
Abstract

We develop computational mechanisms for in-
telligently simulating nonlinear control systems.
Thesemechanismsenhancenumerical simulations
with deep domain knowledge of dynamical sys-
tems theory and control theory, a qualitative
phase-spacerepresentation of dynamical systems,
symbolic and geometric manipulation capabilities,
and a high-level interface. Programs equipped
with these capabilities are able to autonomously
simulate a dynamical system, analyze the simula-
tion results, and utilize the analysis to perform
design tasks. We demonstrate the mechanisms
with an implemented computational environment
called the Control Engineer’s Workbench.

Keywords. Qualitative reasoning, scientific com-
puting, numeric/symbolic processing,control sys-
tem design.

Introduction
The purpose of computing is insight, not numbers.

— R. W. Hamming

Computationally simulating complex physical sys-
temsin engineering design has becomea commonprac-
tice. Yet most of today’s simulations rely entirely on
extensive numerical computations and laborious hu-
man analysis. Human engineershave to shoulder the
burden of translating physics and constraints into mod-
els, preparing numerical simulations, interpreting con-
sequencesof the experiments, and performing design
tasks. Moreover, nonlinear systems can exhibit ex-
tremely complicated behaviors that defy human anal-
ysis and pure numerical simulations. The complexities
of thesesystemsare largely due to nonlinearities, high
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dimensionality, and uncertainties of the systems and
environments the systemsoperate in.

The difficulties in the traditional engineering simu-
lation arise from the lack of(1) parsimonious represen-
tations capturing the essenceof physical systemsand
amenableto efficient computations, (2) efficient mod-
eling algorithms for constructing the representations,
and (3) effective reasoning methods that can use the
representationsto computeand synthesizeuseful prop-
erties for the systems. The lack of computable repre-
sentations for physical dynamical systemshinders the
exploitation of the special properties of the systems
and the attainment of the maximum performance for
the design. The simulation and design of the dynami-
cal systemsare limited by the available computational
power and the complexities of the systems.

While the traditional numerical computing has suc-
cessfully attacked many practical problems, we can
greatly enhance its effectivenessand significantly ex-
pand the scopeof what can be done with this style
of engineering computing by integrating the numerical
computation with advancedartificial intelligence tech-
nology and symbolic computing methods. For exam-
ple, programs equipped with Al reasoning techniques
and deep domain knowledge have already helped engi-
neers solve an open problem in hydrodynamics [Yip,
1991], given new insights into behaviors of a heart
model in cardiology [Sacks & Widman, 1993], and de-
signed a high-performance nonlinear controller in ma-
glev engineering [Zhao & Thornton, 1992]. Abelson
et al. described a collection of computer programs
that analyze dynamical systems at the level of ex-
pert dynamicists [Abelson, 1989]. Other related work
is discussed in [Nishida et al., 1991; Bradley, 1992;
Kant et al., 1992; Amador, Finkelstein & Weld, 1993].

Task Domain: Control System
Simulation and Design

We study the analysis and design of nonlinear con-
trol systems. A real-world control system is a com-
plex closed-loop systemwith extremely rich dynamics.
Computation and reasoningare pervasive in the design
and operation of the controller. Sensorscollect a large
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amount of quantitative information. State and param-
eter estimators infer hidden information about the sys-
tem from the senseddata. The systemis modeled with
a representation appropriate for further analysis and
design based on available information. The model is
then analyzed to extract behaviors that are considered
significant for the control objective. To meet the con-
trol objective, a control law is synthesized to change
the natural dynamics of the system.

The domain of automatic control brings together is-
suesof sensing, estimation, control synthesis,and con-
trol execution. The study of their common themes—
computation and reasoning—servesas a framework for
coherently addressing theseissues and makes it possi-
ble to employ advancedcomputationaltechniquesto
drastically improve modern control design. We focus
on the control synthesis that maps a model of a phys-
ical system togetherwith somecontrol objective to a
synthesizedcontrol law:

Control Design:
model + control objective —* control law.

A control engineergoesthrough the following design
steps to synthesizea controller for a given dynamical
system:

1. Analysis: analyze the model of the dynamical sys-
tem. The physics and the constraints of the system
are often modeled with a quantitative mathematical
model, typically a set of differential equations. This
step examinesthe model and analyzesthe behaviors
of the system.

2. Design: design a controller for the system. Based
on the analysis, this step arrives at a control design
according to the prespecifled control constraints.

3. Verification: verify the control design. This step en-
suresthat the designmeetsthe control specification.

The steps 1, 2, and 3 of the above design proce-
dure are often iterated before a reasonablecontrol law
is synthesized. Except for very few cases in which
analytic-form solutions are available, computer simu-
lations are the main tools for analyzing nonlinear sys-
tems and for designing and verifying the controllers.

Existing control simulation softwares are inadequate
for automatically designing highly complex nonlinear
systems. Commercially available programs like MAT-

LAB and SIMULAB [MathWorks, 1989j rely on numer-
ical simulations. These programs are, at their very
best, semi-automatic and serve as interactive design
aids to human engineers. Although they are equipped
with elaborate graphic interfaces, theseprograms pro-
vide only fragmented, limited capabilities such as inte-
gration and root finding for performing the simulation
task; human users need to prepare the simulation and
to interpret the result. The specialized control tool-
boxes embedded in these programs are “shallow” ex-
pert systems; they lack deepdomain knowledgeand do

not have mechanismsfor computationally representing
and manipulating a control design.

Smart Simulation of Dynamical
Systems

We address the difficulties of traditional numerical
computing by developing computer representation and
simulation technologies necessary for enabling pro-
grams to autonomously perform and interpret numeri-
cal simulations of control systems. The design of com-
plex control systemsrequires powerful computational
mechanisms to represent, reason about, and manip-
ulate the dynamics of nonlinear systems. We demon-
strate that difficult control synthesis taskscan be auto-
mated, using a computational workbench that actively
exploits knowledge of nonlinear dynamics and phase
space. More specifically, we develop a computer repre-
sentation for dynamical systemsin terms of qualitative,
geometric phase-spacefeatures and equivalenceclasses
of behaviors. We employ hybrid computation integrat-
ing symbolic and numerical methodswith Al reasoning
and representation techniques and exploiting sophisti-
cated mathematical domain knowledge. We provide
a high-level interface for communicating the result of
analysis in qualitative terms and for visualizing the
phase-spacedynamics.

We have constructed a computational environment,
the Control Engineer’s Workbench, integrating a suite
of programs that automatically analyze and design
high-performance, global controllers for a large class
of nonlinear systemsusing the qualitative phase-space
representation [Zhao, 1992]. Given a model of a phys-
ical system and a control objective, the Control En-
gineer’s Workbench analyzes the system anddesigns
a control law achieving the control objective. A user
typically interacts with the Workbench in the following
way.

The user first tells the Workbench about the sys-
tem: he inputs a systemmodel in terms of an ordinary
differential equation, parameter values, and bounds on
statevariables for analysisin the form of a phase-space
region. The user also tells the Workbench about the
requirements on the control design: he specifiesthe de-
sired state for the systemto settle in, the initial states
of the system, the allowable control parameter values,
and the constraints on the control responses.

The user then asks the Workbench to analyze the
system within the parameter ranges of the model. The
Workbench visualizes the totality of the behaviors of
the systemover the parameter ranges; it represents the
qualitative aspects of the system in a data structure
and reports to the user a high-level, symbolic summary
of the systembehaviors and, if necessary, a graphic
visualization of the phase-spacequalitative features.

Next, the user instructs the Workbench to synthe-
size a control law for the system, subject to the spec-
ified design requirements. The Workbench searches
for the global control paths that connect the initial



Figure 1: Workbench Input: the model for a buckling
steel column and the control objective of stabilizing
the buckling motion.

statesof the system and the desired goal state, using
the qualitative description about the system. More
specifically, the search is conducted in a collection of
discrete entities representing trajectory Rowsin phase
space. After the global control paths are established,
the Workbench determines the controllable region of
the system and the switching surfaces where control
parameters should change values. A synthesized con-
trol reference trajectory consists of a sequenceof tra-
jectory segments,each of which is under a constant
control.

The following example ifiustrates how the Work-
bench autonomously analyzes the buckling motion of
a steel column under compression and synthesizes a
control law to stabilize the motion. Figure 1 shows
the input to the Workbench—the model and control
objective—and Figure 2 reports the synthesized con-
trol reference trajectory superimposed on the phase
spaceof the column. The global portion of the refer-
encetrajectory shown in Figure 2 consists of four seg-
ments, eachof which starts at aswitching state marked
as a small circle; the reference trajectory connectsthe
initial state with the goal state at the origin of the
phase space. The control parameter value is held con-
stant for each segment denoted by Ui, U2, U3, and
U4, respectively.

The analysis of the nonlinear dynamics of the buck-
ling column accountsfor alarge percentageof the com-
putation in arriving at the desired control design. The
equation of motion for the column is described as a
nonlinear ordinary differential equation. An exhaus-
tive numerical simulation can be very expensive. The
Workbench employs a geometric analysis of dynami-
cal systemsthat uses a phase-spacerepresentation to
capture the qualitative features of the system, first de-
veloped by Poincaré at the beginning of the century.

;; The Synthesized Control Law specifying the time
;; instance, switching state, and corresponding
;; control value for each switching:
((time 0.)

(switching—state #(—1 —3))
(control .2))

((time .284)
(switching—state #(—1.82 —2.71))
(control 0.))

((time 1.06)
(switching—state #(—1.86 2.49))
(control — .2))

((time 2.71)
(switching—state #(1.35 1.82))
(control 0.))

((time 6.76)
(switching—state #(— .0023 — .0692))
(control *local—control*))

Figure 2: Workbench Output: the control reference
trajectory and the control law for stabilizing the col-
umn. In the plot, the reference trajectory is drawn in
solid lines, and the phase-spacestability boundaries of
the uncontrolled column in dashed lines.

Representation, Simulation, and
Interface

The Workbench has demonstrated the following capa-
bilities in designinga control law for the buckling col-
umn:

• Deciding what behaviors are significant. The Work-
bench looks for qualitative features like equilibrium
points, stability regions, and trajectory flows.

• Describing the behaviors qualitatively in computa-
tional terms. The Workbench models the stability
regions and trajectory flows geometrically.

• Reasoningabout the geometry of a phase space.

• Performing the control design autonomously.

These capabilities are supported in the Work-
bench by (1) qualitative representation consisting of
dimension-independent geometric constructs, (2) hier-
archical extraction of the behaviors, (3) modeling and
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manipulation mechanismsfor trajectory flows, and (4)
algorithms implementing the geometric, combinatorial,
and numerical computations.

Our intelligent simulation environment has three
generic layers: (1) computer representations of the
physical world, (2) simulation technology that makes
feasiblethe computation about the physical world, and
(3) high-level interfaces for communications between
human usersand the computer. For our intended task
domain of control design and analysis, we present the
following structure for our environment:

1. Computer representation:

We develop a qualitative representation describ-
ing a dynamical system in terms of its phase-
space geometric features: the qualitative phase-
spacestructure. This qualitative representation cap-
tures asymptotic and transient behaviors of a dy-
namical system and essentialconstraints of the sys-
tem useful for the control synthesistask.

2. Simulation technology:

Our simulation of a control system comprises nu-
merical and symbolic computation about the system
model and geometric modeling of phase space. The
Workbench also embodiesdeep domain knowledgeof
dynamical systems theory and control theory that
can guide quantitative simulation and reduce the
amount of computation necessaryfor analyzing the
system. We chooseScheme,a dialect of LISP, as the
implementation languagefor the Workbench [Han-
son, 1991] and use extensively the Scheme math-
ematical library supporting generic numerical and
symbolic manipulations. Scheme supports proce-
dural abstraction that facilitates the extraction of
common patterns in numerical computation and the
composition of numerical procedures.

3. High-level interface:

The Workbench presentsahigh-level, qualitative de-
scription of the result of its analysis and design to
human designers; this level of interaction is more
intuitive and direct than that of pure quantitative
presentation. Other programs in the Workbench can
efficiently accessand manipulate the result. The in-
ternal data structure for the analysis ensures that
the result is sensible to human engineersand ma-
nipulable by other programs.

The rest of the paper describesour representation for
control systemsand an implemented simulation envi-
ronment.

Representing and Manipulating
Constraints of a Control Design

The complexity of a nonlinear system necessitatesthe
need for a design vocabulary capable of describing
implicit constraints of a control design and provid-
ing means to manipulate and reason about these con-
straints and to build abstractions. We present a corn-

putational mechanism that allows one to represent and
manipulate constraints of a control design in terms of
phase-spacegeometryand topology of a dynamical sys-
tem. A control design will be specified in terms of the
composition of geometric objects in phase space.

A qualitative representation

We have interpreted a control designas a mappingfrom
the model of a physical systemto be controlled and
the control objective to the control law, under the in-
fluenceof which the physical systemwill behave in the
desired way. The synthesized control law alters natu-
ral dynamics of the system through the selection and
composition of the natural behaviors.

We describe a qualitative representation for com-
plex behaviors of dynamical systems in phase space
and a design vocabulary for computationally express-
ing and manipulating these behaviors [Zhao, 1991;
Zhao, 1993]. A phase space of a dynamical system
is an n-dimensional geometric space, each dimension
of which represents a state variable of the system. We
are interested in representing the qualitative behav-
iors of dynamical systemsfor control analysis and de-
sign. One useful qualitative representation of the phase
space of a dynamical system is in terms of equilib-
rium points and limit cycles, stability regions, trajec-
tory flows exhibiting the samequalitative features, and
the spatial arrangement of these geometric objects in
phase space. This qualitative representation captures
the gross aspects of dynamics in a relational graph
of phase-spacestructure and a set of discrete objects
called flow pipes—theequivalenceclassesof behaviors.
The design vocabulary describesa control design task
in terms of well-defined geometric, combinatorial op-
erations on the flow pipes. This vocabulary formalizes
aspectsof implicit expert reasoningof control engineers
in solving control design problemswith the phase-plane
method. The representation and the vocabulary are
developedindependently of the orders of systems, i.e.,
the dirnensionality of phase spaces.

Designing control by manipulating
equivalence classesof trajectories

The flow pipes group infinite numbers of distinct be-
haviors into a manageablediscrete set that becomes
the basisfor establishing control referencetrajectories;
each flow pipe models an equivalence class of trajecto-
ries exhibiting similar qualitative features.

The geometric modeling of a phase spacewith flow
pipes makes the phase-spacecontrol planning and nav-
igation possible. Given adiscrete set of possiblecontrol
actions, the search for a control path from an initial
state to a destination is a reachability problem, i.e.,
the problem of finding a sequenceof connectedpath
segmentseachof which is under a single control action,
as schematically illustrated in Figure 3. This point-to-
point planning can be naturally described within the
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Figure 3: Searchfor a control path from aninitial point
to a goal point in a stack of phase spaces.

flow-pipe representation of phase space:a system un-
der control jumps from one flow pipe to another upon
the switching of control, eventually arriving at the des-
tination.

To make this approach computationally feasible, the
phasespacesof the dynamical systemindexed by differ-
ent control actions are first parsed into a discrete set of
trajectory flow pipes. Theseflow pipes are then aggre-
gated to intersect each other and are pasted together
to form a graph, the flow-pipe graph. The flow-pipe
graph is adirected graph where nodesare intersections
of flow pipes and edgesare segmentsof flow pipes. The
initial state and the goal state are nodes in the graph.
Each edge of the graph is weighed accordingto travel-
ing time, smoothness,etc. With this graph represen-
tation, the searchfor optimal paths is formulated as a
search for shortest paths in the directed graph.

An Environment: the Control
Engineer’s Workbench

The Control Engineer’s Workbench is an implemented
systemthat analyzesand designs control systemsand
interacts with users qualitatively. The Workbench
serves as an intelligent assistant to control engineers.
The componentsof the Workbench are shown in Fig-
ure 4:

• MAPS program for simulation and interpretation

• Phase SpaceNavigator for control synthesis

• A graphic program for visualizing the design

• A user interface for communication with the system.

MAPS, standing for Modeler and Analyzer for Phase
Spaces, is an autonomous phase-spaceanalysis and
modeling program that extracts and represents qual-
itative phase-spacestructures of nonlinear dynamical
systems [Zhao, 1991]. MAPS generates a high-level
description of the behaviors of a dynamical system,
sensible to humans and manipulable by other pro-
grams. Phase Space Navigator visualizes the phase-
spacestructure of agiven systemcomputed by MAPS,

plans global control reference trajectories, and navi-
gates the system along the planned trajectories [Zhao,
1992]. The component for model building in the figure
has not yet been implemented.

The programs in the Workbench implement various
algorithms: symbolic differentiation, numerical algo-
rithms on differential equations, modeling of geomet-
ric structures, clustering of equivalence classes,graph
algorithms, etc. The inference mechanismof the Work-
bench uses these programs to construct a qualitative
phase-spacestructure for representing a system, to
check for the consistencyof the structure, and to rea-
son about and manipulate the representation through
a graph of flow pipes.

The flow of computation within the Workbench is
illustrated in Figure 5. Given a model of a system, a
bounded phase-spaceregion of interest, allowable pa-
rameter values, and control objectives and constraints,
the Workbench performs stability and trajectory flow
analysis for the system in phase spaceand interprets
the result in a phase-spacegraph. The Workbench
then exploresthe control spaceto synthesizea desired
control law subject to the design constraints. It re-
ports the control law specifying reference trajectories
and performance properties. The control design for
steering towards an equilibrium is performed in this
way: for a point-to-point control, the output is a ref-
erence trajectory, whose control law consists of a se-
quence of tuples of time, switching state and the cor-
responding control value; if an initial operating region
is given, the output is a controllable region geometri-
cally represented as a polyhedral structure.

The current implementation of the Workbench takes
as input the model for a dynamical system in terms
of an ordinary differential equation. Incorporating
model formulation capability that constructs models

Figure 4: The Control Engineer’s Workbench.



Figure 5: The flow of computation in the Workbench.

from physical principles or measurementscan broaden
the scopeof control systems the Workbench can de-
sign. Although the analysis and design algorithm of
the Workbench applies to dynamical systemsof any or-
der, the computational complexity of high-dimensional
systemsremains as a future research topic.

Conclusion

We have developed the Control Engineer’s Workbench
comprising programs MAPS and Phase Space Navi-
gator that automate a significant portion of a control
engineer’s simulation and design task. The Workbench
employscomputational meansto represent and manip-
ulate dynamics of control systems,using a qualitative
representation for encoding dynamics and a flow-pipe
basedphase-spacemethod for designing nonlinear con-
trollers; it combines numerical simulation with sym-
bolic techniques and Al reasoning; it provides an in-
terface for visualizing the result of control design and
analysis. The Workbench has been applied to the de-
sign of a nonlinear controller for a magnetic levita-
tion vehicle. We plan to extend the capabilities of
the Workbench to support interactive editing of phase-
spacegeometric representation of dynamical systems
for the purpose of experimenting and testing new ideas
in control design.

The Control Engineer’s Workbench complements
and enhances human design activities. By providing
manipulation and visualization mechanismsfor the de-
sign, the Workbench relieves engineers from routine,

tedious low-level tasks of simulation and interpreta-
tion, allows the engineers to focus on higher-level de-
sign issues,and enlargesthe design spacethe engineers
can explore.
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