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Abstract

We present a theory of a modeler’s problem de-
composition skills in the context of optimal rea-
soning — the use of qualitative modeling to
strategically guide numerical explorations of ob-
jective space. Our technique, called activity anal-
ysis, applies to the pervasive family of linear and
non-linear, constrained optimization problems,
and easily integrates with any existing numeri-
cal approach. Activity analysis draws from the
power of two seemingly divergent perspectives —
the global conflict-based approaches of combina-
torial satisficing search, and the local gradient-
based approaches of continuous optimization —
combined with the underlying insights of engi-
neering monotonicity analysis. The result is an
approach that strategically cuts away subspaces
that it can quickly rule out as suboptimal, and
then guides the numerical methods to the remain-
ing subspaces.

Introduction and Example

Our goal is to capture a modeler’s tacit skill at decom-
posing physical models and its application to focusing
reasoning. This work is ultimately directed towards
the contruction of “self modeling” systems, operating
in embedded, real time situations. This article ex-
plores the modeler's decompositional skills (Williams
& Raiman 1994) in the context of optimal reasoning —
the use of qualitative modeling to strategically guide
gradient-based and other numerical explorations of ob-
jective spaces. Optimal reasoning is crucial for embed-
ded systems, where numerical methods are key to such
areas as estimation, control, inductive learning and vi-
sion. The technique we present, called activity analy-
513, applies to the pervasive family of linear and non-
linear, constrained optimization problems, and easily
integrates with any existing numerical approaches.
Activity analysis is striking in the way it merges
together two styles of search that are traditionally
viewed as quite disparate: first is the more strategic,
conflict-based approaches used in combinatorial, satis-
ficing search to eliminate finite, inconsistent subspaces
(e.g., (de Kleer & Williams 1987)). The second is the
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rich suite of more tactical, numeric methods{ Vander-
plaats 1984) used in continuous optimizing search to
climb locally but monotonically towards the optimum.
Activity analysis draws from the power of both per-
spectives, strategically cutting away subspaces that it
can quickly rule out as suboptimal, and then guiding
the numerical methods to the remaining subspaces.

The power of activity analysis to eliminate large sub-
optimal subspaces is derived from Qualitative KT, an
abstraction in gqualitative vector algebra of the foun-
dational Kuhn-Tucker (KT) condition of optimization
theory. The underlying algorithm achieves simplicity
and completeness, by introducing the concept of gener-
ating prime implicating assignments of linear, qualitat-
ice vector equations. This process of ruling out feasi-
ble, but suboptimal subspaces in a continuous domain,
nicely parallels the use of conflicts and prime implicant
generation for combinatorial, satisficing search. The
end result is a method that achieves parsimonious de-
scriptions, guarantees correctness, and maximizes the
filtering achieved from QKT.

Finally, activity analysis can be thought of as au-
tomating the underlying principle about monotonicity
used by the simplex method to examine only the ver-
tices of the linear feasible space. It then generalizes
and automatically applies this principle to nonlinear
programming problems.

Figure 1: Hydraulic Cylinder



To demonstrate the task consider the design of a
hydraulic cylinder, a classic optimization problem, in-
troduced by Wilde (Wilde 1975) to demonstrate the
related technique of monotonicity analysis. The cylin-
der (figure 1) delivers force f, through input pressure
p. Weight is modeled as inside diameter (1) plus twice
the cylinder thickness (t), force (f) as pressure (p)
times cylinder area, and hoop stress (s) as pressure
times diameter acting across the thickness. The task
is to find a parametric solution that minimizes cylinder
welght, while satisfying constraints including positiv-
ity of variables (i, s,t, p, f > 0), maximum pressure (P)
and stress (S), and minimum force (F) and thickness
(T) (design variables are in lowercase, fixed parameters
in uppercase, and equality and inequality constraints
are labeled h, and g¢,, respectively): Minimize i + 2¢,

subject to:

s=5 =0, (lu=0): T-t = 0, (92%0)
f=%p = 0, (ha=0): p-P < 0, (g3<0)
F—f < 0 (9as0) s=§ < 0, (94<0)

Given this symbolic formulation, activity analysis
uses qualitative arguments to classify regions of the
design space where optima might lie and where they
cannot. After eliminating suboptimal regions, each re-
maining region identifies the solution as possibly lying
on the intersection of one or more constraint bound-
aries. Each region reduces the dimensionality of the
problem by the number of intersecting boundaries,
thus significantly increasing the ease with which a solu-
tion can be found. In particular, for the cylinder prob-
lem activity analysis concludes there are two subspaces
of the design space that could contain the optima, one
subspace in which g; and g4 become strict equalities,
and a second 1n which all but g4 become strict equal-
ities. The new problem formulation finds the optima
of the two spaces and combines the results as follows
(where “argmin” returns a set of optima):

Given: vector x = (istpf)T,

1. Let Y = argming(z + 2t), subject to:

(hy =0) (g1 =0) (g3<0)
{ha =0) (g2<0) (g4a=0).

3. Return arg miny(: + 2¢), subject to:
x €Y UZ.

Originally, the problem has a 3 dimensional space to be
explored (3 degrees of freedom — DOF) resulting from
5 variables, 2 equality constraints. The reformulated
problem rules out the interior and boundaries, except
some intersections. The first remaining subspace corre-
sponds to a line (1 DOF) produced by the intersection
of the g1 and g4 constraint boundaries with the h;. The

second remaining space 1s a point (0 DOF) produced
by the intersection of g1, g2, g3 and the hA;. Thus find-
ing a solution to the first problem involves a single.
one dimensional line search, and the second involves
solving the system of equalities to find the unique so-
lution. Using parameter values F=1000 Ibf, T=.05 in,
5=30000 psi, T=1000 in, applying matlab to the orig-
inal problem took 46.3 seconds. The optimal solution
lies in Z, which took only 8.1 seconds to run; no feasi-
ble solution exists in Y for these parameter values.

Activity analysis draws inspiration from monotonic-
ity analysis (MA) (Papalambros & Wilde 1979; Pa-
palambros 1982). Monotonicity analysis began as a
set of principles and methods used by modelers to
identify ill-posed problems and to partially solve them,
based on monotonic arguments alone. These principles
were encoded in several rule-based implementations
(Azram & Papalambros 1984; Choy & Agogino 1986;
Rao & Papalambros 1987; Hansen, Jaumard, & Lu
1989), presented informally as heuristic methods.

The problem activity analysis addresses is similar
m spirit to that of MA; nevertheless, the approach
is quite different. First, activity analysis operates di-
rectly on an abstraction (QKT) of the Kuhn-Tucker
(KT) conditions of optimization theory. While much
easier to apply, QKT and KT are equivalent for the
task, given only knowledge of monotonicities. Sec-
ond, activity analysis provides a precise formulation
of the problem in terms of minimal pstationary cov-
erings, that guarantees the solution is parsimonious,
maximizes the filtering derived from QKT, and insures
correctness. Finally, a mapping to prime assignments
and the introduction of a simple but complete prime
assignment engine guarantees that these three proper-
ties are achieved.

Stationary Points and Kuhn-Tucker

For a point x* to be an optimum 1t is necessary that
the point be stationary, that is any “down hill” direc-
tion is blocked by the constraints. Activity analysis
exploits this fact to eliminate sets of points that can
quickly be proven to be nonstationary, using a con-
dition we call Qualitative Kuhn-Tucker (QKT). This
section introduces the optimization problem, the con-
cept of stationary point, and the traditional algebraic
(Kuhn-Tucker) condition for testing stationary points.
Activity analysis applies to the pervasive family of lin-
ear and non-linear, constrained optimization problems

OP = (x, f,g,h):

Find x* = argmin f(x)
subject to: g{(x) <0
h{x) =0,
where column vectors are denoted in bold (e.g., x, xx,
g(x) and h(x)), f(x) is the objective function, g(x) is
a vector of tnequality constraints and h(x) is a vector
of equality constraints. A point x € R" is feasible if
it satisfies the constraints, and feasible space F C R"



denotes all feasible points (represented F = (g, h}). A
feasible direction s from a feasible point is one through
which a non-zero distance can be moved before hitting
a constraint boundary. f(x) is decreasing at x in di-
rection s if 7 f(x)-§ < 0. Finally, a point is stationary
(denoted x*) if any direction that decreases the objec-
tive is infeasible. The Kuhn-Tucker (KT) conditions
(Kuhn & Tucker 1951} provide a set of vector equa-
tions that are satisfied for a feasible point x* exactly
when that point is stationary:

7 flxx) + AT 7 hixx) + g glxx) = 0F (KT1)
subject to
e

o7, (KT2)
0. (KT3)

g{x*)
i

(VAT

1T transposes column vector u to a row. Gradients
7 f, g and 7h denote Jacobian matrices. Y f is a

row vector (% o E%L) g and 7h are matrices

(g;‘L) and (g%), respectively, where (a;;) denotes a

matrix whose element in the ith row and jth column
is a;;, for all i and j. For example, KT1 and KT2
are equivalences between row vectors, and KT3 is a
relation between column vectors.

In KT1 the — 7 f term denotes directions of de-
creasing objective from xx, the term (AT 7 h{x*) +
uT 7 g(xx*)) denotes infeasible directions from x*, and
the equality says the decreasing directions are all in-
feasible; hence, x is stationary. More specifically, §
decreases the objective if it has a component in the
— %7 f direction (s- 7 f < 0). A direction is infeasible
with respect to inequality constraint g;(xx*) if x* lies on
the constraint boundary (g,{x*) = 0) and it has a com-
ponent in the -+ 7 g;(x=) direction. A direction is in-
feasible with respect to equality constraint h;(xx) if it
has a component in either the —<7h;(xx) or +7h;{xx*)
direction. Most importantly, if x* lies on multiple con-
straint boundaries, then an infeasible direction has a
component which is a linear, weighted combination of
the above gradients for these constraints. The weights
are p and )\, (called Lagrange multipliers), and the
combination is uT7g + AT h subject to KT2 and
KT3. Hence all decreasing directions are infeasible
when — 7 f equals one of these linear combinations
(KT1). Figure 2 shows an example of 7f and yg
gradient vectors, and the combined weighted vector,
which exactly cancels 7 f.

A key property of KT is that it identifies active in-
equality constraints. Intuitively, a constraint {[g;] is
active at a point x when x is on the constraint bound-
ary and the direction of decreasing objective, 7 f, is
pointing into the boundary. When this is true g, is
positive. The basis of our approach is to conclude, by
looking at signs of u, that the stationary points lie at
the intersection of the constraint boundaries. One or
more constraints have been identified as active, hence
the name activity analysis.

v Vg2

Vai w=ulvgl + p2 Vg2
Figure 2: Example gradient vector djagram for KT.

Qualitative KT Conditions

Qualitative KT (QKT) is an abstraction of KT that
is a necessary, but insufficient, condition for a point
being stationary. It is the means by which activ-
ity analysis quickly rules out suboptimal subspaces.
Qualitative properties used by QKT to test a point
x include whether each constraint is active at x, and
the quadrant of the coordinate axes each gradient 7 f,
7g and 7h lies within. These properties can be ex-
tracted quickly and hold uniformly for large subsets of
the feasible space, and parameterized families of op-
timization problems. QKT, its proof (see (Williams
1994)), and manipulations by activity analysis rely
on a matrix version of SR1 - a hybrid algebra com-
bining signs and reals. This algebra behaves as one
expects given a familiarity with (scalar) sign algebra
and traditional matrix algebra (see (Williams 1994;
1991)). Derived from KT, QKT states that a feasi-
ble point x* is stationary only if (QKT1):

(7 f(x0)] + AT [Th(xo)] + (1) [ve(x+)] 2 07,

subject to

W lg(xx)] = 07, and (QKT?2)
[:"‘L’l] 7/: T (QKTg)

where [v], called a sign vector, denotes the signs of the
elements of v, such that [v;] € {=,0,+}. Recall KT
said that to be stationary there must exist a weighted
sumn (W) of 7g and 7h that exactly cancels 7 f (note
w is a row vector). QKT says a point is nonstation-
ary unless there exists a w that lies in the guadrant
diagonal from that which contains 7 f. For example,
in figure 2 7 f lies in the upper left quadrant; thus,
a W must exist that lies in the lower right. The sign
vector [v] denotes the quadrant containing a vector v,
and each component {v;] describes where v lies relative
to the v; = 0 plane. For example, (W] = ( + ~ )
indicates that w is in the lower right. Using this alge-
braic representation, the condition on diagonal quad-
rants becomes —[7 f] = [W].

Using only knowledge of the quadrant each con-
straint’s gradient lies within and whether each con-
straint is active {indicated by the signs of the lagrange



multipliers {u] and [}\]), we know from KT that the
quadrants w mav lie within are a subspace of those
described by Yg Thus, —[vf] =
w] C [T ] QKTl) For example,
in figure 2 since vgl = + 4 )) lies in the upper
right and g2 (= ( = =~ )) lies in the lower left, it
is possible for a w to lie in the lower right; thus, any x
satistfying these conditions may be stationary. But sup-
pose $7¢1 is replaced with $7g}, which lies in the upper
left for points in some subspace F1 C F. Then w may
lie in the upper or lower left, but not the lower right;
thus, all points in F1 must be nonstationary. That is,
evaluating —[7 f] = [u]% [wg] for 7g, and then ¢gi:

(2 ey =tk (D)

?>=<++>(E;)

[t is this second type of conclusion, made from only
qualitative properties, that activity analysis uses to
eliminate feasible subspaces of nonstationary points.

Next, to instantiate QKT1 on optimization problem
OP = (x, f,g,h):

L. Compute Jacobians 7 f, g and 7h by symbolic
differentiation.

i

+

2. Compute signs of Jacobians. For each element,

(a) replace real operators with sign operators, using
properties [a + 5] C [a] + [b], [ab] = [a][3], [a/b] =
la]/[b] and [—a] = —][a].

(b) Substitute for sign variables [a] using positivity
conditions ([a] = +), and perform sign arithmetic
(e'g'v {5] = ’T'v (:’) + (:‘) = "‘)-

3. Expand QKT1 by expanding matrix sums and prod-
ucts.

Returning to the hydraulic cylinder problem from the
introduction, recall that x is the vector (it fsp)T, the
objective f(x)is i+ 2¢t, and the constraint vectors are:

) 2 T
<5—§‘;‘ f‘“%_p)v
g = (F—-f T—t p—P 5-8).7

The following shows [7h] after steps 2a (middle) and
2b (right):

h
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Repeating for [V f] and [7g], and inserting into QKT:
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Expanding matrix operations for step 3 results in
equations QKT1(1)-(5):

o C (B =M=l T S lmal+ M (4) 1
0 C (Hi=lmi+ Ml (20 C fual =[] ={Aa] | (5) !
0 € —lmi+idl (3) |

Note that the computation of sign matrices in step
2 1s extremely simple, but suprisingly adequate for
many problems. The symbolic algebra system Minima
(Williams 1991) provides a general tool for deducing

the signs of sensitivities (e.g., {Mi )} }subject to x sat-

istying the equality and inequality constraints. Having
achieved an easily evaluable condition that is sutficient
for testing the suboptimality of infinite subspaces, we
turn to its use for strategically focussing optimization.

Activity Analysis and Prime
Assignments

Activity analysis reduces an optimization problem to
a set of simpler subproblems by “cutting” out feasi-
ble subspaces that are suboptimal. These subspaces
contain all and only those points that are provably
nonstationary by QKT (see (Williams 1994}). The
output of activity analysis is a concise description of
the remainder, called a minimal pstationary coverzﬁng
(“p-" stands for “possible” according to QKT). It is a
set of feasible subspaces (and correspondlng optimiza-
tion problems), at least one of which is guaranteed to
contain the true optimum. What is key is that the
descriptions are parsimonious, they maximize the “fil-
tering” achievable from QKT, and are always correct
(these three properties are theorems, stated precisely
in (Williams 1994)). This section states and demon-
strates the activity analysis problem, and a sound and
complete solution algorithm. The core is a mapping
between minimal pstationary subspaces and prime as-
signments, and a general prime assignment engine for
arbitrary systems of linear sign equations.

To start we say a point is pnonstationary if it fol-
lows from QKT that it is nonstationary; otherwise,
it is pstationary. A feasible subspace is pstationary
if all its points are pstationary, and pnonstationary
if all its points are pnonstationary. Activity analysis
maximizes its use of QKT while preserving correct-
ness by eliminating exactly the pnonstationary sub-
spaces from its description of the feasible space. This
description is built from a set ¥ whose elements re-
sult from strengthening one or more of the inequality
constraints g; < 0 to strict equalities g; = 0; that
is, ¥ is the powerset of constraint boundary intersec-
tions. The description (called a minimal pstationary
covering), covers the pstationary points by collecting
all pstationary subspaces that are maximal under su-
perset. These cover every pstationary subspace. The



activity analysis problem is then: given optimization
problem OP = (x, f, g, h) and instantiation of QKT
(=QKT(OP)), construct the minimal pstationary cov-
ering C'.

Mapping QKT(OP) to C relies on two observations:
First, from QKT2 (= {u.(x)]{g:(x)] = 0) it follows that
(mix)] = + —qix) =0 (denoted R1). That is, any
point where [u,] = + must be on the g; = 0 constraint
boundary. Thus, when activity analysis shows that a
subspace of pstationary points makes [u;] = + for one
or more g;'s, it concludes that these points lie along
the intersection of the g, boundaries. Second, a par-
ticular set of variable assignments for QKT1, called
prime (1mplicating) assignments, directly maps to the
minimal pstationary covenng by applying the first ob-
servation. The key here is that achieving parsimony,
maximum filtering and correctness reduces to generat-
ing complete prime assignments.

The following properties, stated informally here, are
given as definitions and theorems in (Willlams 1994).
First, a (partial) assignment fo [x] is a set « which as-
signs each [z,] at most one value, & C {[z;] = s | [x;] €
x,5 € {=,0,+}}. We are interested in the consistent
assignments to QKT1, where the [x] to be assigned is

a vector of lagrange multipliers ([u]7[\7 )T Addition-
ally, the consistent a551gnments must also satisfy the
restriction of QKT3 ([u] # ~). Note that each con-
sistent assignment C' has a corresponding subset S of
feasible space, produced by applying R1 to the assign-
ment and then adding the resulting active constraints
to the original constraint set. S has the property that
every point in § satisfies C.

Next, an implicating assignment v is a consistent as-
signment to QKT1, such that whenever an extension to
v satisfies restriction QK'T3, it also is consistent with
QKT1. That is, assignment y tmplies QKT1 under
restriction QKT3. An implicating assignment has the
important property that every point in its correspond-
ing subspace S satisfies QKT. Thus S is a pstationary
subspace.

Finally, a prime assignment P is an implicating as-
signment no proper subset of which is also an implicat-
ing assignment. Thus P’s corresponding S is a maxi-
mal pstationary subspace. Conversely, every maximal
pstationary subspace is the corresponding subspace of
some prime assignment. Thus the set of subspaces cor-
responding to all prime assignments is a minimal psta-
tionary covering.

To produce all primes for QKT1, our prime assign-
ment engine first computes the primes P; of each scalar
equation in QKT1, then combines them using mini-
mal set covering. Pulling this all together, the activity
analysis algorithm is:

Given problem OP = (x, f,g,h):
1. Instantiate QKT1 (given earlier) — QKT1(OP),

2. Compute prime assignments P; of each
QKT1,(OPye QKT1(OP),

3. Compute minimal set covering of P, — P, deleting
inconsistent assignments,

4. Extract minimal sets of [g,] = + assignments from

pP—1U,

5. Map each element of U to a maximal pstationary
subspace by applying [pi(x)] = + — gix) = 0,
producing a covering.

6. Formulate and return a new optimization problem

from this covering.

Step one was demonstrated in the previous section. For
steps two and three we note that QKT1 is an instance
of a linear system of sign equations (denoted L{[x]})
and solve the prime assignment problem for arbitrary
L{{x]). That is, L{[x]) in vector form is 8 C [B]| +
[A][x], with [A] and [B] being sign constant matrices,
[x] an n vector, [A] an n by m matrix and [B] an
m vector. The ith scalar equation of L{[x]) (denoted
L.([x])) is of the form:

m

Llx])) =0 C (bl + > _fan] ;]

J=1

For QKTL, xT is (uTAT), [B] = [vf], and [A] is
the matrix (g 7h). Additionally, we generalize the
set of restrictions given by QKT3 (ie., [m] # —),
to arbitrary sets of restrictions R([x]) C {{zi]
sle; € x,s € {~,0,%}}. For the cylinder (table,
end of QKT sectlon QKT1 has 5 L,{[x])'s, with
x = (pl,ugpgm,\l,\,) . For ease of reading we wrote
terms +{z;] as [z;], ~[z:] as —[zi], and eliminated
terms 0[z;]. The cylinder R([x]) is {{u1] # =, [12] #
= (sl # = [pa] # = ,

For step 2, the prime assignments of each L,({x]) are
constructed from three sets of scalar assignments, con-
sistent with R([x]): those restricting one of the equa-
tion’s terms ([aij]gwj]) to be positive ( P;), those mak-
ing a term zero (Z;), and those making a term negative
{Ni), respectively:

P = Alz;] = lay] a1 # 0, ([=5] # [ai;]) & R{xD},
A {lz;]=01{ai;} #0, ([z;] #0) € R([x])} and

N {lz;] = ~lai;] | ai;] # 0, ([z,] # —{ai;]) & R(x])}-
Justifying Pl, for example, we know in general that
[c] #0 = [¢]* = +. Thus lai;]lz;] = +if [EJ] = [ay)
and [a;;] # 0. The derivation of Z; and N, is similar.

Constructing the prime assignments for the cylinder
L.{{x]) uses:

il

Hl

1 N; Z; P; 1

tlivml=flal =+ Tind =000 =0 [M]= -~ (A2] =~

2 Ml = el = 4 L IqI=0(uel=0 ) (M]=F

Sl al==lml=+ fda=0p =0 Pa] =+ )

4 ['\11=T AL = 0,pug =0 [/\l]=+,[y.4]:f-

5 (Al = +.[A2] = A o= 0,02 =0, (Al = = [A2] = =,
p3 =0 lual = +

Next, recall that the prime (implicating) assign-
ments for L,([x]) must imply L;([x]). That is, they
guarantee that it holds, given R({x]), independent of



additional consistent assignments. This is true if the
right hand side of L;([x]) is guaranteed to be a superset
of 0 (i.e., it is either 0 or ?). The form of the assign-
ments that achieve this for some L;([x]) depends on the

value of [b;], where [b;] = [%] for QKTI.

[b;] = +, then the right hand side must become ?. This
holds exactly when at least one of the [a;;][z;] terms
is negative (since 0 C (=) + (+) = 7). For example,
in the cylinder QKT equation (2), \; = = guarantees
that the equation is satisfied. The only other assign-
ment that guarantees this is s = +. Thus the prime
assignments for (2) are {\y = ~}and {us = +}. The
treatment of [b; ] = — is analogous.

Next, suppose [b;] = 0, then to imply L.{[x]) the
prime assignment can make the right hand side either
0 or 7. The first holds exactly when all terms are 0.
The second holds when at least one term is positive
e

Suppose

and the other is negative. For example, =01in
cylinder QKTL(3) : 0 € —[p1] + [A2]. Thus, the prime
assignments are {A2 = 0,y = 0} and {\; = Fop =
F+}. Note that {\s = =, u; = —} is not acceptable,

since by restriction [u,] # 7o summarize, the privne
assignments of Li([x]) are 1) N; if [b)] = +, 2) P,
i [bi] = —, and 3) {Z;}U{{p.n}lp € Pi,n € N;} «f

[b;] = 0 (where p and n in {p,n} do not contradict each
other). Completing step two for the table of cylinder
equations QKT1(1) - (5) produces:

{,\1 = —g—}, {/\2 = %} P
{Di= =3 {ue = +} P{
P(
P

T ;}{,\1-_}.,43_.4—}
M= =4} A=+ pus=+} P(5)

The third step, constructing the composite primes
for L{[x]), is based on:

Vo (A=Al v (Al
peP(Lx))) ‘a€P i=1 \peP(L,([X])) \a€p

The left hand side is a disjunction of the L([x]) prime
assignments, and the right hand side is an expression
in terms of the primes of L,([x]), just computed. Thus,
the desired primes result from reducing the expression
on the right to minimal, disjunctive normal form. For
this specialized case, this step is equivalent to comput-
ing minimal set covering of the P(L,([x])) and then
removing inconsistent assignments (see a standard al-
gorithm text, or (Williams 1994) for our algorithm).
For the cylinder, the minimal covering of P(1) - (5)
produces just two prime assignments,

{M] = - V[M= a }= +.[pa] = +},
(D] = 0.00) = Ffm] = . la] = F.[ws] =

Tlual = 0}).

The fourth step, extractlng the minimal sets of [,] =
+ assignments results in {{z1] = +,[ua] = +} and
{[#1] = + (k2] = +,[p3] = +}. The fifth step uses

= 4 — g,(x} = 0 to map these sets to the equiv-
alent minimal pstationary covering. The sets tell us
that ¢, and g4 must be active, or g3, g2 and g;. The
resulting cover is:

Fr = {{g2.95} {h1, h2,g1,94}) and
Fa = <{g4}r{h'lah2‘91,92s93}>,

where (g, h) is a space defined by inequality g and
equality h constraints. F; and F» denote the line and
point highlighted in the introduction to the cylinder
example. The final step, formulating a new optimiza-
tion problem, produces:

Given: S = {x* | xx = arg minxer f(x

LWF e {F, F )
Find: minxes f(x).

The first part finds the minimum of each subspace in
the covering. The second part selects from these the
global minimum. A more expanded form was given
i the introduction. Thus through this example we
have demonstrated activity analysis’ capability of par-
tially solving constrained optimization problems from
monotonicity constraints, and for synthesizing special
purpose optimization codes.

Discussion

As we mentioned 1n the introduction, activity anal-
ysis builds upon a large body of work from the me-
chanical engineering community on monotonicity anal-
ysis( Wilde 1975; Papalambros & Wilde 1979; Papalam-
bros 1982), a method that uses derivative informa-
tion to address the boundedness and global optimal-
ity of optimization problems. Monotonicity analysis
provides two rules that test the boundedness of a for-
mulation:

Rule 1: If the objective function is monotonic with
respect to a variable, then there exists at least one ac-
tive constraint that bounds the variable in the direction
opposite of the objective function.

Rule 2: If a variable is not contained in the objective
function then it must be either bounded from hoth
above and below by active constraints or not actively
bounded at all (i.e., in the latter case any constraint
that 1s monotonic with respect to that variable must
be inactive or irrelevant).

Both of these rules can be derived from the Kuhn-
Tucker Conditions. They also follow as an instance of
QKT and are embodied within activity analysis.

The result of monotonicity analysis (exhaustive ap-
plication of the rules) are several sets of constraints
one of which must be active for a problem to be
well bounded. Various levels of rule-based imple-
mentations of monotonicity analysis have been de-
scribed in (Michelena & Agogino 1988; Rao & Pa-
palambros 1987; Azram & Papalambros 1984; Hansen,
Jaumard, & Lu 1989), which guide numerical optimiza-
tion codes. Choy and Agogino (Choy & Agogino 1986)



and Agogino and Almgren (Agogino & Almgren 1987)
incorporate symbolic algebraic methods to aid in the
evaluation of monotonicities and the solution of the
optima. Cagan and Agogino (Cagan & Agogino 1987)
apply monotonicity analysis to identify topological
changes to designs that improve performance. While
these systems address the optimal reasoning problem,
they do not present algorithms proven to be sound
and complete (each of these implementations has been
described as "heuristic” (Rao & Papalambros 1987;
Hansen, Jaumard, & Lu 1989)).

Activity analysis provides the following contribu-
tions: it formalizes the strategic way in which a mod-
eler focuses optimization, as the process of generat-
ing minimal pstationary coverings. It introduces QKT
as a powerful condition for quickly eliminating large,
suboptimal subspaces. Finally, it exploits this con-
dition through a novel problem reformulation based
on the prime, implicating assignments of linear sign
equations. The activity analysis algorithm is sound
and complete with respect to classifying the design
space into pstationary and pnonstationary subspaces.
The method of pruning suboptimal subspaces pro-
vides a continuous analog to the conflict-based ap-
proaches prevalent in combinatorial satisficing search
(such as those used in model-based diagnosis (de Kleer
& Williams 1987})). Activity analysis automates the in-
tuitions about monotonicity exploited by the simplex
method to examine only the vertices of the linear feasi-
ble space, most importantly, extending its application
to nonlinear problems.

Activity analysis has been demonstrated on several
engineering problems. The implementation is in Franz
Lisp running on a Sparc 2. The problem reformulation
is passed to Matlab’s Optimization toolbox, where a
wide variety of nonlinear gradient methods are avail-
able. (Williams 1994) describes an extension to ac-
tivity analysis for cases where monotonicities are only
partially known. Activity analysis is currently being
pursued in the context of visual 3D matching prob-
lems and other embedded, realtime problems. Activity
analysis can also be extended to provide explainable
optimizers, ones that use QKT to provide common-
sense explanations about optimality. Activity analy-
sis is one of several techniques being developed that
capture a modeler's expertise at strategically guiding
numerical codes.
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