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Abstract

The methodof renormalizationgroup and its as-
sociatedgeometriclanguagefor describingmacro-
scopic phenomenologyis a powerful techniquefor
studying physics problemswith many degreesof
freedom. The abstractproblem solving strategy
embodiedby the method — solving a hard prob-
lem by transformingit to asequenceof similar but
simpler problems— acquiresnewpower in thecon-
text of sophisticatedphysical theories. This pa-
per describesa proceduralimplementationof the
idea and suggestsnew researchproblemsto turn
this powerful techniqueinto a qualitativereason-
ing method.

Introduction
Model interpretation extracting useful consequences
out of a mathematicalmodel — is a key problem in
manyareasof scienceandengineering.Soit is not sur-
prisingthat manyqualitativereasoningresearchefforts
aredevotedto this task. Causaland incrementalanal-
ysis of devices [de Kleer, 1984; Williams, 1984; Weld,
1988], envisionmentandqualitativesimulationof qua]-
itative equations[Forbus, 1984;Kuipers, 1986], dimen-
sional and order of magnitude analysis of algebraic
and differential equations[Bhaskar and Nigam, 1990;
Mavrovouniotis and Stephanopoulos, 1988; Raiman,
1991; Yip, 1993], and phase space analysis of dy-
namicalsystems[Sacks, 1991; Yip, 1991; Zhao, 1991;
Nishida et al., 1991; Bradley and Zhao, 1993] -- these
machinerieshavefoundapplicationsin manydomains.

Interpretation problems can be characterizedac-
cording to three dimensions: (1) the essentialdegrees
of freedom in thesystem(or roughly its size), 1 (2) the
kind of information given as input, arid (3) the kind
of information requiredasoutput. in genera], the dif-
Iiculty of analysisincreasesrapidly as the degreesof
freedomor the uncertainty of the input or the demand
for precisionof theoutput increase.
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Essential degreesof freedom measuresthe extent to

which thepartsof thesystemsare essentially coupled.

So far there has not been much attention paid to
systemswith many (or practically infinite) degreesof
freedom. Many problemsin physics have this charac-
ter: phasetransition of fluids, spontaneousmnagnetiza-
tion of ferronriagneticmaterial,and effective transport
in turbulence, just to nanie a few. Common among
theseproblemsis the task of extractingmacroscopicor
large-scalebehaviorsof a systemfrom its microscopic
properties. It is not immediately obvioushow the ex-
traction can be donebecauseneither direct numerical
simulationnor analyticalsolutionsof equationsinvolv-
ing a huge number (could be on the orderof 1023) of
interactingvariablesis feasible.

A macroscopicdescriptionis possiblewheneverthe
nitty-gritty of the microphysicscan be subsumedinto
a few phenomenologicalparameters. Water, oil, or
gas are complicated systems made up zillions tiny
molecules interacting with some complicated force
laws. however, their macroscopic properties can be
summarizedby similar functional relationshipsamong
few material constantslike density and viscosity. The
functional relationship is usually universalfor a large
classof fluids, while the specific valuesof thematerial
constantsare the detail-sensitiveparts.

About twenty yearsagoKen Wilson inventeda tech-
nique known as the renorrnalization group (RNG),
which becomesa standard method for constructing
in acroscopictheoriesfrom nn icroscopicmodels [Wilson,
1975]; he was awarded a Nobel prize for this work.
The techniquehas been applied in manyareasother
than critical phenomena,aild continuesto be a sub-
ject of current research.The purposeof this paper is
two-fold: (1) to give an elementarydescriptionof the
RNG method in termsof procedures,and (2) to sug-
gest problem areasthat might be fruitful to work on
from the qualitativereasoningperspective.

There are several reasonswhy we proposeto study
RNG. First, RNG is basedon a surprisingly simple
idea: one solvesa hard problemby transformingit to
a similar but simpler one with the sameanswer,and
by iterating the tramisforrnatiomiuntil one arrives at a
problem that is almost trivial to solve. Second,viewed
asan abstractproblemsolving strategy,RNG is noth-



ing novel. The methodacquiresnew power when it is
combinedwith problem-specificknowledgestructures.
Isolating the essenceof the methodarid understanding
its scope nnight provide a new sourceof problemsfor
investigationinto the fundamentalissuesof descriptive
language,stylesof reasoning,and representationtech-
nuquesin qualitativereasoning. Third, explicit proce-
dural encodingof RNG has an educationalbenefit: it
might provide a bettermediumfor beginnersto learn
amid use this technique. Fourth,RNG hassolved some
of the hardestproblemsin physics,amid theoreticalsci-
entists are applying it to all sorts of problermis: per-
colation, onsetof superfluidity, polymer conformation,
elementaryparticleexcitation, andturbulence,just to
take a few examples[Wilson, 1983]. Therefore, au-
tomating aspectsof the RNG will likely have a large
payoff.

Despite the appearanceof automatinga technique
applicableto a specializedclassof problems,we want
to stressour mnoregeneral concernsfor this line of re-
search:

• To study the nature of scientific reasoningas prac-
ticed in normal science. We would like to codify
someof the skills that professionalshaveml formu-
lating problems,making approximations,explaining
data,and testing theories.

• To solve real problemsin an areaof sigmiificanceto
nnodernscience.

• To provide scientists with an intelligent workbench
consistingof alibrary of powerful heuristicandqual-
itative methods.

The paperis organized as follows, We begin by de-
scribing the task of extractingmacroscopicproperties.
Next we explain intuitively how and why the RNG
works. Then we illustrate the proceduralimplemen-
tation of a particular type of RNG nnethod. Finally,
we concludewith problem areasthat might needmost
“cognitive” help.

The task: extracting macroscopic
behaviors

Given a microscopicmodel with manydegreesof free-
dom, thegoal is to predictmacroscopicbehaviorsthat
are independentof the ines.sentialdetails of the nni-
croscopicmodel. This task is in generalvery difficult.
The first difficulty is the large number of interacting
variables;the secondis that one doesnot really know
which aspectsof the microscopicniodel are inessential
until onehassolvedthe problem.

As an illustration of this task, we will considera
theoretical model for the spontaneousmagnetization
of ferromagnetic material. The theoretical model is
known as the two-dimensionalIsing model,oneof the
rare statistical mechanicsmodels that can be solved
exactly [Onsager, 1944]. its study is still of consid-
erable interest for two reasons: (1) it is probably the

simplestnoiltrivial problem to illustrate the essenceof
RNG, and (2) many variantsof the model,suchasthe
3D Ising model, useful for the study of other critical
phenomenacannot be solved explicitly, but RNG is
still applicable to thenn.

At room temperaturea piece of iron is ferronnag-
netic. At themicroscopiclevel, the iron can be thought
of as consisting of many tiny little atomic magnets
spinning perpetually. The interaction forces among
them aresuch that at low temperaturetwo neighbor-
ing magnetstend to align in the samedirection: both
up or both down. As a result many more magnets
will point to one direction than any other direction,
creatinga net magnetizationat the macroscopiclevel.
Thus, the pieceof iron behaveslike a bar magnetic.
If the iron is heated,the atomic magnetswill flip ran-
domly due to the increasingthermal energy, and the
alignmentwill be disturbed. At a critical temperature,
known asthe Curietemperature(770 C), the net mag-
netization vanishes. The critical temperaturenmiarks
the transition of the iron from the ferromagnetic to
paramagneticphase.

The netmagnetizationM, which for our purposecan
he defined as the absolutevalue of the averageexcess
of atomic magnetspointing up over down, is found to
obey a power law:

M fo~ T—’f~(~ T<T,
~= 0 T>T~

whereT~is the critical temperature,and fi is called
a critical exponent. Experimnentshave found ~ to be
approximately0.12 for two dimiiensional ferromagnetic
systems(Fig. 1). It is convemiientlyto rewrite thepower
law in termsof a dimensionlesstemperaturecalledthe
reducedtemperaturedefined by I = T~~:M ~j
The quantity M is also called an order parameter
becauseit signifies the degreeof orderlinessof thesys-
tem. At zero temmiperaturetheorderparameterattains
its maximum value.

A secondimportant phenomenologicalquantity is
the correlation length, which measuresthe maxi-
mum rangeof distanceover which fluctuations imi one
part of the system (saythe flipping of a magneticspin)
arecorrelatedor haveinfluenceon fluctuationson an-
other part of the system. When the correlationlength
is small,sayon theorderof afew separationdistanceof
theatomicmagnets,thesystemcan bepartitioned into
a large numberof statistically independentcells. As
the critical point is approached,the correlation length
grows rapidly and it eventually becomescomparable
to the size of thesystem. Experimentshavefound the
correlationlength, demiotedby ~, divergesnearthecrit-
ical temperatureamid obeysthe power law:

~ 1. ~
where the critical exponentu is approximately 1 for
two dimensionalsystems.

One reason why the critical ex’pomienits are signifi-
cant is that (hey seem to he universal, i.e., they are
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Figure 1: Schematicdiagramsfor the critical behaviors
of the magnetizationM and correlationlength~ for the
21) Isimig model. For 3D lsimig model,no exactsolutions
havebeen found; experimentaldatasuggest~3~ 0.33
andv ~ 0.63.

remarkablyinsensitiveto themrncroscopicdetailsof the
system. A whole rangeof fluids amid magnetshaveex-

ponentsthat fall imi a narrow rangeof the /3 and 1/ val-
ues. The coincidenceis particularly impressivewhemi
the critical exponentsare miot simple fractions like ~
or ; sonicof them are believed to be irratiomial nunmi-
hers. That meanssimple dimmiensionalanalysiswill give
wrong answersto the exponemits.

The questionof interest is: Can the values of the
critical exponents~3and m’ be predictedfrom a micro-
scopic description in terms of atomic magnets’?

Let’s describewhat input is requiredfor the calcu-
lation. The input is a microscopicmodel with many
degreesof freedomni. Three ingredientsare needed:(1)
themicroscopicvariablesand thevaluesthey cami take,
(2) a description of how the microscopicvariablesin-
teract, amid (3) aprescriptionfor calculatingaverages.

Let’s see what these ingredientsare in the context
of the 21) lsimig model. Imagimie a triangular lattice
of spins (Fig. 2a), eachof which can take oneof the
two values: +1 or -1. Physically it meamisthespins are
comistrainedto point either in the up or downdirection.

23
[he N spins, where N is of 0(10 ), define 2’ possible
configuratiomisfor thesystem.

Eachspin interacts with its nearestneighborsin such
a way the imiteractionenergy is lowered if thespinsare
aligned in the samnedirection: both up or both down.
Mathematically the interaction can be describedby a
1-lamiltoniami H:

II = —AT :~i:~
where A’ > 0 is (lie coupling constant, measuring
the interactionstrengthbetweenthe nearest—neighbors
s~and Si . Omie could complicatethe model by adding
anexternalfield, triple interactions,quadrupleiriterac—
lions, andso forth. Physically,the Flamniltoniandefines
(lie total energyof a particular configuration. Because
naturefavors lower energy states, we put the negative

Figure 2: (a) lsing model defimied on ami infinite tri-
angular lattice. Eachsite spins can point either up
OF down. N inc of them are shown. A block spin is
formed by grouping three site spins within a shaded
triangle. The value of a block spin is determinedby a
mnajority rule. The block spins form a coarse—grained
systemn which is a scaled version of the original omie.
(b) Neighboringblock spins can interact via two ways
in the first order calculation. The interactiomisare in—
dicatedby dashedlines.

sign in front of K so that the lowest energy statescor-
respondto the configurationsin which all thespinsare

perfectly aligned: all up (—1—1) or all down (—1).
To define theaveragingoperator,we appealto afun-

damemitalresult in statistical mechanics,namely, the

probability p~of a configuration s with F! amiltomnan
H,, is given by’

kBTPS =

where kB is the Roltzinamin constamit,T the tempera—
ture, amid Z the partition functiomi defined by:

Z =

wherethe summi is taken over all possible configurations
.s. It is conventiomial to absorb (lie factor i~T into
the couplinig constant K. The inverse depemdemiceomi
teimlperaturemneansthat as the temmiperature is raised,
the coupling strengthwill decrease,thereby imicreasinig
the tendencyof spins to muisahign.

The averageof a quantity A is defined as the con-
figuration sum weighed by the Boltzmannprobability

<A >= ~

whereA,, is the value of A in a configurations.

Renormalization Group: a method and
a new language

The universalityof the critical exponienitshasan iinpor—
taut consequence.Sincetheexpomieiitsare universal,it

A
A

(a) (bi



is almosttautological to assertthat they do not depend
on the microscopicdetails. And therefore(lie critical
exponentswill be invariant under any transformnationi
of the system that remiioves t lie details but preserves
large-scalebehaviors. We’ll be more precise with this
statement shortly.

TIme cemitral idea of H NC is (lie it erative renioval
of degreesof freedonmfroni t lie nncroscopic model in
such a way that at everystagethe new system we get
is simmnlar to the old one we start with. Consider a

portioml of the infinite triangular lattice with mime spins
(Fig. 2a). Insteadof keepingtrack of all (lie individual
spins, we might group the spins into blocks of three
amid representthe entire block by a single new spin
whosevalue is deternniniedonly by (lie spinsinside the
block. For instance,(lie value of the miew spimi, called
it a block spin, can be decidedby amajority rule: if
two or mnoreof the spinsinside theblock areup (+1),
then the block spin is up (+1); otherwiseit is down
(-1).

Notice theeffect of the projection. The miew syst cmii
looksexactlylike theold one well miot exactlybecause
the coupling constantwill in general he changedamid
miew coupling constantsfor triple or higherorder imiter-
actions might be introduced. Let us write the trans
formmiation of (lie old to new systemsymbolically as:

K’ = R(K)

where the primne denotes (lie couphimig coiistamit for
(he new system. To anticipatethe generationof new
coupling comistants, one usually starts with a more
elaborate Hamiltonian with a set of couphinig coni
stantsK1 . . . K,~mostof winch aresetto zero initially.
The transforimiation R is called (lie renormalization
group transformation. it is a remiormnahzatiomibe-
causewe expect the t ransfornia(ion to changeomily the
valuesof the coupling constants they aresaid to he
remiormmmalized amid not the structure of initeractiomi.
it is a group (in fact only a semi group) becausethe
transformationcan be iteratedbut (he inverseof the
transformuatiomi is not well defined as infornnation is host
by the projection procedure.

~l’het ransformnationhasto satisfyoneimport ant comi—
straimit, miannely, it niust preservethepartition funiction
of thesystem:

=

where(he sumon the left—hand side extendsover the
possible configuration s’ of the block spimis, amid the
sum on the right—hiamid side t lie possiblecommfigurations
s of the original site spimis.

With the projection amid (lie requiremmmentthat (lie
partitiori fumict iomi be invanianit, (lie tranisformation
aclneves(lie two basic goals of RNG: (1) to reduce
(lie degreesof freedonmi (by a factor of 3 per iteration
for this particular projection), amid (2) to emisure the
niacroscopicquantitiescalculatedfronmi the newsystem
are (lie sameas thosefrom (lie old one.

The sigmnficance of the (ransfornnation is reveahed
whemi we show (hat (he critical expomientsare calcula-
blefrom thepropertiesof (lie t ransfonmnationiequation.
‘l’hie first point to note is (hat time (ransformmmation I? in—
creasesthe lattice spacingby a factor of 1 (1 = x/~in
our exammiphe)per iteration, thereby reducingthe corre-
lation lemmgtFm ~ by t lie sannefactor in units of theorig-
ma! microscopiclattice spacing. For almost all values
of K, if the t rammsformatiouiis iterated immfinitely many
imes, the correlation lengtIi will be reducedto zero.

‘[Ins reduc(iommwill occurexceptat a valueof K where
lie correlation length is infinite to begiit with, i.e., at
a K value correspomidingto time system‘s critical (cnn—
perature. Physically it mimeamis that a systemstartsoff
with a critical (eniperature will remimain at tIme critical
temperatureunder time transformniation. At all other
tennperature no matterhow close it is to the critical
temperature (he system will he dniveni awayfrom its
critical state.

This last observationpoints to the immiportanceof time
unstablefixed point of (lie tramisformationequation: it
correspondsto (lie systemn at its critical temperature
and thereforetIme critical exponentsshould he calcmmha
ble fronn propertiesof (he unstablefixed point.

Fixed poinits of the equatiommsaredetermmnmmedby tIme
equation

= 11(K)

Since I? is in general a nonlinearmapping, (here niay
he oneor niore fixed points. 2 TIme stability of a fixed
point K5 is deternnmiedby the valueof the derivative
~ of the mappinmgI? with respect to K evaluatedat (he
fixed point

— dR(K)

— dAT K—K

where ~ is the eigemivahue; (lie subscript / mid icates
it is related to temmiperature. if )u is known, then (he
critical expomment 1! can be calculatedby (seeAppendix
A):

logl
= hogA~

where 1 is tIme factor by which hemmgthi scale chamiges
nuder t lie t u’atmsforniation

A fixed poimit is physically significaumt because(lie
system at its fixed point is scale—invariant,ic, tue
correlation length is either 0 or x~. A fixed poimit
is called trivial if it correspommdsto zero correlation
lemig(h, amid called critical if (lie correlation length is
infimn(e.

More sigmnficant (hian (lie calculat iou of critical cx

pomuentsis the fact (hat time geometryaroumid a critical
fixed point explainsuniversality: it explainswhy dif-
ferent physical systems near its critical point have tIme

2 ~f course,the etui ationi nughtnot Ii ave aim fixed point

at all, in fact it is an open questiomi to decinhe when a
reuuorinahisationiequatiomucamu have a fixed Poimit,

~Or theJacobianif K is a set of couple c’ommstamits.



sammmebehavior. To understand this, we exploit an amial-
ogy with dymmannical systemns. We first note that the
set of coupling constants(say, K1, K2,. . . K,,.) of the
Hamiltonian defines a n-dimensionalK-space, called
the coupling space. Eachpoint in the K-spacerep-
resentsa physicalsystem defined by the Hamiltoniami
with the values of K’s at that point. The iterated
action of the transformation R generatesan orbit of
points in the K-space. The simplest limiting behav-
ior of the orbit is towards a fixed point. The basinof
attraction of a fixed point defines a classof systems
whoselarge-scalebehaviorsare determinedby the ge-
ometry of orbits aroundthat fixed point.

Considerasan exaniple an Ising model with three
coupling constants(K1, K2, and A3). If it turns out
that near a critical fixed point, the two directions K2
and A3 are contracting towards the fixed point, then
thesetwo coupling constantsarecalled irrelevant be-
causeregardlessof their initial values they tend to 0
under the action of R. In other words, at the critical
fixed point, thesystemactsasif the irrelevant coupling
constantsdon’t exist.

Procedural implementation of a
renormalization group method

In the previoussection,we explain the significanceof
the renormalizationgroup equation K’ = RU). In
particular, its critical fixed poimit determinesthe crit-
ical behaviorsof the system. The heart of a RNG
calculation is to find an explicit formn for the trans-
formnationR, which except in a few rarecasescannot
be calculated exactly. In the following we will explain
the detailsof an implementationof a particular RNG
mmmethiod, the so-calledreal-spacerenormahization. Ami
RNG calculationconsistsof 5 steps:

1. formulation of the microscopicmodel
2. projection
3. derivation of the transformation equation
4. solution of the fixed point equation

5. calculation of eigenvalues and critical
exponents

Formulation of the microscopic model
Formulationof anovelproblemwithin theRNG framnme-
work is arguably the most difficult step; it requires
knowledgeof theunderlyingphysicsof theproblemand
an articulation of what macroscopicpropertiesonecan
reasonablyexpectRNG to be ableto calculate. Apply-
ing RNG to probhennsin fully developedturbulenceis a
good illustration of thekind of difficulties onetypically
emicounters[Yakhot and Orszag,1986].

Fortunately the theoreticalframeworksfor studying
alargeclassof problemnsin statistical mechaniics(and
quantumfield theory) are already in a form amend-
ableto RNG analysis.The Hamiltonian is represented
by a higher-orderprocedureof two arguments,config-
uration and K. Representingobjectshike hamiltonian

or configurationasprocedureshastwo advantages:(1)
theobjectcam-i bemammipuhatedby algebraicoperations,
and (2) the object cami he evaluatedto give miumbers.

(define hamiltonian
(lambda (configuration K)

(mult —1

(mult K
(swum (lambda (i j)

(mult (configuration i)
(configuration j)))

nearest —neighbor?
(pick—2—combinat ions

(configuration ‘nainesflfl)))

Wehave used a few auxiliary procedures in the def-
inition of the hamniltomnan. The mult procedure is a
generic nnultiphication, handling both numnhersamid al-
gebraic expressions. The sum proceduretakes three
arguments: (1) a term to be summedover, which is
itself a procedure taking n imidices (2) a filter predi-
cate, which removes indices not satisfyimig the predi-
cate, and (3) the set of all inidices. In the example,
nearest—neighbor?is the filter predicate;it returns
true if two site indices are nearestneighbors. The ex-
pression(configuration ‘name) givesall site labels,
and the procedurepick—2—combinationsreturns all
possible pairs of site labels.

The partition function is representedby:

(define partition—function
(lambda (hamiltonian coupling—constant configs)

(sum (lambda(config)
(exp* (mult —1 (hamiltonian

config
coupling—constant))))

identity
configsfl)

The exp* is a gemmericexponentiation procedure.

Projection
This step is the projection or coarse-graining of the sys-
tem: the groupingof spinsinto blocks. ‘I’he purposeof
coarse-graininigis to reducethe original problem to a

problem with fewer degreesof freedom. Many choices
of projection are possible, amid each choice determines
a renorniahizationtramisformation. Some choicesjust
affect the easeof calcuhation,while othersniight pro-
ducetransformationsthateither haveno fixed point or
generatenon-physicalfixed poimmts. Although mm suf-
ficient condition on the validity of a projection opera-
tor hasbeen proven, several necessaryconditions are
known. The most innportant requirementis that the
coarse-grainedsystem must be similar to the mnicro-
scopicsystem,which meanissymmetry of thesystem is
preservedunderthe projection. For instance,aprojec-
tion that changesthedimensiomiof the systemnor maps
a scalarspin variableto avector will certainly produce
spuriousresuhts.

The majority rule described in previous section
works very well with 2D Ising models. The value of



a triangularblock spin is + 1 when two or mnore of its

spiuiS are+1, and is -1 otherwise.

Derivation of the renormalization equation
‘[lie commstrainmt that tIme partitioni fuimction beimmvariant
relatesthecoarse-grainedamid theoriginalHanmihtonian
(seeAppendix B):

—H’(S) = hogZo+ < V >-i

where Z0 representsthe energy contrihuted by un/ra-
blockspin interactions,while < V >~is thefirst term in
ti-ic approximatiomifor theenergycontributedby inter-
block spin interactions(Fig. 2b). The (cmi log Z

0
can

be ignoredin the caiculatiomiof critical exponentsbe-
causethe term is analytic amid containstio singmilarities
[Goldenfeld, 1992].

In the secondterm on (lie right-handside, the sub-

script 0 in the averageoperatorindicatesthat the av-
erageis partial: (lie sum extenids over the local site
configurationsinside oneblock asopposedto over the
entire block configuration. Physically,it meanstheef-
fect of thesmallersitespins is averagedout during the
coarse-grainingoperation.

The partial average operator has nice proper-

ties:

1. it is linear, i.e., <A+B >os=< A >0 + < B >0

and < cA >o’= c <A >o where c is a constant,
2. it is separable, i.e., < AB >~=< A >o< B >~

if A and B belong to separateblocks,
3. it is symmetrical with respect to site spins,

i.e., < s~ >o=< Sj >o if for any two site
spins s~and Sj belonging to the same block.

Theserules allow the expressionfor V to besimplified.
‘The endresult is (Appendix C):

3K —Ke +e
<V >~=

2~~

3
K +3e~ ~ S 5

Connparisonwith theform of thecoarse-grainedHamnul-
toniian:

H’(S) = —K’ ~ S’S~
<IJ>

yields the renormalizationmequationi:

3K + —K

K’ = 2K( 3K

‘The algebraicsimplifier to evaluatetheseexpressionis
has two parts: (1) a set of rewrite rules incorporating
thepropertiesof (lie partial averageoperator, amid (2)
explicit calculationof (he partial averagefor spimm vari-
ables.

Solution of the fixed point equation

‘To find (he fixed point, we just use ti-ic New(oti’s
mne(hod:

> (newton
(lambda(k)

(- k
(* 2

1)

0,3356134

(* k
(* (~(+ (EXP (* —1 K)) (EXP (* 3 K)))

2)
( (+ (* 3 (EXP (* —1 K)))

(EXP (* 3 K))) —2)))))))

An arbitrary itntial guess I is used. The ammswer
0.336comparesreasoniahl well to theexactvalue K, =
0.275.

Calculation of the critical exponents
‘[he derivative is dot-ic symbolically and timen numeri-
cally evaluatedat (lie fixed poimit to get ~ The cor-
relation length expommemmt ii follows fromn the formula:
v = ~—, where 1 = ~ The answer 1.133 is reason-

ably chose to the exact value 1.
Calculationi of the nniagnmetizationexponent fi re-

quires(he addition of am-i extermmal field to the startimig
Hanniltonian. The algebrawith two couplingconstants
is little more coniphicated,but no new ideais inivolved.

Evaluation

how good is time block spun renorinaluzation?
The methodcarried to first ordergives reasonableesti-
matesfor critical K, amid the correlationlengthv. But
(lie es(innatefor /3 is not as good; it in fact gets the
wrong signi. Whemm (lie calculation is carried to second
order, we get big immiprovennemits: within onme percent
accuracyfor /3 amid four percenitfor v. But the approx-
innation seemsto be asymnptoticat best becausethird
order calculationsgive worseanswer.

Time last conclusion seennsto be generally true for
real-spaceremiormnahizationmethods. The reasonap-
pearsto be (lie umicontrohiedproliferation of new cou-
pling constantsas (lie calculation is carried to Inghmer
order. More accurate renormahizationi methods are
available: for diinmensiongreaterthan two, the Fourier-
space(or momenitunn-space)e expansion[Goldenifeld,
1992] is mostaccurate,while for dimensiontwo or less,
the Monte Carlo renornnalizatiomi mnmethodseemsmnost
promising [Swendson,1979].

Despitethe accuracyprobheni, the block spin renor-
mahizationis simple to ummderstanmdand relatively easy
to carry out. So wheneverapplicableit is still the first
methodto try in order to developa qualitative feel for
the problem.

How general is the proceduralmrnple.mentaimon?
Time basic steps of RNG are very mnuch the santie

for real-spaceamid nnomnemmtunn—spaceniethods. in the
muomenitummi-spacemethod, integrals replace discrete
partition sun-is. The projection operator is simpler: at



each stage fluctuat iomms higher t lien certaimi cutoff fre—
quemmciesare averagedomit. But the partial averagimmg
is harder: time integralsget commuphicatedquickly. For
mi m al diagranmnnaticmmie(lmodslike Feymiman diagramnmsare
often usedto simnphifv(lie calculationiof theseintegrals.

The implemmiemitatiomiassummmesthe microscopicmit er—
actions are given by a H aniihtoniani amid (lie t ramisforumia—

ionm invariant is the partitionm functionm. ‘i’hese assunip—
tiomms limit its applicability to problennslike (urbmilemit
tramusportwInch hasmmo 11 amniltonnammformnuhatiommamid is
far awayfrom equihibriumii. GeneralizingHNG analysis
beyond (lie equihbriumstatistical nieclmamncsfornniula—
tiomm is arm active research areami physics.

Three open problems to explore
“Where the renorrnaiizatuon group approach has
been successful, a lot of ingenuity has been re-
quired: one cannot write a renormaluzationgroup
cookbook.”

Ken Wilson, 1975.

Even within the realniof classicalreal-spaceandnno
mnmenmtumspacerenormahization mnethods,there arestill
many areasthat would benefit fronm conipmiter help.
By comnputer help, I don’t mean numerical mnethods
nor algebraicmanipulations. Bather I niean cognitive
help to aid a scientist mi nnakmmmg judicious choice of
the projectionm operator, the systemnaticexplorationof
(he coupling space, amid strategic formnulationi of (he
mnicroscopicmodel.

Intelligent choice of projection operator
The projection operatorandthe orderparameterfor

the ferromagnetic Ising model are easy to construct

becausethe ground states are extrenmehysimnmphe: all
spins up or all spimis down. F’or most other cases,(he
choice is not obvious. I will give two examimphes.

The anitiferroniagneticIsing mrmodel [Creswick, 1992]
is identicalto the ferronmagnmeticommeexcept time nearest-
neighborcoupling conmstanmt K is negative. Physically,
it correspondsto a situation in which (lie tiny atonnc
magnetsprefer to he antiparahlelto each other. Immside
a triangular block of three spimms, at least omme of (lie
bomidswill be frustrated because(hereis no way to ar
range the three spins so that (hey are all amitiparahlel to
eachother. A blind applicationof time 3-spimi mnmajority
rule will lead to totally wronmg anmswer.

The secommd example is (lie so-called XY-mnodel
[Creswick, 1992],agenierahizationof(he 2D lsimmg niodel
where the spinscan poimit to any directioni on a plane

like a compassaieedle. ‘[he nmiodeh is proposedasa
theoretical nnodel to study (lie behaviorof superfluid
lie

4
. Again a naive applicationi of (he majority rule

gives disastrousresults. It tmirnms omit that time gromind
statescontain “vortices” amid the easiestway to deal
with t henni is by a mmmomemmtumn spacetype i ntegratiomm
done iii the realspace.

These two examplesare fairly typical. The failure
of a projection operatorcan usually he tracedto (lie

niisidemitifica(ionof tIme groundstatesarid the viol atiori

of (lie symm m mImetry groupof time grou d states. ‘[he open

problemn is: is timecc a geimecal rule / o construct a pro—

section operator that will respect the symmetrygroup

of thi given ground states?

Systematic exploration of the coupling space
Time geommmetry of orbits in time K spacecontainsin—

formatiou not omily about critical behaviorsbut also
about mmomm critical mnmacroscopicproperties over tIme cmi—
(ire phasediagrammm(e.g., (lie liquid gasfirst order(ran-
sitioni). ‘hue open problemmi is: Ca-mm the fixed point.s of
an ht~VG transformation amid their conimectiorm in the
K-space be mappedout intelligently? This problenm is
remnmiuiisceiitof thequalitative reasonimmgresearchiii au-
tomatic phasespaceaimahysis.

Strategic formulation of the microscopic model
Many physicsproblemshaveno obvious Hammmiltomnaim

formulation. Time open prohhennis: Is tinei’e a general
characterizationof the basic ingredientsnecessaryfor
the application of RAG? After all tIme twin principles
of RNG time systenmmaticremovalof degreesof freedom
and the preservationof large-scalehelmaviors do not
seennto depen(I on the II amimilton ian formnmulation.

Conclusion

In this paper, I have explainied (lie essence of RNG,
illustrated the proceduralimnplennentation of a partic-
ular real spacerenmormnahizationmethod,amid proposed
Sonicopen problemsfor qualitativereasomiinlgresearch.
The interest inn RNG lies miot so nmuclm in (he calcuha—
(ion of critical exponents but in its methodology to
extract macroscopicproperties from nmicroscopic de—
scriptiomis wit homit explicitly solving a huge miumber of
coupled equatiomms. ( ‘ovening a qualitatively miew class
of problems,B NO couldbe a welconnieaddi t ion to (lie

qualitative reasommimmg arsemmal. Time abstract prohhemmm
solving strategythat H ~C embodies solving a hard

prohlemmm by reducing it to asequemiceofsimnmilarbutsitu
111cr problenms acquireSnew power iii the context of
sophisticatedphysical theories. Without (lie guide of
problenmi-specific kniowledge, time mmmethmod renmaimmsster
ile. A rt icuihat10mm of t hiesespecifickniowhedgestructmires
amid useof thiemmi to guidethe applicationamid interpret
time results of BNG mmmethmods these two tasks nmighmt
hold the key to helping scientists solve someof (lie
hardestprobhemmmsmi science.

Appendix A: Calculation of critical exponent v
Let K, he the emit ical fixed point of time RNC equation

amid A’ near K

K,. = RU,.) ~‘ K’ K,. = K’ RU,.)

=i. K’ ~- K,. = R(K) R( K,.)

A” - A’,. = ~,(I~’ K,.) + O((Ic K,.)
2

)

~ A” — K,. = P’ ( K IC)



ReferencesBut £(K) = k(K’). Substituting the above result, we
get~(K—Kr)=l~(l”(K Kr)). SinceEtslK K~J~‘,

we finally get is = =

“:~=~ ~.
.5 a

Rewritethe sumon the left on right-handsideasa double
sum: first sum over the itt configuration (a) consistent
with a given block spin configurationa’ andthen sumover
all block spinconfigurations.We get:

which gives

=

,—“:. =Ee 11~s,

a

Write the Hamlltonian H in terms of two parts:

I1=I1o-V

where
1o is the intrarhlock interaction, and V I the inter-

block interaction. Thenegative sign in front of V simplifies
somealgebra. Then,

e~~t= Se ZI~s..= = ZO <E~>0

~ —nov
where Zo e E~e0°and <e~> . Fi-
nally, takelogarithm on both sides of the equationand
keepthe first termin thecumulantexpansionLGcldenfeld,
1992, Chap9]:

Jog(<CV >o)<l’ >040(V2)

wearriveat: H’=logZo+<V>o.

Appendix C: Calculationof Inter-block spin Interactions
Write the later-block spin interaction V as a sum of

nearest-neighbor block interaction:

.c7’J>

<~>o=5 <v,,>0
C,,,>The partial average of Vu can be calculated as follows

(Fig. Th):

<v,,>=< fCSJ(Sf+ Ri) >o=2K c Sf >o< si >o

where .%,‘ denotesthe sitespin 3 insider block spin 6’. The

partial averageof a site spin isgiven by:

<bI>O=
1

,
3
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