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Abstract

In ordinary qualitative reasoning(QR),qualitative be-
havior of the dynamicalsystemsis predictedby assign-
ment of qualitative valuessuch as {+,0,—} into model
variables basedon proper transition rules. Unfortu-
nately,dueto ambiguitiesin theseordinarily introduced
qualitative values,theirarithmetic and transition rules
causepredictionsto be redundant,sometimeseveninac-
curate. In this paper,wepresentanew method of qual-
itative reasoningwhich, besidesusing hyperrealnum-
bers,takesinto account their c-H ranking in describ-
ing both qualitative values and qualitative derivatives
of variablesandalso employsa convergencefilter to in-
vestigatethe infinitesimal asymptoticbehaviorof qual-
itative variables. We applied this qualitativereasoning
method to envisiona temporally hierarchicalcomplex
system.Theresult shows that this method provides a
moredetailedandnaturalqualitativesolution thanpre-
vious methodslike Kuipers’s time abstractionin envi-
sioning temporallyhierarchicalcomplexsystem.

1 Introduction

Limitations of ordinary qualitative reasoning(QR)us-
ing the {+,0,—} semanticshavebeendiscussedin many
works [1]-[7],[11]-[17]. One of the major limitations is
that scale information such as the relative magnitude
of quantitiesor their temporal derivativesare not in-
cluded so that further ambiguity arises in determining
statetransitionamongall thepossibleadjacentvaluesof
acurrent qualitative state.To compensatethis too ab-
stract qualitativerepresentation,severalresearchersin-
troducedthe conceptof order of magnitude(O(M))pro-
posedby Raiman [11] andthe hyperrealnumbersto ex-
tend the definition of qualitative value[2][16]. Davis’s
CHEPACHET[2] and Weld’s RR-QSIM[16], though quite
different in their motivationsand aims, can be consid-
ered as examplesof this extentionfrom ordinary QR.

We believe, however,that the true virtue of introduc-
ing this kind of scaleinformation lies in envisioninga
complex systemin which severalscale hierarchiesare

involved. Introducingthis scaleinformation canapprox-
imately isolateinteractionsof subpartshaving different
magnitudesor time-scales,which, in ordinary QR, must
be taken into account togetherin equal levels. This
meansthat by usingscaleinformation we canintroduce
somekind of hierarchizationin envisionmentto prunein-
significant transitions. Though infinitesimal analysisis
notexplicitly used,Kuipers’s“abstractionby time-scale”
method [6] can be consideredto lie along this line. He
treatsthe complexsystemascomposedof different time-
scales. On accountof the “extra-mathematical”nature
of his method,however,thisintuitively appealingmethod
hasseveralproblemswhenits rangeof applicationis ex-
tended.

In this paperwe developeda new method to deal
with temporalhierarchizationby introducing infinites-
imal analysis [5] to realize what Kuipers was trying
to do in a more formal and natural way. But in do-
ing so, simple introduction of hyperrealnumber like in
[2],{16] has proved to be insufficient. For this reason
we developeda new QR schemewhich can handle in-
finitesimalqualitativebehaviorin a right way. Our QR
methodfeaturesthefollowing two newly introducedcon-
cepts:First,infinitesimal/infinitenumbersare ranked(c-
H ranking) to beableto evaluatetheir relative magni-
tudes. Secondaconvergencefilter is introducedin order
to investigatemorepreciselyhow variablesconvergeto-
wards their equilibrium.

The paper is organizedas follows:in Section 2, we
discussKuipers’s time-scale abstractionand its prob-
lems. Section3 showsextensionsof the qualitativeval-
ues and transition rules for our new scheme.Section 4
presentsour temporalhierarchizationalgorithm for en-
visionment.Section5 givesan examplewhich illustrates
envisionmentby our temporalhierarchizationappliedto
the sameproblem in [6]. Finally,in Section6 we discuss
about relatedwork.

We assumethat the readeris familiar with standard
theoriesof envisionment,as in [1],[7], and thosewith
qualitative hyperrealsproposedby Davis [2] andWeld
[16]. In this paper,[x] denotesthe qualitativevalueof a
variablex. 0x and 82x standfor the qualitativederiva-



tive of x, and the secondorder of derivativeof x, re- stractionassumesthatevenin that stagefastervariables
spectively. And x~denotesthe variablein a state i, for
example,x1 is the variablein a state1. We also usethe
symbols,c,N,andH, which representinfinitesimals,finite
numbers,and infinite numbersrespectively, in such a
waythat, whendistancebetweenavariablex andaland-
markx0 is infinitesimal: [X—X0] = c, finite:[x—xo] = N,

or infinite:[x — x0] = H.

2 Kuipers’s Hierarchization and
its Problems

Kuipers [6] dealswith acomplexsystemsuch asacollec-
tion of interactingequilibrium submechanisms.He gives

as an example the body fluid regulation and describes
the whole systemin terms of two mechanisms,water
andsodiumbalances,that operateat different response
time.Thebasic principle of this time-scale abstraction
is “A faster mechanismreachesits equilibrium instan-
taneouslyand, during this process,a slowermechanism
can be treatedas beingconstant”. His approachcon-

sistsof the following steps:1)Decomposea wholesystem
into fastersystemandslowersystemandmodeleachone
separately,but with somesharingvariables. 2)Fasterto

slower: envision first the faster system. Viewed from
a faster system, slower variables are treated as con-

stants(relative constancyof slowervariables). 3)Slower
to faster: from the point of view of the slowersystem,
the fastersysteminstantaneouslyreachesits equilibrium
with its environment composedof the slower system.
Hencefastervariablesmove quasi-staticallyalong with
the equilibrium conditionsdeterminedby slower vari-
ableswhen the slower systemchanges(binding faster
variablesasafunctionof slowervariables). 3)The behav-
ior of the whole system is temporally joined in cascade
from fasterto slower(continuation).

The essenceof his approachis decomposition of a
model from the temporalpoint of view.This hierarchiza-
tion reflectsour naivereasoningin envisioningbehaviors
of suchacomplicatedsystem;however,this approachhas
severalproblems when extendedto be applied to more
generalcases:1) Sincehiscontinuationis basedon “cas-
cadeshift of attention”, which handlesmechanismby
switching betweensubmodels,he assumesthat all the
submodelsarestableandreachtheir equilibrium in pre-
determinedsubsequentorder. If the fastermechanism
does not converge(for example,oscillateswith negligi-
ble magnitude),we cannotuse this kind of decomposi-
tion. 2) Kuipers decomposesthe structureof a system
completely,sothat conjunctionafter suchdecomposition
may lose someimportantinformation aboutthe interac-
tion betweenfastervariablesandslowervariableswhich
is involved in the original system. 3) Whenfastervari-
ables convergeto equilibrium values, their derivatives
must approachthe sameinfinitesimal order of magni-
tudeas thoseof the slowervariablederivatives.His ab-

changemorequickly.
The problems are mainly causedby the too strong

natureof the decompositionof a system. Since the dif-
ferencein velocitiesbetweenvariablescan be described
usingthe 0(M) of thosederivatives,it is expectedthat
the introductionof the 0(M) for the qualitativederiva-
tives gives us a more sophisticatedandnatural way to
usethe informationof differenceof the variablechanging
ratewithout anydecompositionof the structure.

3 QR with Ranked Hyperreals

3.1 Extensions of Qualitative Values

We extend a qualitative hyperrealrepresentationde-
scribed by Weld [16] and Davis[2] in order to describe
the infinitesimal/infinite behaviorsof qualitative vari-
ablesmoreexactly. As Davisdiscussesin [2], one of the
problemsof envisionmentusingqualitativehyperrealsis
that once a parameterand its derivativeboth become
infinitesimal or bothbecomeinfinite, it becomesimpos-
sible to say anything abouttheir relativesizes. To solve
thisproblem,wefurther divide infinitesimal andinfinite
intervalinto c,e2,e3,..~and H,H2,H3,~., respectively,
whenthesehigh-ordernumbersare requiredto be eval-
uatedin the courseof envisionment,for example,when
the convergencespeedsof variablesare required to be
evaluated.

Notethat in evaluatingtheinterval’slengthwetakeits
maximal width. Thus, whereascmeansc-neighborhood
intervalaroundsomelandmark,it is simultaneouslyrep-
resentingits interval’s length so that e can be treated
also as a number in infinitesimal calculationsin envi-
sionment. Hence we can write c > c2

> c3
>

On the otherhand, H also meansthe interval greater
than the hyperrealinfinite number H wherethe latter
is thought as a hyperrealnumber. Hencewe can write
H <H2

< H3
.( ... We call this division of infinitesi-

mal/infinite interval“c-H ranking.”
This ranking is illustrated in flg.1 and flg.2. Let lo

be a certain landmarkof a parameter.Fig.1 shows the
former relationshipbetweeng~andc~~’for any integer
i. In this figure, ellipse denotesthe neighborof 10 whose
radiusis givenby c,N, andH. Region inside theellipse

whoseradiusis equalto e,andN representsthe infinites-
imal neighborhoodof l~,andthe “finite-distance” neigh-
borhoodof l~,respectively.The outsideof this “finite-
distance”neighborhoodshows theinfinite neighborhood
of lo.

If we zoom up the infinitesimal neighborhood,then
we can define the similar structurein the ellipse by in-
troducing power of c. Basedon this characterization,
relationship between~2 and c can be defined as being
similar to that betweene and N.

In the similar way, in general,relationship between



c’~ andc~can be definedas being similar to that be-
tween c and N. Also, we can define relation between
H’ andH~for any integeri, as shownin fig.2.

This “c-H ranking.” is formulatedas:

Definition 1 (Qualitative valuewith c-H ranking)
Let io < l~< 12 < ..i~(= 0).. < l~(< H) be the landmark
valuesof a parameterx. Define the hyperrealqualitative
value of x as:

where

denotesthepossiblealternation and (pl,p2) is equivalent
to the differencebetweenopen interval (pl,p2) and the
two halosas in Weld’sHR-QSIM. The quantityspaceof
a variable x,QS(x) is definedas:

U

Definition 2 (0(M) and Sign of Qualitative Value)
Definethe order of magnitude(0(M)) of a variable x as:

H~, wherex is H’-infinite
N(> 0), wherex is finite

abs(x) =
c’, where x is c’-znfinzteszmal
0, wherex=0

where i is integer.

UsingD2 with the sign of avariablex sign(x), we can
define the qualitativederivative(QD)of a variable. We
alsointroducethe qualitativesecond-orderderivativesof
variablesto “tame intractablebranching” [8] whereit is
appropriateto evaluate.

Definition 3 (Qualitative Derivative) For i = 1, 2,
define the qualitative derivativeof a variable x as:

d~x d’x
= sign(—-) * abs(—-).

dt’ dt’
0

Definition 4 (Qualitative Representation)
Define the qualitative representationof a variable state
x, Q3R(x) as:

Q,R(x) = ( [x],Ox,02x).

Consider an example where qualitative differential
equation(QDE) is ax = —c * [x] and its initial con-
dition is [x] = c. From QDE, we obtain 82x =

—c * ax. Hence the initial state: Q,R(xi) =

(+c,—c2,+c3) is obtained through constraint propa-
gation. Since c2 and c3 appear in ôx , QS(x) =

{H,N,c,c2,c3,0,—c3,—c2,—c, —N, —H} and the next
candidateis the transition from [x] = c to [x] = c2. The
next state Q,R(x

2
) = (+c2,—c3,+c4) is derived from

the above constraints.

Definition 5 (Qualitative Arithmetic) Arithmetic
betweenqualitative infinitesimal values is based on the
0(M) reasoningproposedby Raiman/11j. We extendthis
arithmetic as follows: For any integersm and n such
that m <n,

(Addition)
(Substitution)

(Multiplication)
(Division)

(Comparison)

where A ~ B means abs(A) = abs(B).

~Notethat c/c is finite. Intuitively, this relationis derived
by an inequality c2/c(= c) < c/c < 1/c(= H). The
proof canbe found in Keisler[5].

3.2 Transition with E-H ranking

Besidesextensionsof qualitativevalues,weextenddefini-
tion of state interval, transitionbetweenqualitativeval-
ues,and persistentand arrival time. The c-H ranking
addsmany interestingcharacteristicsto QR with hyper-
reals. But for limitations of space,this presentationis
restrictedto the extensionsof transitionand persistent
and arrival time from Weld’s HR-QSIM[16]. For more

LI detail,see [15].

Definition 6 (Transition of Qualitative Values)
Qualitative values can have transitions only between two
adjacent states, or inside a c-neighborhood interval (c~
c~1)or inside a infinite interval (H~ +-+ H’~~).The
possible transitions are as follows:

[x] =

H[H2,.. .~,

N(= (in,H)),
1

n + c[c2,..
in,

1,. — c[c2,. .

(l~_~,in),

io + c[c2,. .

10,
l~ — c[c2, . .

—N(= (—H, la)),

if x — H[H2..] <H(H2..)
if X — in > c and x <H
if 0< x — in <c(c2,..)
if x = in

if 0< in —x~c(c2,..)
if X — in_i > c and
l~— x> c

if 0<x—l0 ~c[c2,..]
if x = 10

if 0<io — x <c[c2,..]
if io — x > c and
x> —H
if —H[H2..]—x

<—H[H2..]

QS(x) = {(. . . ,H2),H,N,

in + c(c2,. ~),
1

n, l~— c(c2,. ..)

(in_i,ln),~~~, (io,ii),
io + c(c2, . . .), 10,10 — c(c2,...)

—N,—H,(—H
2

,.~

cm + c’~~ Em

cm — c’~~ cm

cm * c=

c_m = H~
(c/c)<(1/c)<(1/c2)<...
<(1/ctm) <..



Table 1: time-distancetable

distance
0 cN H
OHH H
0 N H 112
o c N H
0 c2 c N

(.. ~-+H2~—+)H4—+finite4--*E(4--~e2
+-+ ..)~—+point

The steps which determine the transition of qualitative
values are derived by envisionment using Welds’ HR-
QSIM method/16] exceptfor inside c or H interval. 0

Definition 7 (Arrival time and persistent time)
For any variablex and any integeri, I

3
(x~)be the0(M)

of the interval’s length of the statei, and I~(x~+i) be the
minimum 0(M) of the distanceof x betweenthepresent
state(i) and the next one(i+1). Persistenttime(t3(x~))
and arrival time(ta(xj+i)) are representedas thefollow-
ing equations:

t
3

(x~)= I
3

(x~)/abs(8x~)

ta(xi+i) = Ia(xi+i)/abs(ôxi)

Their valuesare derivedby qualitative calculuswith c-
11 ranking as shownin Section3.1 and a time-distance
table as shownin Table 1. 0

For example, when I~(x) = c and abs(ôx) =

ta(X) = (c/c3) = c~2
= 112

Note that our c-H ranking improvesWeld’s tempo-
ral filter[16]. For example,we can dealwith c-ordering
rule[1] more concretely, which Weld a little bit trickily
includes in “Temporal Continuity Rule”. Consider an
examplewhere a variable x is 0, and the order of its
derivative is c” (m:a certaininteger).The next deduced
transition is [x] = ctm. Since Ia(x) is the minimum 0(M)
of the distanceof x between 0 and Em, for any inte-
ger i, Ia(x) < Ia(ei+m) < Ia(c

m
). Hence we obtain

that ta(X) = (Ia(x)/abs(ax))< (Ia(c(t+m)/abs(OX))=
(ci+m/cm) = c’. Consequently,ta(x) < c’, that is, arrival
time from x=0 to cm is less than c~. Sincei is arbitrary,
this meansthat avariablein astatechangesfasterthan
anyother variablesin an infinitesimal interval.

Then, how we can deal with the reverse case, that is,
the transitionof x from c to 0 ( x convergesat 0 )? We
can classify the convergence into two types: x passes0
after converging to 0 within a finite or an infinitesimal
interval and x converges at 0 asymptotically. In the next
section, we discuss about this case.

3.3 Convergence

When one variable converges monotonically, it would
happen that envisionment is repeated infinitely. For

example,considerthe case mentioned in Section 3.1.
Envisionment generates the following infinite sequence:
(x,ax,02x)=(+c,—c2,+c3),(+e2,—c3,+c4),
(+e3, —c4, +e5) However,in this case,it is obvious
that (x, Ox, 02x) convergesat (0,0,0). Our formalism can
examinemoreprecisely how a variable converge,(for the
aboveexample,Ox,02

x decreasesas time passes),butit
cannotjudge the convergence.llence,inaddition to the
extensionsof QR discussedabove, we must provide a
rule which judges whether and how the convergence of
variables occurs (In this section, for simplicity, we only
deal with “monotonic convergence”. However, our def-
initions can be easily generalizedin order to deal with
dampedoscillation. Generalizationof a convergencefil-
ter is discussedin [15].)

Definition 8 (ConvergenceFilter) Let x0 be the
nearestlandmark. Also let I,(x~) denotethe length of
an intervai(i:integer). If

Vk such that k > i, ~m

3i, I
3

(x,~)= e

— xo] = —ctm, Ox,, > 0) V([x,, — xo] = +cm,Ox,, <0)

andif I,(x,,+i) ~ c * I,(x,,)

thenwe shall say that x convergesat x0.
And thearrival time ta is definedas:

H
ta = ~ ta(xj).

jr=i+i

0

This arrival time is calculatedby the ordinarymethods
for infinite sum in nonstandard analysis[5] and it has
severali~nportantfeatures.Unfortunately,for limitation
of space,we cannotgive adetaileddiscussionaboutthe
arrival time here. In this paper, we only present two
characteristics without their proof: if abs(ta) ~ N then
x passesx0 and if abs(ta) > H then x convergesat
x0 asymptotically. Precise discussion is given in [15].

The abovedefinition is clear,but insufficient to deter-
mine the convergencewith finite steps.Itdoesnot reduce
theinfinitenessof the determiningprocess.Notethatwe
shouldjudgetheconvergencein finite time: whenweob-
servethat someelementsof the sequenceof a variable x
approachat a point Xo, we determinethat x converges
at x0. This reasoningprocessis an exampleof “persis-
tence” in nonmonotonicreasoning[9],[10]. According to
our commonsensereasoning,we provide a convergence
filter rule as follows:

Definition 9 (ConvergenceFilter Rule) If the
states satisfy the condition D8 ( convergentcondition
) until c4 occurs, then check the next transition. And
if the condition D8 is also satisfied, the systemjudges

0
6

N
H



that convergencehas occurred. Arrival time is calculated

as ta = >~i+1 ta(xj) wherei is a certain integer such
that I3(x~)= c3. If abs(ta) < N then x passes x0, else
if abs(ta)) � H thenx convergesat x0 asymptotically.
0

Considertheexamplementionedabove. I
3

(x) = c,c2,~
and the candidatefor the next state is (x, Ox, O2x) =

(c4, —c5,c6). Since the former states and the candi-
datesatisfy the conditionsD8, we check the next tran-
sition. The next is (c5, —c6,c7) and the condition is
also satisfied. So we determinethat x (and Ox) con-
vergesat 0. And the arrival time is derivedas follows:

ta = (c/c2)+(c2/c3)+.... = ~j=2(d/6) = (1/c)*H ~
112 > H. Hence a variable x convergesat 0 asymptoti-
cally.

4 QD Restriction

Time-scaleabstractionis consideredto be basedon the
two properties of the 0(M) of qualitative derivatives.
First, relative constancyof slower variablesmeansthat
the 0(M) of the derivativesof slowervariablesandtheir
changearemuch less than the derivativesof fastervari-
ables. Second,binding of faster variables meansthat
0(M) of thederivativesof fastervariablesis much larger
than slowerones. Thesetemporalontologiesof variables
can be more sophisticatedlyrepresentedby specifying
rangeof derivatives;wecall this hierarchyof qualitative
derivatives QDrestriction.

Definition 10 (QD Restriction) Quantity space of
qualitative derivatives of faster variables(f) or slower
ones(s)should be representedas follows:

QS(Of) = {..,+H2,+H,+N,

+c,+c2,., 0,.,_c
2

, —6,

—N, —H, _H2, ~}

QS(Os) = {+c, +c2,., o, ., —c2,—c}

QS(82s) = {+c, +c2,., 0, ., —c2, —c}.

Direction of transition of qualitative derivativeis deter-
mined by the signsof the secondorder derivativesof the
qualitativesvalues andprecedenceof transition is deter-
mined by the arrival time. 0

Notethat the secondorderderivativesof the slowervari-
ablesare also restricted. If their order of magnitudeis
N(flnite), the derivativestransit into a finite interval.
This contradicts the abovedefinition. For example,con-
siderOx = c and 0

2
x = N. In order for Ox to stay at

c,the order of persistent time for O
2

x = N is lower than
(N — c)/N = N/N ,that is,its order is equal to or lower
than c. If we considerthat the third order derivatives
meetthe aboverequirements,03

x will beH. Hence,this
fact contradictsthe definitionof slowervariables:slower

variableschangemuch slowerthan fastervariablesin a
finite interval. Thereforethe secondorderderivativesare
also requiredto be restricted.

Onemaysaythat QD restrictioncanbe naturallyem-
beddedin QDE as shown in Davis[2],suchthat Ox =

* [x] where x is a slower variable and i is integer.
However, this embeddingis not sufficient. When x is
H~,Ox is —N. If the 0(M) of the QD of a faster variable
is N, then we cannotdifferentiatebetweenafastervari-
ableandslower one.Henceeven in the abovecase,QD
restrictionis also needed.

5 QUASAR

We developa program QUASAR (QUAlitative reason-
ing usingtime-Scaleinformation Analysis by epsilon-eta
ranking and Restriction of qualitative derivatives) which
implementsQRwith rankedhyperreals,theconvergence
filter andQD restriction. QUASAR consistsof two parts:
setting part, and transitionanalyzer. Settingpart cal-
culatesthe constraintsof QD from given QDE andthen
QD restriction is set up. Finally, it derivesthe initial
statesfrom an initial condition. Transitionanalyzeren-
visionsatransitionfrom acertainstatei. In thissection,
first we show algorithmfor transitionanalysis,andthen
illustrate how QUASARworks.

5.1 Algorithm for Transition

In this algorithm, we use a operator “:=“ for substitu-
tion, for example, “x := 3” meansthat 3 is substituted
for x. For simplicity, we assume that there is no branch-
ing beforethe statei.

Algorithm

Let i, j, k, 1, m, n and p be integer. x~(m) standsfor a
variable of the system(1 < m < n, n:the total number
of the variables in QDE ) in a state i. And also let
first~,min1 and final~denote the set of first candidates,
minimum candidates, and final candidates respectively
as defined below. Before transition analysis, all the sets
are {}(empty).

1. Apply the transition rules to each variable:x~(j),
andgenerate the list of the nearest qualitativeadja-
cent valueof eachvariableconsideredas the candi-
datesof the next statetransition: firstj+i = {(1

2. Calculate each ta(~i+i(k))(k : integer,1~ k < n).
Compare the 0(M) of ta(fii+i(k)), and choosethe
set of candidates whose 0(M) of the arrival time is
minimum:( minimum candidates: min~+i = {(j
~I~+i(i))IVl,abs(~i~+i(j))< abs(fij~i(l))}).



3. Choose a variable, say x~+i(m), from min~+i:
min~+i := min~+i— {(m : x~+i(m))} . Sub-
stitute x~+i(m)for x~(m)in the state i and ap-
ply the constraint propagation. If the constraints
are satisfied, add this variable to the set of the
final candidates(final~+i:= final~+i U {(m

4. If minj+1 ~ {},go to 3). If min~~~= {}Afinal~+i �
{}, go to 5). If min~~1= {} A fina1~+i= {}, quit
as failure.

5. Choose a variable, say Xj+i(P) from final~+i.(
final~~1:= final~~1— {p: xj~i(p)} ). Apply the
convergencefilter rule to xj+1(p):

(a) If the past four sequencesof x(p) satisfy the
convergentcondition, thencheckthe nexttran-
sition.

(b) If the convergent condition is also satisfied,
then determinethat x(p) convergesat apoint
XO(Xj+i(P) := x0).

(c) If x(p) converges,calculatethearrival time(ta).
If abs(t0) ~ N then x(p) passesat the point,
elsex(p) convergeat the point asymptotically.

(d) If x(p) passes,storethis stateas thenext state
elsestorethis stateas the final state.

6. If final~~1~ {} thengo to 5).
If final~1= {} then quit as succeeded.

5.2 An Example

Let us consider a model of body fluid regulation.
Body fluid system is regulated chiefly by amount of
water(w),sodium(n)and concentrationof sodium(c =

n/w) which is almost equal to osmotic pressure. It is
known that the amount of body fluid change(waterin-
takeandexcretion)is regulatedby sensingosmoticpres-
suredeviation, andthis regulationtakesplacewith re-
sponsetime 10 minutes, whereaschangeof the amount
of sodium is regulatedby the amount of water with re-
sponsetime more than one hour. This systemcan be
modeledas follows:

Ow = [c—co]

On = c*[wo—w]
n

C = -_

UI

where w is a faster variable,n is a slower variable.
And no,wo,co(= no/wo) are quantitiesof sodium, wa-
ter, and concentrationof sodium at steady state, re-
spectively. We considerthe casewhen osmotic pres-
sure is hypertonic(c > co), and both water and salt
are overloading(w>wo,n > no) to show how QUASAR
works.

5.2.1 Setting Part

From the qualitative derivative equations, we calcu-
late the constraintsaboutderivativesand secondorder
derivativesof fasterandslower variablesas follows:

On — cOw
Oc =

w

0
2

w = Oc
O

2
n = c*(—Ow)

O2c = O
2

n — 2OnOw — O
2

w + (Ow)
2

.

Usingtheseformulae,QD restrictionareused to obtain
into thequantityspaceof qualitativederivatives:

QS(Ow)= QS(O2w) = {.. . , +H~,+11,+N,

—N, —H, —H2,..

QS(On)= QS(O2n) = {+c,+c2,...,0,~ ,...c2,.~c},

QS(Oc)= QS(O2c) = {. . . ,+H~,+11, +N,

+c,+c
2

,~ ~ ..

—N,—H,—H2,...}.

After the above settings, the given initial conditions
are propagated:Statelis an interval,whereQ8R((w —

wo)1) = (+N,N, —N), Q3R((n— n0)1) = (+N, —6,—c),
Q8R((c — co)1) = (+N, —N, —N). From this initial
state,thetransitionprocessbegins.

5.2.2 Transition

Using the algorithmmentionedin 4.3, wecanderivethe
results of qualitativeanalysisasshownin Table2. Here,
we give oneexample:transitionfrom state4to state5to
illustrate how the results are obtained.

(Transition from state4 to stateS)

1. The candidatesare [w — w0] : +N —* H, [n — no]
—~+c, [c — co] : +c~—* c4:thus first

5
= {(w —

wo)5 : H), ((n — no)5 : +c),((c — co)5 :

2. Calculateeacharrival time: w : (H — N)/N ~ H,
n : N/c ~ H, c : (c~ — c~)/c ~ e2, c are the final
candidates:mm5 = {((c — co)5 : +c~)}.

3. Choose a variable (c — co)5 (then mm5 := {}).

Performconstraint propagationand the solution:
Q~R((w— w0)5) = (N, +c~,—c), Q3R((n— no)5) =

(N, —c, —es), Q8R((c— co)5) = (+c~,—c,+c) are
derived. Add it to the final candidates:final5 =

{(c—C0)5}.

4. mm5 = {} and finals = {(c — c0)5}, so go to 5).

5. Choose(c—co)5 (then final
5

= {} ). It satisfy the
convergent condition: that is to say, for a variable
c and for integer i = 2,3, and 4, Ia((c — c0)2) =



c, Ia((c — co)j+i) < c * Ia((c — c0)~),[c — co] =

+c~, and Oc <0. Check the next transition. the
next stateis ([c — co], Oc,O2c) = (+e~,—c, +c), and
the arrival time is c3. So we determinesthat [c —

co] converges at 0 and their arrival time is ta =

~ c~.Since ta < N, c passes c0: the state
is stored as the state 5.

6. final5 = {} , so quit as succeeded.

5.2.3 The Results

The results of qualitative analysis show that three
kinds of the processes are involved. First, the amount
of water(w) increases fast and the concentration of
sodium(c) convergesat the point(co). Second,when c
reachesc0, w stopsincreasing. Third, c passesc0, and
w begins to decreaseslowly. The variable c remains to
be in the neighborhood of c0 only to give the driving
force to adjustremainedwater imbalanceafter osmotic
pressureis regulated.w and n decreasesand,asinfinite
time passes,w, n and c reachtheir equilibrium. First
andsecondprocesscorrespondto faster mechanismsin
Kuipers’s time-scale abstraction,and third processto
slower mechanisms. But our results explain the inter-
action betweenfaster variables(w)and slower ones(n)
moreclearly: while w changesquickly when c — C

0
> 6,

w changes slowly with n when c ~ c0. Those behav-
iors clearly agreeswith the body fluid regulation: if the
osmoticpressurechangesa little, this changeis compen-
satedmainly by renad function - slowermechanism. In
Kuipers’s time-scaleabstraction,however,if “c ~
oneconstraint:”c= n/w = c0” shouldbe given for qual-
itative simulation;interconnectionmustbe alwaysgiven
from outsidein order to simulateonly the slowermech-
anism.Our methodcancopewith that casecorrectly.

6 Discussion

We combinequalitative representationbasedon Weld’s
qualitative hyperreals with envisionment based on Davis’
CHEPACHET[2] and introduce c-Hranking and the con-
vergencefilter with QD restriction speciallyfor applica-
tion of our method to a temporal hierarchicalsystem.
c-H rankingandthe convergencefilter give more precise
informationof qualitative variables to ordinary QR. Pro-
viding some important knowledgeof real numbersand
the 0(M) of QD makesthe envisionmentmoreaccurate
and reduces the ambiguities in qualitative values. Also it
can represent interaction between faster and slower vari-
ablesmorenaturally than“extra-mathematical”hierar-
chization, especiallywhenderivativesof fastervariables
converge on the 0(M) of the derivatives of slower one
and extends his approach. Hence,our approach realizes
Kuipers time-scale abstraction in a more mathematical
way and extends his approach.

The limitation of this work is that this work will be
computationallyexpensivewhen faster and slower vari-
ables are not well-defined. In other words, since QD
restrictionmaynot be appliedin that case,so transition
of qualitative derivatives is not restrictedas in defini-
tion 10. QUASAR cannotdetectwhetheragiven model
support QD restriction or not. To implement these au-
tomateddetectionis our futurework.

7 Related Works

Little previous attention has beendevotedto time-scale
abstraction,except for Kuipers work [6]. In this sec-
tion,we consider AT work related to temporal hierarchiza-
tion.

Weld [16] extends qualitative values to qualitative hy-
perrealnumbers,anddevelopsaprogramthat considers
arole of one parameter in a system by comparing a nor-
mal systembehaviorwith theexaggeratedsystembehav-
ior. He discussesaboutKuipersapproachanddescribes
that his exaggerationcan representtime-scaleabstrac-
tion implicitly,whereashe doesnot discussthe method-
ology in detail. One may say that our QD restriction
can be regardedas exaggerationof slower variables:we
usethe nonstandardanalysis,and also introducetime-
scaleinto the quantityspaceof derivatives.However,QD
restriction is different from exaggeration. As shown in
Section 5, the derivativeof faster variablesreachesthe
sameorder of thoseof slower variables. And in those
statesthe derivativeof slowervariables is not exagger-
atedany more. Hencethe whole behaviorcan be inter-
pretedas combinationof exaggeratedbehaviorand not-
exaggeratedone. Original exaggerationmethod needs
thecontinuationanalysisto dealwith time-scaleabstrac-
tion,which generatesthe problems discussedin Section
2. So our approachincludesexaggerationabout time-
scaleandsolvethe problemsof the continuationanalysis
of exaggeration.

Davis [2] combinesorder of magnitudereasoningwith
envisionmentof qualitativedifferentialequations.He di-
vides thenon-standardrealline into sevendisjoint inter-
vals: —LARGE (infinite numbers),—MEDIUM (finite num-
bers), —SMALL (infinitesimals),ZERO, SMALL, MEDIUM,
LARGE. He introducesvariance of parameter,whichis
equal to our 1

8
(x), and time duration, which is equal

to persistenttime. He illustratesquickly settling control
parameterand observesthat this exampleis similar to
thosestudied by Kuipers. Our approachis also simi-
lar to his work. However, he doesnot discussthe cases
when derivativesof fastervariablesconvergeon the or-
der of derivativesof slower one. In thosecases,the in-
teractionbetweenfasterandslowervariablesnecessarily
appears.So,we cannotenvisionboth of them separately.
Our QUASAR cancopewith this problemand simulate
thosecasesmuch finer.

Iwasaki [4] discussesabout the mixture of slower sys-



tem andfastersystemin a viewpoint from causalorder- [9] McDermott, D.V. A TemporalLogic for Reasoning
ing. Sheregardsamixed structureM as combinationof About Processesand Plans, Cognitive Science6,
equilibrium equationsStatic(M) which representavery 101-155,1982.
short-termequilibrium description,and dynamic equa-
tions Dynamic(M)which representslowermechanisms. [10] McDermott,D.V., Doyle,J. NonmonotonicLogic I,
Her approachalso usespre-decompositionof the model Artificial Inteiligencel3,41-72, 1980.
and dealswith both systemsindependently. Like the [11] Raiman,0. Orderof MagnitudeReasoning,in Proc.
approachesmentionedabove,shedoesnot discussthe in- of AAAI-86,1986.
teractionbetweenfaster and slower variables and the
problemsaboutthe continuationanalysis. [12] Sacks, E. Automatic Qualitative Analysis of Dy-

Finally,note that our frameworkcan deal with hier- namicSystemsUsingPiecewiseLinear Approxima-
archization of variables’ magnitude, such as a system tions, Artificial Intelligence41, 313-364,1990.
which includesasubsystemof infinitesimal sustainedos-
cillation. Detailed treatmentof this kind of systemis [13] Struss,P.Global Filters for Qualitative Behaviors,
our future work. in Proc. of AAAI-88,1988.
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Table 2: Transition of an Example

state 1 2 3 4 (5) 6 7 8 9 10 (11)
[w-wo] N N N N N N N N c c2 0
[n-no] N N N N N N N N c c2 0
[c — co] N c c2 ~ 0 -c —c -c ~c2 ~ 0
Ow N c c2

~ 0 -E -c -c -c2 -c~ 0
On -c -c -c -c -c -c -c -e ~c2 ~ 0
Oc -N -E -c -c -E -c 0 c2 c2 ~ 0
O

2
w -N -c -c -c -c -c 0 c2 c2 c3 0

O
2

n -c _c2 ~ -c4 0 c2 c2 c2 ~ c4 0
O2c N c c c c c c2 c2 c2 -c~ 0
ta N N c c2 N N N H H 112

ta for state4—~ state5 ta = c2 +c3 + = c * (1/(1 — c)) = c2
ta for statelO—i statell ta = 1/c+ 1/c + .... = H/c =

to-N 10+N

H

C
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