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Abstract

The problem of learning qualitative models of
physical systems from observations of its be-
haviour has beenaddressedby severalresearchers
in recent years. Most current techniques limit
themselvesto learning a single qualitative differ-
ential equationto model the entire systeni. How-
ever, many systemshave several qualitative dif-
ferential equationsunderlying thenm. In this pa-
per, we presentarm approachto learning the mod-
els for such systems. Our techniquedivides the
belmaviours into segments,each of which can be
explainedby a single qualitative differential eqima—
tion. The qualitative model for eachsegmentcami
be generatedusing any of the existing techniques
for learning a single model. We show the results
of applying our techniqueto severalexamplesand
demonstratethat it is effective.

Introduction
Qualitative reasoning is an elegant approach to
studying the behaviourof a physical systemwith-
out going ito asmuchdetail as in a nurrierical situ—
ulation. Model building and modelszrnulaiionmcon-
stitute the two major sub—problemsof qualitative
reasoning. There are several approachesto qual-
itative simulation, such as QSIM (Kuipers, I 986)
and QPT (Forbus, 1984). Rapid advanceshave
been made to inmprove time efficiency of the sintim—
lations arid to fine tune timeinm. Flowever, the model
building problem remainssomewhatof an art forum.
Building mnodels for acomnplex systemrequiresSig—
nificarmt knowledgeof how the systemworks and is
a tirrme—consulningprocess.

Many researchersare addressingtile problemmm of
automatic rnmodel generation. One approach is to
build modelsfrom existing libraries of model frag—
inents (Forbus, 198’l; deKleer and Brown, 1984;
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Crawford et al., 1990; Rickel, 1992). However,
these techniquesstill require complete knowledge
of all the model fragments. Anotheerapproachis
to learn the model of a physical system from ob-
servationsof its behaviour. Doyle (1988); Amster-
dam (1993) haveproposedtechniquesfor learning
models from behaviours using existing knowledge

of processesamid rnechamsmscommonly foutid in
physical systems.Theseapproachesareknowledge-
intensive as well.

A number of researchershave formulated tech-
mnquesfor generatingqualitativemodelsof physical
systemsfrom aset of qualitativebehavioursusing
inductive techniques(Coiera, 1989; Kraan et al.
1991; Richardset al., 1992; Dzeroski and Todor-
ovski, 1993;Bratko et al. 1991). ‘These requirelit-
tle knowledgeof thesystembeingmodeled. Given
a set of input behaviours,these techniquesgetter-
ate a single qualitative differential equation (QDEJ)
that is consistentwith thebehaviours.The models
generatedare represemitedso that they can be used
by QSIM.

Many complex physical systemscaninot he de-
scribed by a single QDE, They are explained by
different Ql)Es that hold underdifferent operating

conditionsor regions. For example,waterboiling in
a closed container requiresthree QDEs to explain
its behaviourdependingon whether it is belowor at
its boiling arid whetherall of the waterhasevapo-

rated. A typical behaviourshownin Figure 1 passes
throughseveral of theseregions.

However, M ISQ (lKraan etal., 1991; Richards
et~al ., 1992) and the othier systemscannot learn
modelsdescribedby multiple QDEs. Given the be-
haviour iii Figure 2, they will incorrectly learn a
single Ql)E that explainsthe entire behaviour. It
is desirableto haveinductiveniodel generatorsthat
calm recognisethat thebeltaviour is best described
by multiple Q 1)Es and learn them

‘[his paperdescribesasimple techniquefor auto—
umaticallyrecognisingthat therearemultiple QDEs
underlying a physicalsystem . It assumesonly the
QSINi (Nuipers, 1986) formalism and is indepen—
demmt~of the induction algorithm used to generate
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Figure 1: Time Boihimmg Water Systeitm: ‘lypical Behaviour

tIme mmmdcl. Givemi qualitative observationsof the
behavioursof asystem,tins techniqueidemmtifies lIme
variousoperatingregiomis of the systemni wbmere (hf
ferent QDEs1101(1.

We haveevaluatedour techimiqueon the follow-
ing physical systemns:the PlantWater-balancesys-

teni, the Boihimmg-Waersystem and the Divided
‘l’ammk system.Ultimnmately, we would hike to he able
to learn nmultiple QDEs from quantitative data as
well.

In the next section, we will describeour tech—
mmique imm detail. Section 3 describesant experimnmemi—
al evaluation of this technique. tim Sect ion 4, we

discussfut mire direct ions.

Learning Models with Multiple
QDEs

A QDE is valid over somlie operatimlg regiomm. ‘lIme
commditions,expressedmm termns of the valuesof time
variablesinvolved, over whichm the QDE is valid are
called the opmratiimg coi’mditioims of time QDE. ‘l’hme
mnovenmenmtof a system front time operatinig regiolm
of omme QDE to that of anotheris called a region
110mmsit tort.

l3elmavioursof physicalsysternmsthat passthrough
mimultipie operat mmg regiomms exhmibit regiomi t raimsi
ions, The segmentbetweemm two consecutivetrait—

sit iomis is govermmedby ii. simigle QDE. Our approach

to learnimmg models with mmiultiple QDEs is to first
breakup the behavioursimmto such segmmients.Then,
the system camm use any of time existimig inductiomm
algorit lmmns to generatetime QDE for each segmsiemmt

Thus, the probiemmi of learmnngmodelsfor systemns
with imiult iple operatimmg regions(~amihe divided imit o
t lie following sub prohhemims.

Break up the examupiebeimavioursinto segmnemits
that fall witlnmi a simmgle operatimmgregion.

2. Learmm the QDE for eaclm of the segniiemits.

3. ldeimtify the operatimig conditionsfor eachQDE.

4. lJmiify theQDEsthat describetIme samimeoperatimmg
region.

Although step2 involves ami imidmjctiomm algorithimii
to learnQDEsfor each region,itt tIme following sub—
sectiomiswe describeteclmmmiquesfor performnimigsteps
1, 3 and 4 that are indepemmdemitof the hearmumigal—
gorithimit used.

Step 1: Breaking up the behaviours
into segments

‘lo break up a behtaviomirimito segments,it is suffi
ciemit to detect the timmie points wlmere thebehaviour
muovesfrommi one regiomi to aimotlier, i.e., to detect
he regiomm tramisitiomis. Our systemnmusestime follow—

imig hteuristicsto mecogmusetransitmon poimits.
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• Discontinuous-Changeheuristic

Oneof the interpretationsof aregiontransit-ionis
that theactualstateof the mnecimamiisnmundergoes
adiscontimmuouschange(Kuipers, 1994). Titus, a
discontinuity in time behaviourof any variablein
thesystemcan be used to detect a region transi-

tion. A discontinuity can be army of thefollowing
kind.

Discommtimiuity in time magnitudeof a variaile.
An exammmpleof this is a variable whose mnagni-

tudegoesfrom beingpositive to beingnegative
without goingthrough zero.

Figure 2 showsthe variable uptakeummdergoimmg
a discontinuouschmammge in magnitudeat time
poimit. T2.

2. Discomitinmuity in tIme sigh of thederivativeof a
variable. For imist ance, this happeniswhemm time
derivativeof a variable goes fronn beimig posi-
tive to beimig mmegative wititout going through
zero.

For exaniple, imm Figure 2, time derivativeof time
variable net inflow undergoesa discommtinuous
chamigeat tinme poimit ‘I’2.

This heuristic is justified by the fact that QSIM
does riot predict disconitinuousbehaviourunless
it encounmtersa region transition that introduces
thediscontinuity, in order to learn a nnmodehthat
coversthe given discommtinuousbehaviour,MISQ
hasto imypothesisearegiontransit-ionat thepoint
of discontinuity.

• Non-analytic- Function heuristic

Timis heuristic rehies on time propertiesof a cer-
taint chassof fummctions called armaltjtic functionms.
If a function is analytic over an imiterval, and is
constantover any open sub—interval, it mnust be
comistantoverthe emmtireinterval (Kuipers, 199-4).
Thius, umider time assumptiomithat- time actual be—
imaviours eximihitedby all thevariablesmi thesys-
temmi being nmmodeled are analytic, if a variable
is observed to be conmstamtt over some interval,
but not- over sonmme other interval mm time same
behaviour, then time two intervals must he gov-
ernedby differemmt constraintsamid hemicedifferemit
Ql)Es.

For examiiphe, in the belmaviour shown in fig-
mmre 2, i-lie variable turgor exhibits nomm—anahytic
behaviour, it is mmon—commstanmt over time miter—
val (TO, T5) amid is constantover time interval
(T5,T6).

‘This imeuristic is justified because,under time an-
alytic fu-rmctiorm assn-mrmption,QSIM will nmevergen-
eral-c a mion-anmalyticbehaviourunlessit entcounm-
tersa regiomi tramisition timat- introducestime mmomi--
antalyticity.

Step 2: Learning the QSIM modelsfor
each operating region
Time previous sectiomi described the heuristics to
break up heimavioursinto segmniemmts correspommdinig
to differemit operatimmgregions.Time heartiercan now
generateasimigleQDE to model eachsegmentusing
arty of time existing induction algorithms (Coiera,
1989; Kraamtci al., 1991; Ricimardset al., 1992; Dze-
roski and‘lodorovski, 1993;Bratko et al. 1991).

In our iniplemnentation, we have used
MISQ (Kraan et al., 1991; Richards et al., 1992)
to generatethe QDEs. Given a set of qualitative
behaviours,MISQ uses a most specific gerieralisa-
tiomi algorithm to generateQSIM models that are
guaranteedto he consistemit with the behaviours.

Step 3: Identifying the operating
conditions for each region
Identifying the operatingcondition for eacim QDE
can be thought of as an inductive process. The
behavioursegnment.associatedwith eachQDE pro-
vides positive exanmplesof the commditiomm under
which it is active. We imave used a mrmost specific
conjunctive generahsationmapproachto induce the
operatimmgcomiditionsfrom positive exanmples,wimere
time operatimigcommditiomt imiduced for a region is the
rangeof all thequalitativevaluesobservedfor each
variablein time behavioursegmmiemmt. Table I siiows
the operatingconmditionm for time regiomm betweenTO
and Ti in the behaviourshown in Figure 2.

An operatingcondition representsthe interior of
a region, whereasQS1M representsa regiomi by its
boundaries.Time regiomm of validity of eachQDE is
specified itt terms of tranmsition mappings. These
mappingsspecify transition conditions,i.e., condi-
tions underwhich the systemnioves out of theop-
erating region of one QI)E into that of another.

It is easyto derive the boundaryconditionsof
eachQDE fronmm its operatimmgcomiditiomms. We view
time variablestiiat- defimme the hounmdaryof a QDE
as triggers that causethe transitiomm out of the re-
gion. ‘Table 4 showssonicexanmplesof triggersthat
causetraimsitions hetweemm regions. The following
observationmsimelp us imi identifying such triggers.

- Sinicediscontimmuitiescammnotoccurspontaneously,
a variable that changesdiscontinuouslycanmiot
causea tranmsitiomi.

2. A variablethat. is steadyoveraregiomi or doesnot
crossa landmarkvaluecanniotcausea transition.

The rest of time variablesare potential triggers
and time trammsitiomm conditiommis specified as the con-
junction of their boumidaryvalues.

Step4: Unification of regions
At the emmd of st-el) 3, there are as mmmany QDEs
as there are behavioursegnnments. however, manty
of 1-he segnnmemmts could imave time sammie underlyimig
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Figure 2: The PlantWater-BalanceSystem:Input Behaviour

Variable Qualitative interval 1
soil water amount (SW-U SW-i) I

(SO-U SO-i)
root water potential (R-U R-2)
soil/rootpsi gradient (G-U G-2)
water uptakerate (U-U U-6)
transpirationrate TR-U
plant water net inflow (U N-i.2)
plant water amount (P-U ABA-TRIG)
plant symplastturgor (TU-U ABA-TRIG)
stomates ST-U

Soil water amount

~oil/root~ pal grient

Li:,-1.~1.~
Soil water potential

Water uptake rate

toot water pOtentlal

4.. -

Plant water net inflow

~ranapiration rate

Plant synlplaat torgorPlant water amount

Stom&tes - cloaed or open

Table i: An Exampleof an operatingcondition



niodel. It is important to identify such segineiits
and unify them.

A simple criterion to decidewhethera set of re
gions should he unified is to check the set of con
straints in the QDEs associatedwith the regions.
in principle, two QDEs are identical if and only if
their constrai its setsare identical. however, since
each QDE is learned inductively, two Ql)Es that
should be identical may havedifferent constraint
sets. In practice, we have to rely on heuristics to
guide region unification. We use two heuristicsto
identify the regionsto be unified.

1. Identical Constraints heuristic
If two regions haveQ 1)Es with identical setsof
constraints, then they are uiiified. ‘Flìe operat
ing condition for the unified region is the dis-
junction of the operatingconditionsof the mdi—
vidual regions, if they are thsjoirit. Otherwise,
the two operatingregions arecombinedby coin—
hining the qualitative intervalsfor eachvariable
acrossthe regionsunified. Two operatingconch-
ions aredisjoint if amid only if thereis at leastone

variable wit Ii iioii overlappingqualitative values
acrossthe two regions.

2. Identical Operating Conditions heuristic

Two regionsareunified if they haveidenticalop-
erating comiditions. The set of constraintsdefin
ing the unified QDE is the intersectionof thesets
of constraintsin the regions unified.

Our systemli appliesthe two heuristicsrepeatedly
nut ii no more regionscan he unified -

Experimental Evaluation
We have i nipleinentecl tIns t eclnnquein a systeni

called MISQ-R’l’. We haveused MISQ B’F Ic) gen
crate inult iple Ql)E nioclelsfor t lie following pliys-
ical systcii is: the Plant Water balancesystem,the
Boiling Water systeni and the Divided Tank sys-
tern.

We will first on t I inc onr experimental i nethodol—
ogy and then describethe results for each of the
threesystenis.

Methodology
We designedour experimentsto test tile effective-
nessof our approachand our heuristics. We con-
sideredthe heuristicsfor t lie iclentification of region
ransitions t d) havebeeneffective if they could suc—

cessfullydetect all the regiontransitions. We eval
uatedthe Imeuristics for region unification by coin

pariig time regions generatedby MISQ-IhT with a
model of the sanle physical systenm generatedby
an expert. We expectedthe lienrist ics to unify cx
actly thoseregionsdeenieciidentical by t lie expert.
Flie specificationof the conditionsfor region I ran
sit ions were also evaluated b comnparingt lie gen
eratccl modelswit Ii t lie expert niodel -

iii each of t lie experinients, we generated he—
haviours by using QSINI to simulate tile expert
niodel. We picked a few of these behavioursas
input for M ISQ Hi, nialcing sure that the selected
behaviourst raced different trajectoriesthroughthe
regiomis and exlnbited different region transitions.
‘[he input to MISQ HT also included totally or-
deredquantity spacesanddiniensionsfor eachvari-
able.

The output froni NI ISQ-BT was the generated
model in a format thatcould be usedby QSINI. The

specificationfor eachQDE includedtheconstrai its
and the transition mnappings.

QSIM indicates region transit ions in the be-
haviours that it generates. This mache it easy to
checkif MISQ ItT hasidenfifled all the region tran-
sit ions in a behaviour.

Since the behaviourswere generatedby QSIM,
there was a correspondencebetweentime behaviors
amid the QDEs in the expert model that generated
tim eimi. ‘[bus we (:0111(1 establish a correspondence
between tile regions generatedby MISQ-H’I’ and
the expert QDEs. This was crucial in evaluating
the heuristics for region unification. We expected
NI ISQ- II’l to unify only those regions that corre
spond to the sameexpert QDE.

The following subsectionspresent tile results of
our experiments, followed by a dmscussionof the
results.

Results

Water Boiling iii a Closed Container ‘i’his
experiment mliodieledi t lie scenarioof water being
brought to boil in a closed contair. The model
defined by t lie expert had three Q DEs, heating,
I3omlmng and Cci.s~only. ‘lime QDE flea/trig is active
when I lie ~vater is being heated up to its boiling
point. I3otltng isactive when thewaterhasreadied
its boiling point . Gas—oniy is act i ye when all the
waterhasevaporated.

Figures 1 showsoneof the four iputs tc) M1SQ—
H’!. ‘ille other input behavioursshowedall thewa-
er evaporatingbefore it reached its boili ig point.

NI ISQ HT identified three regions aswell.
Before regionunification, NI ISQ liT generatcci as

niany QDEs as the numimberof behavioursegmneimts
betweentransitions. in tins case,it generatedrune
Q DEs. ‘l’able 6 shows t lie correspommciemmcebetween
these QDEs and thosedefined by the expert. ‘Ia-
ble 7 showsthe correspondencebetween thegener-
ated QDE amid time expert QDE after umnficatioim.
MISQ H’! ichentifieci exactly those regions corre-
spommding tc) t lie sammieQ DE in the expert nmodel.

‘lable ~1shows the t rammsitions for eacil of the
QDE as defined by time expert. ‘l’able 5 shows
lie t ramisi I ions learmiediby MISQ lIT for eachQDE.
Fhiese tablesshowthat NI ISQ H’I wassuccessfulin

idemmt i lying all tile variablestim at cailse I rammsitiomis
out of each QDE. ‘lime traimsilion concimtion for the



Generated QDE Expert QDE ~

riU6498 Boiling
riU6493 Heating
rlU6487 Heating
riU648I Heating
rlU6464 Heating
riU6486 Gas-only
riU6479 Gas-ommly
riU6492 Gas-only
r I U65U3 C as—only

Table 2: ‘i’he Boiling-Water Systemim: Regiomi correspondencebefore ummificatiomi

Unified QDE Component QDE Expert QDE

qiU6521 n1U6498 Boiling
qiU6522 r1U6493riU6487 riU6481 r1U6464 heating
qIU6523 rIU6486rIU6479 r1U6492riU65U3 Gas-only

‘Ia.ble 3: ‘Ihe Boiling—Water Systemim: Regiomi correspoimdemiceafter umlificatioml

QDE q106[9l seemnsoverly-specific. However, it is
merely redundaimt since the t.wo comiditions would
occur simultaneously.This brings up time questioim
of the interpretatiommof thelandmnarkvalueM-9 for
thevariablernga.s. This is discussedin thesection4.

Plant Water—balance systeni in this experi-
nment, we modeled a planmt balancingthe amoummt
of water in its system, as the level of water iii

surrounidimmg soil decreases. The m~mocieidefinmeci
four QDEs, healthy-stoma/es-closed-uptake,water-
stress-uptake, lm.ealthy-stomates-closecl-nmo-uptake,
water-stre,ss—rm.o-uptak-e.The main factors that dc—
ternnimme tile regionm that is active at ammy point are
(1) whether time plammt is iiealthy, and (2) whether
timere is any uptakeof water fromn the soil. When
theplant. is healthy, i.e., when the concenmtratiommof
water ml its system is above a timreshold, the size
of stonnmatal—openimmgis constant. Wilen time plant is
water—stressed,i.e., mmot imealthy, time stomatesstart
ciosimmg. When the concentratiomiof water in the
soil falls below a certain level, there is ild) uptake
of water. Whenm the stornate.sareclosed, time sizeof
tile stonmatal—opemmimigis commstamit. ‘[bus, both time
healthyand the stomates—closedconditiomi result. in
thesanneQDEs. ‘ibis exannpieis sinnilar to time one
describedin (Rickel anid Porter, 1992).

Figures 2 shows onme of time two imiput he—
imaviours to MISQ-HT. MISQ-RT identified six
Q DEs, whereastile expert model had only four.

Table 6 simows the correspondemmcebetweenm the
gemmeratech QD1’)s amid time expert QDEs. Table 7
showsthe correspommdenceafter ummification.

NIISQ—HT ummifiech only thoseQDEs that corre—

sponchechto the sanme QDE imi the expert mimodel.
I lowecer it did mmot ummmfv ~hl,u( Ii QDI ~, it oulcl

mmot identify that the QDE for the conditionm of a
plant beinghealthywith theQDE for thecondition
when time stornatesare closed, hi regionm q105961,
time plant is healthy but the stomatesare open.
Whereasimm regionm q105963,time plant is unhealthy
but time stornates are closed. These twc) condi—
tiomms are explaimmed by time same QDE imi the ex-

pert model. However, this would affect neitherthe
correctmmess of time nmodel nmor it.s gemmerahity.

‘i’abhe 8 showstime transitionsfor eachof tile four
QDEs defined by time expert. ‘Fable 9 simd)~Vstime
transitiomms for the QDEsgemmerateciby MISQ-ftl’.
‘I’he transition conmditiomms for time gemmerated QDEs
aremore specific thamm for time expertQDEs. MISQ—
HT cud mmot j~roposetransitionmsthat did mmot occur
iii time input behaviours. For exammmpie,for time QDE
correspondinmg to time regiomi water—stress-uptake,it
did mmot gemmerateatrammsitiomm whemmthevariable toe—
gor increasesbeyommd the value aba-trig. ‘[his is be-
causeit did mmot emic:ouniter army behaviourwith such
a tranisitmomi. We are immvestigatinmgtecimmmiques for
proposinmg trammsitiommsthat did not occur mi the in-

put. behaviours.Tlmis cani heclomie by exanminmimmgthe
gemmerat.echregionspairwise for variablesthat could
causetramisitiomisbetweemitimenim.

The Divided—Tank system Figure 3 simows time
Divided-Tank system. It hasa tank with a parti—
tionm mi the middle. There is ami inflow imito region
A. and adrain mm eachof time regionsA amid B. This
exampleis from (Sodernnmaimarid Stromberg, 1991).

Figure 4 showstime beimaviourtree amid oneof the
prechcteciheimaviours when the tank is filled fronri
empty. QSlNI predicted 7 behaviours,all of which
were included in the immput to MISQ—HT.

‘lime expert. mmmoclel defined three Qi)Es, [‘mhl.4



From QDE Transition Condition To QDE
Variable Qmag Qdir

heating pdiff U inc Boiling

Mhiq U dec Gas-only

Boihimig Mhiq U dec Gas—ommly

(as—only No tranmsitiomm

Table 4: The Boihng-WaterSystem: Transition table for theexpert model

From QDE Transition Condition
Variable Qmag Qdir

To QDE

q1U6522 pdiff U inc q1U652i

Mliq U dec
Mgas M-9 NIL

qIU6523

qiU652I Mhiq U dec
Mgas M-9 NIL

q1U6523

qiU6523 No transition

Table 5: The Boiling-WaterSystem: Transition table for the gemmeratedmodel

Generated QDE Expert QDE

r1U59U4 water-stress-uptake
r1U5918 water-stress-no-uptake
r1U5924 healtiiy-stomates-closed-uptake
rI U5899 heaithy-stomates-closed-uptake
r1U5929 healthy-stornates-ciosed-no-uptake
riU5934 water-stress-no-uptake
riU5939 heaithy-stomates-closed-no-uptake
r1 U5923 imealtimy-stomates-ciosed-no-uptake

Table 6: The Pianmt Water-BalanceSystem: Region correspommdemmcebefore ummification

Unified QDE [ Component QDEs [Expert QDE

qi U5958 ri U59U4 water-stress-uptake
qiU5959 r1U5918 water-stress-no-uptake
q1U596U ri U5924 r1U5899 healthy-stomates-ciosed-uptake
q1U5961 rI U5929 healthy-stomates-closed-no-uptake
qi U5962 r1U5934 water-stress-no-uptake
q1U5963 riU5939 r1U5923 heaithy-stomates-closech-nmo-uptake

Table 7: The Planmt Water-BalanceSystemmi: Region correspondenceafter unification



From QDE 1
L.___________________________

Transition Condition

Variable Qmag Qdir

To QDE

heaithy-stomates-closed-uptake turgor aba-trig dec water-stress-uptake

imeaithy-stonnmates-closed-no-uptakesoil-psi perni-wilt dec

water-stress-uptake

healthy-stomnates-closed-no-uptake

turgor aba-trig inc healthy-stonnates-closed-uptake

stornates closed nil healthy-stornates-closed-uptake

soil-psi pernn-wiit dec water-stress-no-uptake

turgor aba-trig dec water-stress-no-uptake

soil-psi perrmm-wiit inc heaithy-stonmates-closecl-uptake

water-stress-no-uptake turgor aba-trig inc healthy-stomnmates-closed-no-uptake

stomates closed mnh healthmy-stonnates-ciosed-no-uptake

soil-psi perm-wilt inc water-stress-uptake

Table 8: The Plant Water-BalanceSystem: ‘l’ransition table for the expert model

— .. inflow
-~ - I

C

A B

outflow outflow

Figure 3: The Divided Tanmk system



From QDE Transition Condition
Variable Qmag Qdir

To QDE

q1U596U pwater aba-trig dec
turgor abatrig chec

qiU598

swater perrmm—wiit dec
soil-psi perm wilt dec
uptake U dec
netflow mm 9 dec

qi U5961

qiU5958 swater perm wilt dec
soil psi pernmm wilt dec
uptake U dec

qiUS9S9

q1U5961 pwater aba-trig dec
turgor aba trig dcc’

qlt)5962

qlU5963 No Tranmsitiomms

qIU5959

v

root-psi 11-4 dec
pwater P 3 dec
trammsp U dec
turgor stomnates-ciosed chec
mmetflow U imlc
stonmmates (‘hosed dec

qiU5963

cii U5962 root—psi r ‘I dec

pwater ii 3 dec
rammsp U cl cc

t urgor std)iimat es—closed dec
nietfiow U immc’
stomnmatesclosed closed dcc’

qi 1)5963

‘l’able 9: ‘h’he Plamit Water Hal anceSystcmi: ‘hm’ansiI iou t able for time gemmeratcci m miodel



to ~(rOrO30d ark,
lr,,,abaa,i,,, f,Of,on,r,npp (SO)

f]aS,,,o,2,57 (S-OS 4 52 56 58 S-P 5-42Sf35-If)
F,,,,] rob (,f QUIESCENTCOMPLETE, ,Nll,.NI].

flow(out->A)

flow ia—NB

flow(A->out)

Figure4: TIle Divided—’l’ammk Systennm: Input Behaviour

Ed/B and Pill-both. FihlA is active whemm region A
is being filled. Fm/lB is active whenm region A is full
amid region B is getting filled. Fill-both is active
when both A and B arefull and region C is getting
filled.

The model generatedby MISQ-HT defined time
san-menumberof QDEsas the expert model. It mini
fled exactly thoseQDEs that correspondedto time
sanrie QDE in the expert model. It identified all
thevariablesresponsiblefor causingtransitiommsout
of a QDE. Someof time transitiomi comiditions were
overly-specific.

Discussion

The outcommie of time experinnentsshowed that the
heuristicsfor iclemmtifying region transitionms in cpmal-
itative behaviourswere effective. in all of time cx

perimmiemits, M1SQ-RT idenitifled all time regiomu trail
sitiomus. Theseheuristicsareiumclepeumclemmtof time in
duction algorithm used to learn time QDEs.

The heuristicsfor recognisingand imnnfyimmg idenm--
tical regions were effective iii unifying a large pro
portion of time QDI’s deenmied ideumtical by time ex-
pert. ‘[hey mmever madetime nnmistakeof unifyimmg re-
giorms that the expert did riot consideridentical.

Sometimes,time technuiquegemmeratedoverly spe
cific transition conditioims. Tins c:ouhd causeQS1M
to mnmiss somime trammsitiommswhemm it usestime gemuerated
nmmodel for sinnulation. We are inmvestigatmug t ccli
mnqmmesfor avoidimug tins through the useof miegative
examplesof trammsitiomms c’onditiomis, i.e., sit natiomms
where aproposed t rammsition commdit ion did not lead
to a transitiou.

Sincewe usedMISQ asour imicluctiomi module, the
Q DEs generatedfor each region wasguaraumteedto
be consistentwith time behavioursegurmentsfor each
region.

Future Work

Evaluation on more complex systems
‘[he technmiciues we have proposed imere rely on
heuristics. ‘h’imese heuristicshave to be validated
by extensiveexperimnemits. We would like to per-
formmm expenimmientson systemmismnore coniphexthan
those we havestudied so far. One such system is
the Reaction Control Systenn(RCS) of time space
shuttle (Kay, 1992).

Although, it is nmot desirable to learn a simigie
QDE to expiaimm time behaviour of a systenmu with
mnmult iple operatimmg regions, gemueratiumg too many
QDEs would adverselyaffect the generalityof time
mmmodel. ‘[he mnmmber of regions generatedshould
be of aim order less than time niunumberof behaviour
segmemmts in time immput - We would like tc) study the
nunmberofbehmavioursgemmerateciby MISQ WI’ in re-
latiomi to the mmummmber of behavioursegmneiutsin the
input. We would also like to evaluatetime gemmerahity
of time nnmocieisgeumeratedby our techumnqueby using
QS1M to sinnmlatethenmandseehow successfulthey
arc in prechictiumgbeimaviourspreviously unseen.

Identifying Region Transitions from

Quantitative Data
Our curremmt iimuplerrmeumtatiouu of time techumiquere-
quiresqualitativebehavioursasimmput. However, to

d amount IA)

4 amount(B)

amount (A)

amount( B)

flow I B- >out)

, ~‘, :
amount(C) amount(A)+amoUntia)

, .“

amount (AS) +ainount (C)



be usefulin mmmodehingreal systemshike theRCS, the
systemshould be able to handlequamutitativedata
aswell.

The heuristics for identifying region transitions
fronmu beimaviourscan beapplied to quanmtitativedata
aswell. Nomi-anahyticbeimaviourand discontinuous
changeswill have to be detectedfrom quantitative
data. So far we have riot investigated techniques
for doing this. This task is further complicated in
the presenmceof noise. We piamm to addressthis issue
imu time nearfuture.

Matching Landmarks across Behaviours
Theexperimentshaveshown the identicaloperating
conditions heuristic to be quite useful in) umnfyimug
regions. however, time criterion for matching the
operatingconditionsfor regions is purely syntactic.
‘Iwo operatimmgcommditions are consideredidentical
if the qualitative intervalsfor eachof the variables
are identical acrossthe two regions. Two qualita-
tive intervals are consideredidentical is they are
boundedby the samelandmarkvalue.

Whemu time inputs to time learner come from dif-
ferent sources,lamucimnarksmaynot matchsyntacti-
cally, eveum if they stand for the sameevent. Con-
sider the situation where MISQ-RT is nnuodehinga
bathtub amid it receivesbehavioursfrom two bath-
tubs, A and B. Let Eu/IA and Eu/lb be the land-
marks for the the eventwhen A and B are full to
capacity, respectively. As M1SQ-RT processesthe
quantitativedata, it hasto recognisethat Eu/IA and
Eu/lB arequalitatively the samelandmarksvalues,
though they havedifferent quantitative values. If
they arenot recognisedto be thesame,the operat-
iumg conditions for the QDEs proposedfor the two
bathtubswill not match.

There are certain landmarkslike zero that are
special amid canu be match-med easily across be-
haviours. A possible approach to this problemn
would be to use thesespecial landmarks and the
qualitative trends in the beimaviour to match the
other hamidunarks. This is arm iuiteresting problenu
that could arise in other apphicationusof Qualita-
tive Reasoningarid is worth pursuing.

Related Work
Many techniqueshave been proposedfor iearmnng
models of physical systenrms from observationsof
their behaviour (Coiera, 1989; Kraan et ai., 1991;
Richards et al., 1992; Dzeroski and Todorovski,
1993; Brat.ko et ai., 1991). All of these,however,
can only generatea sinigle QDE model.

Faikenimainer(199U) describesa technuique for
building nmodelsfor systemsby analogywith other
systems. Thus approachrequiresknowledge in the
form of a library of processes. This is also true
of (Rickel, 1992; Rickel and Porter, 1992)who de-
scribe a method for automatically building mimod-
els fromn processlibraries. Since they work at the

processlevel, they are not concerumedwith region
transitionsdirectly.

The macimine discovery system ABA-
CUS (Falkemmhainerand Micimalski, 1986)learnsthe
mathematicalequatiommsdescribinga set of umunmer-
ical data. it can discover multiple equatiomusthat
apply under differemit conmditions. Altimough their
techniquedoes learum qualitative relationsbetween
variables,its main focus is on iearnimmgquantita-
tive laws. ‘[he quanutitativelaws help in recognis-
ing andlearning time variousoperatingregiomusof time
systemn. MISQ-RT, oum the other huamid, usesquali-
tative heuristics to identify the different operating
regions. Thus, it can he usedwith quantitative as
well asqualitativedata.

Sodermanamid Stromberg(1991)haveproposed
a techniquefor learning models of systemsthat
abruptly change hetweemm linear n-modesof opera-
tion. They addresssimilar issuessuchasidentifying
“jump” in behaviours,finmding correspondencesbe-
tween varioussegmentsof time behaviouramid find-
ing conditions under which each mode is active.
They usesystem identification techniquesto detect
region transitions and to fit a model for eachseg-
nuent. Flowever, they have to specify the model
structure imm advance.Our approachdoesnot make
any assumptionsabout themodel structure. They
alsorequire knowledgein theform of bondgraphs.
The modelsthey fit arequantitative models. Our
approachworks on qualitativebehavioursandcan
be used in situations where quantitative observa-
tioms arenot available.

Nordhausenmammd Laumghey(1993)haveproposeda
techniquefor emnmpiricahlydiscoveringthe laws that
govern scientific phenomena.Their systemdiscov-
ers both qualitative arid quantitative laws. It can
also identify andmodel time different operatingre-
gions of the systemn.However, ti-me systenmdoesnot
break up time observationsinto different segnmmemmts
automatically. This iumformnationhmasto be given as
imiput to the systemim. Thetrammsitionconditioumshave
also to be specified with the input.

Conclusion
In this paper,we haveproposedamethodfor learn-
immg models witim multiple QDEs from qualitative
observationsof their behaviour.We haveproposed
heuristicsto detect region transitionmsandfor iden-
tifying correspondingregions. We havealso sug-
gested a technique for identifying the operating
conditionsof eachQDE. The experimentsreported
hereindicate that ourapproachis effective in iden-
tifyimmg region tramisitiomusandhearmmingn-modelswith
mnultipie QDEs.
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