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Abstract

The method of renormalization group and its as-
sociated geometric language for describing macro-
scopic phenomenology is a powerful technique for
studying physics problems with many degrees of
freedom. The abstract problem solving strategy
embodied by the method - solving a hard prob-
lem by transforming it to a sequence of similar but
simpler problems - acquires new power in the con-
text of sophisticated physical theories. This pa-
per describes a procedural implementation of the
idea and suggests new research problems to turn
this powerful technique into a qualitative reason-
ing method.

Introduction

Model interpretation — extracting useful consequences
out of a mathematical model - is a key problem in
many areas of science and engineering. So it Is not sur-
prising that many qualitative reasoning research efforts
are devoted to this task. Causal and incremental anal-
ysis of devices [de Kleer, 1984; Williams, 1984; Weld,
1988], envisionment and qualitative simulation of qual-
itative equations [Forbus, 1984; Kuipers, 1986], dimen-
sional and order of magnitude analysis of algebraic
and differential equations [Bhaskar and Nigam, 1990;
Mavrovouniotis and Stephanopoulos, 1988; Raiman,
1991; Yip, 1993], and phase space analysis of dy-
namical systems [Sacks, 1991; Yip, 1991; Zhao, 1991;
Nishida et al., 1991; Bradley and Zhao, 1993] - these
machineries have found applications in many domains.

Interpretation problems can be characterized ac-
cording to three dimensions: (1) the essential degrees
of freedom in the system (or roughly its size), ! (2) the
kind of information given as input, and (3) the kind
of information required as output. In general, the dif-
ficulty of analysis increases rapidly as the degrees of
freedom or the uncertainty of the input or the demand
for precision of the output increase.
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!Essential degrees of freedom measures the extent to
which the parts of the systems are essentially coupled.

So far there has not been much attention paid to
systems with many (or practically infinite) degrees of
freedom. Many problems in physics have this charac-
ter: phase transition of fluids, spontaneous magnetiza-
tion of ferromagnetic material, and effective transport
in turbulence, just to name a few. Common among
these problems is the task of extracting macroscopic or
large-scale behaviors of a system from its microscopic
properties. It is not immediately obvious how the ex-
traction can be done because neither direct numerical
simulation nor analytical solutions of equations involv-
ing a huge number (could be on the order of 10%%) of
interacting variables is feasible.

A macroscopic description is possible whenever the
nitty-gritty of the microphysics can be subsumed into
a few phenomenological parameters. Water, oil, or
gas are complicated systems made up zillions tiny
molecules interacting with some complicated force
laws. However, their macroscopic properties can be
summarized by similar functional relationships among
few material constants like density and viscosity. The
functional relationship is usually universal for a large
class of fluids, while the specific values of the material
constants are the detail-sensitive parts.

About twenty years ago Ken Wilson invented a tech-
nique known as the renormalization group (RNG),
which becomes a standard method for constructing
macroscopic theories from microscopic models [Wilson,
1975); he was awarded a Nobel prize for this work.
The technique has been applied in many areas other
than critical phenomena, and continues to be a sub-
Ject of current research. The purpose of this paper is
two-fold: (1) to give an elementary description of the
RNG method in terms of procedures, and (2) to sug-
gest problem areas that might be fruitful to work on
from the qualitative reasoning perspective.

There are several reasons why we propose to study
RNG. First, RNG is based on a surprisingly simple
1dea: one solves a hard problem by transforming it to
a similar but simpler one with the same answer, and
by iterating the transformation until one arrives at a
problem that is almost trivial to solve. Second, viewed
as an abstract problem solving strategy, RNG is noth-



ing novel. The method acquires new power when it is
combined with problem-specific knowledge structures.
Isolating the essence of the method and understanding
its scope might provide a new source of problems for
investigation into the fundamental issues of descriptive
language, styles of reasoning, and representation tech-
niques in qualitative reasoning. Third, explicit proce-
dural encoding of RNG has an educational benefit: it
might provide a better medium for beginners to learn
and use this technique. Fourth, RNG has solved some
of the hardest problems in physics, and theoretical sci-
entists are applying it to all sorts of problems: per-
colation, onset of superfluidity, polymer conformation,
elementary particle excitation, and turbulence, just to
take a few examples [Wilson, 1983]. Therefore, au-
tomating aspects of the RNG will likely have a large
payoff.

Despite the appearance of automating a technique
applicable to a specialized class of problems, we want
to stress our more general concerns for this line of re-
search:

e To study the nature of scientific reasoning as prac-
ticed in normal science. We would like to codify
some of the skills that professionals have in formu-
lating problems, making approximations, explaining
data, and testing theories.

o To solve real problems in an area of significance to
modern science.

o To provide scientists with an intelligent workbench
consisting of a library of powerful heuristic and qual-
itative methods.

The paper is organized as follows. We begin by de-
scribing the task of extracting macroscopic properties.
Next we explain intuitively how and why the RNG
works. Then we illustrate the procedural implemen-
tation of a particular type of RNG method. Finally,
we conclude with problem areas that might need most
“cognitive” help.

The task: extracting macroscopic
behaviors

Given a microscopic model with many degrees of free-
dom, the goal is to predict macroscopic behaviors that
are independent of the inessential details of the mi-
croscopic model. This task is in general very difficult.
The first difficulty is the large number of interacting
variables; the second is that one does not really know
which aspects of the microscopic model are inessential
until one has solved the problem.

As an illustration of this task, we will consider a
theoretical model for the spontaneous magnetization
of ferromagnetic material. The theoretical model 1s
known as the two-dimensional Ising model, one of the
rare statistical mechanics models that can be solved
exactly [Onsager, 1944]. Its study is still of consid-
erable interest for two reasons: (1) it is probably the

simplest nontrivial problem to illustrate the essence of
RNG, and (2) many variants of the model, such as the
3D Ising model, useful for the study of other critical
phenomena cannot be solved explicitly, but RNG is
still applicable to them.

At room temperature a piece of iron is ferromag-
netic. At the microscopic level, the iron can be thought
of as consisting of many tiny little atomic magnets
spinning perpetually. The interaction forces among
them are such that at low temperature two neighbor-
ing magnets tend to align in the same direction: both
up or both down. As a result many more magnets
will point to one direction than any other direction,
creating a net magnetization at the macroscopic level.
Thus, the piece of iron behaves like a bar magnetic.
If the iron is heated, the atomic magnets will flip ran-
domly due to the increasing thermal energy, and the
alignment will be disturbed. At a critical temperature,
known as the Curie temperature (770 C), the net mag-
netization vanishes. The critical temperature marks
the transition of the iron from the ferromagnetic to
paramagnetic phase.

The net magnetization M, which for our purpose can
be defined as the absolute value of the average excess
of atomic magnets pointing up over down, is found to

obey a power law:
| T~T. 1P T<T.
0

M { T > Te

where T, is the critical temperature, and § is called
a critical exponent. Experiments have found g to be
approximately 0.12 for two dimensional ferromagnetic
systems (Fig. 1). Tt is conveniently to rewrite the power
law in terms of a dimensionless temperature called the

T
reduced temperature defined by ¢ = —-—T—Z“: M|t |?.

The quantity M is also called an order parameter
because it signifies the degree of orderliness of the sys-
tem. At zero temperature the order parameter attains
its maximum value.

A second important phenomenological quantity is
the correlation length, which measures the maxi-
mumm range of distance over which fluctuations in one
part of the system (say the flipping of a magnetic spin)
are correlated or have influence on fluctuations on an-
other part of the system. When the correlation length
is small, say on the order of a few separation distance of
the atomic magnets, the system can be partitioned into
a large number of statistically independent cells. As
the critical point is approached, the correlation length
grows rapidly and it eventually becomes comparable
to the size of the system. Experiments have found the
correlation length, denoted by &, diverges near the crit-
ical temperature and obeys the power law:

Eof L]
where the critical exponent v is approximately 1 for
two dimensional systems.

One reason why the critical exponents are signifi-
cant is that they seem to be universal, i.e., they are
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Figure 1: Schematic diagrams for the critical behaviors
of the magnetization M and correlation length ¢ for the
2D Ising model. For 3D Ising model, no exact solutions
have been found; experimental data suggest 8 a 0.33
and v~ 0.63.

remarkably insensitive to the microscopic details of the
system. A whole range of fluids and magnets have ex-
ponents that fall in a narrow range of the 5 and v val-
ues. The coincidence is particularly impressive when
the critical exponents are not simple fractions like %
or 13 : some of them are believed to be irrational num-
bers. That means simple dimensional analysis will give
wrong answers to the exponents.

The question of interest is: Can the values of the
critical exponents 3 and v be predicted from a micro-
scopic description in terms of atomic magnets?

Let’s describe what input is required for the calcu-
lation. The input is a microscopic model with many
degrees of freedom. Three ingredients are needed: (1)
the microscopic variables and the values they can take,
(2) a description of how the microscopic variables in-
teract, and (3) a prescription for calculating averages.

Let’s see what these ingredients are in the context
of the 2D Ising model. Imagine a triangular lattice
of spins (Fig. 2a), each of which can take one of the
two values: +1 or -1. Physically it means the spins are
constrained to point either in the up or down direction.
The N spins, where N is of Q(10%3), define 2V possible
configurations for the system.

Each spin interacts with its nearest neighbors in such
a way the interaction energy is lowered if the spins are
aligned in the same direction: both up or both down.
Mathematically the interaction can be described by a
Hamiltonian H:

H=-K Y ss
<ng>
where N > 0 is the coupling constant, measuring
the interaction strength between the nearest-neighbors
s; and s;. One could complicate the model by adding
an external field, triple interactions, quadruple interac-
tions, and so forth. Physically, the Hamiltonian defines
the total energy of a particular configuration. Because
nature favors lower energy states, we put the negative

(a) (b)

Figure 2: (a) Ising model defined on an infinite tri-
angular lattice. Fach site spins can point either up
or down. Nine of them are shown. A block spin is
formed by grouping three site spins within a shaded
triangle. The value of a block spin is determined by a
majority rule. The block spins form a coarse-grained
system which is a scaled version of the original one.
{(b) Neighboring block spins can interact via two ways
in the first order calculation. The interactions are in-
dicated by dashed lines.

sign in front of K so that the lowest energy states cor-
respond to the configurations in which all the spins are
perfectly aligned: all up (+1) or all down (-1).

To define the averaging operator, we appeal to a fun-
damental result in statistical mechanics, namely, the
probability ps of a configuration s with Hamiltonian
Hy 18 given by:

o Hs
e kBT

A
where kg is the Boltzmann constant, T the tempera-
ture, and 7 the partition function defined by:

B3

where the sum is taken over all possible configurations
s. It is conventional to absorb the factor Iﬁ mnto
the coupling constant K. The inverse dependence on
temperature means that as the temperature is raised,
the coupling strength will decrease, thereby increasing
the tendency of spins to misalign.

The average of a quantity A is defined as the con-
figuration sum weighed by the Boltzmann probability

Dy
< A>= Z Asps
3

where A is the value of A in a configuration s.

Ps =

Renormalization Group: a method and
a new language

The universality of the critical exponents has an impor-

tant consequence. Since the exponents are universal it




is almost tautological to assert that they do not depend
on the microscopic details. And therefore the critical
exponents will be invariant under any transformation
of the system that removes the details but preserves
large-scale behaviors. We’ll be more precise with this
statement shortly.

The central idea of RNG is the iterative removal
of degrees of freedom from the microscopic model in
such a way that at every stage the new system we get
is similar to the old one we start with. Consider a
portion of the infinite triangular lattice with nine spins
{Fig. 2a). Instead of keeping track of all the individual
spins, we might group the spins into blocks of three
and represent the entire block by a single new spin
whose value is determined only by the spins inside the
block. For instance, the value of the new spin, called
it a block spin, can be decided by a majority rule: if
two or more of the spins inside the block are up (+1),
then the block spin is up (+1); otherwise it is down
(-1).

Notice the effect of the projection. The new system
looks exactly like the old one — well not exactly because
the coupling constant will in general be changed and
new coupling constants for triple or higher order inter-
actions might be introduced. Let vus write the trans-
formation of the old to new system symbolically as:

K’ = R(K)

where the prime denotes the coupling constant for
the new system. To anticipate the generation of new
coupling constants, one usually starts with a more
elaborate Hamiltonian with a set of coupling con-
stants Ky ... K, most of which are set to zero initially.
The transformation R is called the renormalization
group transformation. It is a renormalization be-
cause we expect the transformation to change only the
values of the coupling constants - they are said to be
renormalized ~ and not the structure of interaction.
It is a group (in fact only a semi-group) because the
transformation can be iterated but the inverse of the
transformation is not well-defined as information is lost
by the projection procedure.

The transformation has to satisfy one important con-
straint, namely, it must preserve the partition function

of the system:

s’ s

where the sum on the left-hand side extends over the
possible configuration s’ of the block spins, and the
sum on the right-hand side the possible configurations
s of the original site spins.

With the projection and the requirement that the
partition function be invariant, the transformation
achieves the two basic goals of RNG: (1) to reduce
the degrees of freedom (by a factor of 3 per iteration
for this particular projection), and (2) to ensure the
macroscopic quantities caleulated from the new system
are the same as those from the old one.

The significance of the transformation is revealed
when we show that the critical exponents are calcula-
ble from the properties of the transformation equation.
The first point to note is that the transformation R in-
creases the lattice spacing by a factor of { (I = /3 in
our example) per iteration, thereby reducing the corre-
lation length £ by the same factor in units of the orig-
inal microscopic lattice spacing. For almost all values
of K, if the transformation is iterated infinitely many
timmes, the correlation length will be reduced to zero.
This reduction will occur except at a value of K where
the correlation length is infinite to begin with, ie., at
a K value corresponding to the system’s critical tem-
perature. Physically it means that a system starts off
with a critical temperature will remain at the critical
temperature under the transformation. At all other
temperature - no matter how close it is to the critical
temperature — the system will be driven away from its
critical state. ,

This last observation points to the importance of the
unstable fixed point of the transformation equation: it
corresponds to the system at its critical temperature
and therefore the critical exponents should be calcula-
ble from properties of the unstable fixed point.

Fixed points of the equations are determined by the
equation:

K = R(K)

Since R is in general a nonlinear mapping, there may
be one or more fixed points. 2 The stability of a fixed
point K™ is determined by the value of the derivative
3 of the mapping R with respect to K evaluated at the
fixed point:

dR(K)

A=
: AR goge

where A, is the eigenvalue; the subscript ¢ indicates
1t is related to temperature. If A, is known, then the
critical exponent v can be calculated by (see Appendix
A)I

log!

log A,
where | i1s the factor by which length scale changes
under the transformation.

A fixed point is physically significant because the
system at its fixed point is scale-invariant, i.e, the
correlation length is either 0 or oo. A fixed point
is called trivial if it corresponds to zero correlation
length, and called critical if the correlation length is
infinite.

More significant than the calculation of critical ex-
ponents is the fact that the geometry around a critical
fixed point explains universality: it explains why dif-
ferent physical systems near its critical point have the

20f course, the equation might not have any fixed point
at all. In fact it is an open question to decide when a
renormalization equation can have a fixed point.

JOr the Jacobian if K is a set of couple constants.



same behavior. To understand this, we exploit an anal-
ogy with dynamical systems. We first note that the
set of coupling constants (say, Ki, Kg,...K,) of the
Hamiltonian defines a n-dimensional K-space, called
the coupling space. Each point in the K-space rep-
resents a physical system defined by the Hamiltonian
with the values of K’s at that point. The iterated
action of the transformation R generates an orbit of
points in the K-space. The simplest limiting behav-
ior of the orbit is towards a fixed point. The basin of
attraction of a fixed point defines a class of systems
whose large-scale behaviors are determined by the ge-
ometry of orbits around that fixed point.

Consider as an example an Ising model with three
coupling constants (K, Ky, and K3). If it turns out
that near a critical fixed point, the two directions K
and K3 are contracting towards the fixed point, then
these two coupling constants are called irrelevant be-
cause regardless of their initial values they tend to 0
under the action of R. In other words, at the critical
fixed point, the system acts as if the irrelevant coupling
constants don’t exist.

Procedural implementation of a
renormalization group method

In the previous section, we explain the significance of
the renormalization group equation K’ = R(K). In
particular, its critical fixed point determines the crit-
ical behaviors of the system. The heart of a RNG
calculation is to find an explicit form for the trans-
formation R, which except in a few rare cases cannot
be calculated exactly. In the following we will explain
the details of an implementation of a particular RNG
method, the so-called real-space renormalization. An
RNG calculation consists of 5 steps:

formulation of the microscopic model
projection

derivation of the transformation equation
solution of the fixed point equation
calculation of eigenvalues and critical
exponents

G W N

Formulation of the microscopic model

Formulation of a novel problem within the RNG frame-
work is arguably the most difficult step; it requires
knowledge of the underlying physics of the problem and
an articulation of what macroscopic properties one can
reasonably expect RNG to be able to calculate. Apply-
ing RNG to problems in fully developed turbulence is a
good illustration of the kind of difficulties one typically
encounters [Yakhot and Orszag, 1986].

Fortunately the theoretical frameworks for studying
a large class of problems in statistical mechanics (and
quantum field theory) are already in a form amend-
able to RNG analysis. The Hamiltonian is represented
by a higher-order procedure of two arguments, config-
uration and K. Representing objects like hamiltonian

or configuration as procedures has two advantages: (1)
the object can be manipulated by algebraic operations,
and (2) the object can be evaluated to give numbers.

(define hamiltonian
(lambda (configuration K)
(mult -1
(mult X
(sum (lambda (i j)
(mult (configuration i)
(configuration j)))

nearest-neighbor?

(pick-2-combinations
(configuration ’'names)))))))

We have used a few auxiliary procedures in the def-
inition of the hamiltonian. The mult procedure is a
generic multiplication, handling both numbers and al-
gebraic expressions. The sum procedure takes three
arguments: (1) a term to be summed over, which is
itself a procedure taking n indices (2) a filter predi-
cate, which removes indices not satisfying the predi-
cate, and (3) the set of all indices. In the example,
nearest-neighbor? is the filter predicate; it returns
true if two site indices are nearest neighbors. The ex-
pression (configuration ’name) gives all site labels,
and the procedure pick-2-combinations returns all
possible pairs of site labels.

The partition function is represented by:

(define partition-function
(lambda (hamiltonian coupling-constant configs)
(sum (lambda(config)
(exp* (mult -1 (hamiltonian

config
coupling-constant))))

identity

configs)))

The exp* is a generic exponentiation procedure.

Projection

This step is the projection or coarse-graining of the sys-
tem: the grouping of spins into blocks. The purpose of
coarse-graining is to reduce the original problem to a
problem with fewer degrees of freedom. Many choices
of projection are possible, and each choice determines
a renormalization transformation. Some choices just
affect the ease of calculation, while others might pro-
duce transformations that either have no fixed point or
generate non-physical fixed points. Although no suf-
ficient condition on the validity of a projection opera-
tor has been proven, several necessary conditions are
known. The most important requirement is that the
coarse-grained system must be similar to the micro-
scopic system, which means symmetry of the system is
preserved under the projection. For instance, a projec-
tion that changes the dimension of the system or maps
a scalar spin variable to a vector will certainly produce
spurious results.

The majority rule described in previous section
works very well with 2D Ising models. The value of




a triangular block spin is +1 when two or more of its
spins are +1, and is -1 otherwise.

Derivation of the renormalization equation

The constraint that the partition function be invariant
relates the coarse-grained and the original Hamiltonian
{see Appendix B):
—H'(S) =log Zo+ < V >y

where Zg represents the energy contributed by intra-
block spin interactions, while < V >y is the first term in
the approximation for the energy contributed by inter-
block spin interactions (Fig. 2b). The term log Zy can
be ignored in the calculation of critical exponents be-
cause the term is analytic and contains no singularities
[Goldenfeld, 1992].

In the second term on the right-hand side, the sub-
script 0 in the average operator indicates that the av-
erage is partial: the sum extends over the local site
configurations inside one block as opposed to over the
entire block configuration. Physically, it means the ef-
fect of the smaller site spins is averaged out during the
coarse-graining operation.

The partial average operator has nice proper-
ties:

1. it is linear, i.e., < A+B >o=< A >0 + < B >
and < cA >p= ¢ < A > where ¢ is a constant,

2. it is separable, i.e., < AB >o=< A >o< B >¢
if A and B belong to separate blocks,

3. it is symmetrical with respect to site spins,
i.e., < s; >p=< s >¢ if for any two site
spins s; and s; belonging to the same block.

These rules allow the expression for V to be simplified.

The end result is (Appendix C):

K e K 7o
<V 0= U (pag)t 3 518
<IJ>

Comparison with the form of the coarse-grained Hamil-

tonlan:
H'(S)=~K" Y s's’
<IJ>

yields the renormalization equation:
3K +€—K

K' = 2[\(“3—]?"—:?;;‘"—'

)2

The algebraic simplifier to evaluate these expressions
has two parts: (1) a set of rewrite rules incorporating
the properties of the partial average operator, and (2)
explicit calculation of the partial average for spin vari-
ables.

Solution of the fixed point equation

To find the fixed point, we just use the Newton’s
method:

> (newton

(lambda (k)
(- k

(* 2

(* k
( (~ (+ (EXP (* -1 K)) (EXP (¥ 3 K)))
2)
(" (+ (x 3 (EXP (* -1 K)))
(EXP (* 3 K))) =23))0)))
1)

0.3356134

An arbitrary initial guess 1 is used. The answer
0.336 compares reasonably well to the exact value K, =
0.275.

Calculation of the critical exponents

The derivative is done symbolically and then numeri-
cally evaluated at the fixed point to get A;. The cor-

relation length exponent v follows from the formula:

v = 1(1;; AIH where | = ﬁ The answer 1.133 is reason-

ably close to the exact value 1.

Calculation of the magnetization exponent J re-
quires the addition of an external field to the starting
Hamiltonian. The algebra with two coupling constants
is little more complicated, but no new idea is involved.

Evaluation

How good is the block spin renormalization?

The method carried to first order gives reasonable esti-
mates for critical K. and the correlation length v. But
the estimate for § is not as good; it in fact gets the
wrong sign. When the calculation is carried to second
order, we get big improvements: within one percent
accuracy for 4 and four percent for v. But the approx-
imation seems to be asymptotic at best because third
order calculations give worse answer.

The last conclusion seems to be generally true for
real-space renormalization methods. The reason ap-
pears to be the uncontrolled proliferation of new cou-
pling constants as the calculation is carried to higher
order. More accurate renormalization methods are
available: for dimension greater than two, the Fourier-
space (or momentum-space) ¢ expansion [Goldenfeld,
1992} is most accurate, while for dimension two or less,
the Monte Carlo renormalization method seems most
promising [Swendson, 1979).

Despite the accuracy problem, the block spin renor-
malization is simple to understand and relatively easy
to carry out. So whenever applicable it is still the first
method to try in order to develop a qualitative feel for
the problem.

How general s the procedural implementation?

The basic steps of RNG are very much the same
for real-space and momentum-space methods. In the
momentum-space method, integrals replace discrete
partition sums. The projection operator is simpler: at



each stage fluctuations higher then certain cutoff fre-
quencies are averaged out. But the partial averaging
is harder: the integrals get complicated quickly. For-
mal diagrammatic methods like Feynman diagrams are
often used to simplify the calculation of these integrals.

The implementation assumes the microscopic inter-
actions are given by a Hamiltonian and the transforma-
tion invariant is the partition function. These assump-
tions limit its applicability to problems like turbulent
transport which has no Hamiltonian formulation and is
far away from equilibrium. Generalizing RNG analysis
beyond the equilibrium statistical mechanics formula-
tion is an active research area in physics.

Three open problems to explore

“Where the renormalization group approach has
been successful, a lot of ingenuity has been re-

quired: one cannot write a renormalization group
cookbook.”

- Ken Wilson, 1975.

Even within the realm of classical real-space and mo-
mentum space renormalization methods, there are still
many areas that would benefit from computer help.
By computer help, I don’t mean numerical methods
nor algebraic manipulations. Rather I mean cognitive
help to aid a scientist in making judicious choice of
the projection operator, the systematic exploration of
the coupling space, and strategic formulation of the
microscopic model.

Intelligent choice of projection operator

The projection operator and the order parameter for
the ferromagnetic Ising model are easy to construct
because the ground states are extremely simple: all
spins up or all spins down. For most other cases, the
choice is not obvious. 1 will give two examples.

The antiferromagnetic Ising model [(Jreswick, 1992]
is identical to the ferromagnetic one except the nearest-
neighbor coupling constant K is negative. Physically,
it corresponds to a situation in which the tiny atomic
magnets prefer to be antiparallel to each other. Inside
a triangular block of three spins, at least one of the
bonds will be frustrated because there is no way to ar-
range the three spins so that they are all antiparallel to
each other. A blind application of the 3-spin majority
rule will lead to totally wrong answer.

The second example is the so-called XY-model
[Creswick, 1992], a generalization of the 2D Ising model
where the spins can point to any direction on a plane
- like a compass needle. The model is proposed as a
theoretical model to study the behavior of superfluid
He'. Again a naive application of the majority rule
gives disastrous results. It turns out that the ground
states contain “vortices” and the easiest way to deal
with them is by a momentume-space type integration
done in the real space.

These two examples are fairly typical. The failure
of a projection operator can usually be traced to the

misidentification of the ground states and the violation
of the symmetry group of the ground states. The open
problem is: Is there a general rule to construct a pro-
jection operalor that will respect the symmelry group
of the given ground states?

Systematic exploration of the coupling space

The geometry of orbits in the K-space contains in-
formation not only about critical behaviors but also
about non-critical macroscopic properties over the en-
tire phase diagram (e.g., the liquid-gas first order tran-
sition). The open problem is: Can the fired pornts of
an RNG transformation and their connection in the
K-space be mapped oul intelligently? This problem is
reminiscent of the qualitative reasoning research in au-
tomatic phase space analysis.

Strategic formulation of the microscopic model
Many physics problems have no obvious Hamiltonian
formulation. The open problem is: Is there a general
characlerization of the basic ingredients necessary for
the application of RNG? After all the twin principles
of RNG - the systematic removal of degrees of freedom
and the preservation of large-scale behaviors - do not
seem to depend on the Hamiltonian formulation.

Conclusion

In this paper, I have explained the essence of RNG,
illustrated the procedural implementation of a partic-
ular real-space renormalization method, and proposed
soime open problems for qualitative redsonmg, research.

The interest in RNG lies not so much in the calcula-
tion of critical exponents but in its methodology to
extract macroscopic properties from microscopic de-
scriptions without explicitly solving a huge number of
coupled equations. Covering a qualitatively new class
of problems, RNG could be a welcome addition to the
qualitative reasoning arsenal. The abstract problem
solving strategy that RNG embodies - solving a hard
problem by reducing it to a sequence of similar but sim-
pler problems — acquires new power in the context of
sophisticated physical theories. Without the guide of
problem-specific knowledge, the method remains ster-
e. Articulation of these specific knowledge structures
and use of them to guide the application and interpret
the results of RNG methods —~ these two tasks might
hold the key to helping scientists solve some of the
hardest problems in science.

Appendix A: Calculation of critical exponent v

Let (. be the critical fixed point of the RNG equation
and K’ near ..

K. = R(K.) K — K.=K'— R(K.)
K'— K.=R(K)— R(K.)
K'— Ke=M(K = K+ O((K - Ko)?)

K'— Ko =WV(K~K.)

P4 el



But &(K) =
get §(K — K.)
we finally get v = -gl; = ;

1¢(K"). Substituting the above result, we
= (" (K — K.)). Since € ~] K — K. |7",
log !

o Ar

Appendix B: Calculation of the transformation invariant

The transformation must preserve the partition function:

i
E: e Hl = Z o~

57
E

Rewrite the sum on the left on right-hand side as a double
sum: first sum over the site configuration {a} consistent
with a given block spin configuration s’ and then sum over
all block spin configurations. We get:

2 :(,'H”:" :Z ;E :(3_}]*’/”’
st e

o
5

which gives
’
o=t ___} :e*ns/-v
a

Write the Hamiltonian H in terms of two parts:
H=Hy,-V
where Hy is the intra-block interaction, and V is the inter-

block interaction. The negative sign in front of V simplifies
some algebra. Then,

—-H' ~H —~{(Hg—V v
e s = E e Hele = E eV = 7 eV s
[e o

e—HaoV

where Zp = ZU e and < ¥ >z Z 7 Fi-
nally, take logarithm on both sides of the equation and
keep the first term in the cumulant expansion [Goldenfeld,
1992, Chap 9]:

log(< ¢ >0) =< V >¢ +0O(V?)

we arrive at: —H' =log Zo+ <V >q.

Appendix C: Calculation of inter-block spin interactions

Write the inter-block spin interaction V as a sum of
nearest-neighbor block interaction:

V=Y Vi

<I,J>
Then

<V >e= Z < Vis>o
<I,J>

The partial average of Viy can be calculated as follows
(Fig. 2b):
codial ol oI J T
< Vrs >o=< K S5 (b] -+ b«z) S>o= 2 < 5'3 >0 5 >0

where S/ denotes the site spin 3 insider block spin 57, The
partial average of a site spin is given by:

3N - R
C{\*“(ﬁ I o

o7
< Oy o= R
e 4 3K
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