanningOpera/ions:
Scanningoperationsuseindexing operationsto gener-
ate imldices of array eletimemlts and basic opea’ationmsto
test those elementsfor vanioums couiditions. At least
thmree different kimmds of scammmlimlg operatioums a.u’e re—

2Sixteen dhiscrete directiomms are diefi nedl out time array,
with eachdiffenimmg from time mmext by 22.5 degrees;this is aim
arbitrary choice.

qumired.
DirectionalScanning: Giveni a starting point in thear-
ray, a direction, amid omie or nmore conditions, test all
array elementsfrom the starting point that fall along
the given direction for the given conditions.
Boundary Following: Given a starting point on a
boundary and one or more conditions, follow the
boumldary from time starting point andtest the bound-
ary elementsfor tile given conditions.
Sweeping: Given a line in the array, a direction, and
one or more conditionms, test all array elementsthat
would be coveredif the line were to be moved in the
given direction, for thegiven conditions.

Visualization Operations:
Visualization operations manipulate components in
tile array representation. At least the following
four are required: Move(component,direction), Ro-
tate(component, direction), Delete(component)and
Copy(componcut).

Figs. 7 and 8 togethershow the control processun-
derlyinmg the inferenceengine’s operation. This pro-
cess was developedfroin the model in fig. 3 by re-
placing mentai representationmsand mentaloperations
by correspondimlgknowledge representationsand op-
erations on those representations. For example, the
storageamid selection at the beginning of each cycle
of a ilypothesis (involving a componentandits behav-
ior) froin silort temmn memoryis implementedusing the
LIFO-Q datastructure in the working memory. The
inferemitial knowledgethat is indexedandrecalledfrom
long term nmemory during deliberation is represented
as productiomls with antecedentconditions and con-
sequenmts. Similarly, the computationalprocessthat
correspouidsto mental visualization is a simulation of
spatial behaviorsby applying visual operationson the
array-basedvisual representationof the diagramand
scanningfor connpomlentinteractionsin the cellsof the
array. The innmnediateeffectson connected/contacting

If a gas enters a space that is enchosed except for the opening through which
the gas is entering, then the gas will fihh inside that space.

(and (“descriptive” (enter ?var- 1[gas] ?var-2[openingJ ?var-3[space]))
(“visual” (equal (openings? ?var-3[spaceJ) (?var-2[opening]))))

(assert (fill ?var-1[gasJ ?var-3[space]))

Side effects: (1) Add the value of the variable ?var-1[gas] to the “contains” shot of
the conceptual frame of ?var-3[space] in the descriptive representation;
(2) Add the label of ?var-1[gas] to the array cehls representing
?var-3[space] in thevisual representation;



Figure 7: Comltrol Algorithm

componentsof a spatial heliaviom’ can also be detected
by asimilar computationalprocess:sitnulatmnmgtile be-
havior for a small timminber of steps amid scanmnimlg for
umlteractioils.

This inferencemethod is a mixtureof rule-basedrca-
soning and diagramn-basedreasonming. Tile left patim-
wayin the flowchart in Fig. 7 describesrule-basedrea-
soning amid the right pathway diescribesdiagram-based
reasoning. At the start, reasomlitig begimis in the for-
ward reasoningmode, actingon the fim’st eleu’nenmt in the
LIFO-Q. Reasonimlgchamigesto a diagram-basednnode
when either (i) the current imiferenmce is a. Ilypothiesis
regardingthe spatial behavior of a componemltamid its
immediateconsequmenceson other conlpotieilts nmeed to
be determined,or (ii) it is a hypotilesis regardhmmga
spatial behavior whose immediate consequenceshave
already beeml determimied. 1mm the case of (i) a siulluha-
tion of the beimavior for’ afew stepsis carriedout. Tins
will detectany inmmechiatecomisequencesof that spatial
behaviorOml ammy mleal’hy components.Thesedetected

effectsarestoredin the LIFO-Q, andforward reasoning
will resumeat tile beginning of the next cycle. In the
caseof (ii), we imave abehaviorwhoseimmediatecon-
sequences(whicim might be other behaviorsby affected
componentsmiearby)havealreadybeendetermined.So
time next step will be to simulatethis behaviorandits
conmsequencesusimig tile visual representations.In this
case,the simulation will not be terminatedafter a few
steps. Instead, it will proceeduntil a spatial interac-
tion betweencompommenmtsis detected.Oncean interac-
tion is detected, its effectsare determined,andstored
in the LIFO-Q. Forward reasoningwill resumein the
next cycle. This is an overview of the control process.

Conclusion
This paperpresemmteda study of visual reasoningfrom
diuagranTmsiii qualitativebehaviorhypothesistasks. We
began with a definition of the task, following which re-
suits from experimentalstudies werediscussed.Anal-

Simulatethe behavior by
applying visual Operationson
the VisualRepresentations
andstopaftera small number
of steps

For eachrulewhoseif-
conditionsaresatisfied,use
Visualand ConceptualInfor-
mationFinder Prc
to completeany rr
mnformattonin the

Activate proceduri
assideeffectswith eachrule
from the previousstep



Figure 8: Commtu’oI Aigorithnm — Contd.

ysesof this task and achoseexanminatioulof hypotheses
generatedby human subjectsallowed us to fom’niu.mlate
a cognitive pm’ocess mnodel of problem solving imi timis
task. Using this model u.s a. basis we showedhow anm
exampleprobienmcoumhdi hue solved. ‘T’heml we descm’ibed
a control processanti the conipumta.tionaharchitecture
of a visual reasoningsystem diesignedito solveheimav-
ior hypothesispm’oh.lemlis musingdiagi’a.mnmnaticrepresent—
tations. Elementsof t.hmis au’chitectum re uvet’e explaitied
Iinplenmeuita.tioti of a prototype of thmis systemim us cuir—
remltly in pm’ogress.

Acknowledgnremtts \Ve thanhd Dr. Toyoaki Nisimidia
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