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Abstract : Qualitative techniques usually imply
some compromise between the amount of
information we can deal with and the simplicity,
velocity or easy understanding of the computations .
In this paper we focus our attention on the
enormous amount of information that any image
can supply, and how the exceedingly complex
problem of treating it fast can be reduced. In order
to accomplish it, we introduce a qualitative image
codification and implement a software tool able to
tell whether two images are contradictory or not,
giving us a measure of their similarity. Our goal
was twofold; on one hand, we provided the raw
visual data with some structure, by fixing the
resolution level (granularity) and adopting an
adequate codification, and, on the other hand, we
built a software tool able to tell us if two of such
qualitative images are able to be fused into a
combined one, produce a similarity index between
them and obtain the new more refined image.

1 Introduction

Day after day, qualitative techniques are spreading
their application range, finding room for them in
every field where the available information is too
scarce for a numerical process, but, thought it can
seem paradoxical, also in fields where the potential
data are too many to manage. Lack of information
is probably the commonest case, forcing
Qualitative Reasoning to try to get the maximum
knowledge from the available data, without
imposing a numerical description . Methods and
techniques have been developed to deal with
qualitative information , and tools have been built
to make an automatic reasoning process based on
that data.
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On the other hand, an excess of information can
also disable our ability to obtain useful knowledge,
for instance, a human operator overwhelmed with
computer data absolutely loses his/her ability to
recognize dangerous operation states . This state of
things is particularly well illustrated by the case of
visual data, where the enormous amount of
information to be treated -probably one million
pixels fifty times per second- can rapidly lead us
into an exceedingly complex problem. The
possibility exists, of course, of trading off some
information for simplicity's sake, and returning to
manageable problems . Moreover it is a good idea to
reduce the detail level in order to achieve simpler
and faster computations .

This will be our work in this paper. First, we will
give structure to an image, by introducing a
qualitative codification and establishing a
determined granularity . This technique is well
known in computer graphics treatment, and
corresponds to scalable pixels, macro-pixels, being
the resolution level defined by their sizes and
adapted to every particular application we need .
Our chosen codification, introduced in this work,
and profiting from qualitative algebras, records
only three classes of macro-pixels or cells : cells
that have some object within them, cells known to
be completely empty and unexplored cells. We
have arbitrarily marked them with the "+", "-" and
"?" signs, meaning, respectively, occupied (even
partially) cells, empty cells and unexplored ones . It
should be noticed that simply by choosing this
codification (cells that are partially occupied
considered full) we are giving priority to the
presence of an object, again because of the
particular application we planned it for. In any
case, we get a qualitative image at a given
resolution level.



In order to clarify why these choices have been
made, we can think about a particular application,
for instance a robotic explorer which can wander
within an unknown domain and construct a map of
the obstacles it finds. If we are interested only in
getting the trajectories the robot can follow, it
makes no sense to choose a resolution level higher
than the size of the robot. This way, the minimum
size of the cells is determined, while the maximum
size, rather useless, would be the whole domain to
explore. The qualitative map our explorer would
produce would look like a grid each of whose
squares is marked with the "?", "-" or "+" signs,
standing for "zone unexplored", "zone I can walk
into" and "zone to avoid", respectively. This
application was the first we were thinking of when
we design our technique, but is not the first to be
completely implemented, because now we are
working on a simpler quality control system,
identifying rotated manufactured items.

After fixing the granularity level, the next step is
working with two different qualitative images and
wondering whether they can possibly reflect the
same reality, or if they are contradictory, always at
a fixed granularity level . Again, we can think of
two robotic explorers and two different maps, and
the need to test whether they represent either
exactly the same scenery -maybe from a different
point of view-, overlap or are completely different.
Also, we can imagine that our problem is to
recognize some machinery items from images
obtained by static cameras, and we need to find out
if two items are equal even if their images are not
-rotations and translations do not alter the items but
change their images-.

Of course, in any case, the answer to this question
could be categorical (yes/no), but we have also
introduced a similarity index that gives us a real
coherence measure (remember that if the images
represent an overlapping reality, they would only
agree partially) . This similarity index ranges from
-1 to 1, its positive values corresponding to
indistinguishable images and the negative values to
contradictory ones . According to the qualitative
codification, two images have the possibility of
being equal when they are qualitatively equal, in
the classical sense, zone by zone .

Nevertheless, if we try to test not the images but
rather the reality they reflect, we must be aware
that some transformations alter the images
conserving the same reality. In this paper we have
centered our work on rotations, for a number of
theoretical and practical reasons, and tried to limit
their a priori infinite number.

	

So we must try
every significant

	

-at the chosen resolution level-
transformation in one of the images, and again test
the coincidence with the other one. The number of
possible transformations for a given image could be
enormous, but we take advantage of the limited
resolution level and the geometrical simplicity of
squared cells. Anyway, when we come to practical
implementation we learn that every transformation
from one qualitative image into another can lose
some more information, and this fact has to be
taken into account afterwards .

In the next sections, we are going to define how we
can efficiently encode visual data, how we can
determine whether they are contradictory or not
and, in the last case, how to combine them to obtain
a more defined one. In the first place we will try to
fuse qualitatively equal images, but afterwards we
will try to fuse modified views of the same reality.
Then we will study the combination operator
(fusion) . Finally, we will determine the different
qualitative rotations for a given number of cells -
resolution level-, present the algorithm that
implements it all and draw some conclusions . Of
course, this paper is only a first step into the
qualitative treatment of transformed images and we
hope to fulfill their possibilities in future works.

Practical implementations are easily derived from
the algorithm, since we only need a visual images
acquisition able to binarily distinguish foreground
and background . Then the user fixes a resolution
level and the objects are approximated to this grid .

2 Qualitatively Equal Images:Fusion

A qualitative description of some information
always means, at least, adopting a finite set of
possible values and accepting some loss of
precision. This way we increase the abstraction
level but reduce the resolution (detail level) .



We consider that our information is acquired in the
form of a squared screen, integrated by a non
relevant number of pixels . Then we reduce the
detail level by defining a smaller number of
squared cells, that is, partitioning X and Y axes in n
discrete positions .

	

Each of these cells will be
assigned a pair of indices and will be a member of
the set:

We define a qualitative image as the map between
the cells set and the set S = {+, -, ?}, so that :

Notice that we want "-" to stand for a cell that is
known to be empty, for a partially or totally
occupied cell, and "?" is assigned to every
unexplored cell, that keeps the possibility of being
either empty or full . Thus a qualitatively described
image is a matrix, Iq,

	

each of whose positions,
Iq(i, j), is mapped this way, and so a qualitative
image is a member of the set of order n squared
matrices whose elements belong to S, noted by
Mn(S).

C= ~i,j)l i, j E {1,2 . . .,n-l,n)I

q(i,j) = j -, ifthe cell (i,j) is empty;
?, if the cell (i, j) is not explored;

+, otherwise .

We can see that matrices which do not contain any
question mark give us the maximum description for
a given image at a determined granularity level .
The set ofthese matrices will be called Dn(S).

Of course, in every particular application these
matrices could be restricted in some way, meaning
that not every squared order n matrix could
represent valid visual qualitative data. For
instance, a matrix with the form :

could never have been generated by a robotic
explorer which is prevented from stepping into an
occupied cell, since from whichever starting point,
it is impossible to step into cells (2,2) and (4,4).

Our interest now is to determine when two q-
images can represent the same reality. It is obvious
that this is true when they both are coincident cell
by cell, that is, they have the same associated
matrix . But we have also considered the "?" sign,
and it implies that two non-literally equal matrices
can still represent the same reality, because this
sign retains the possibility of being either 11+11 or If-of

when we acquire more information . This
possibility of being equal is formalized in the
definition of qualitatively equal q-images, in the
following terms:

Definition 2.1 : Two qualitative images, Iq and Iq
are qualitatively equal, denoted by Iq -_I'q, if there
does not exist any cell (ij) such that Iq(i, j), Iq(i, j)

This definition states that two q-images are q-equal
if they are not contradictory, in the sense that there
exists a cell marked with the sign "+" in one of
them but with "-" in the other.

When two images turn out to be qualitatively equal,
the possibility exists to combine them into a more
defined image -one that possesses equal or less
unexplored cells- . In order to do this we have
defined the binary external operator * defined by
Table 2 .1 . Notice that its result belongs to
S'={?, -, +, ! }, where the "!" stands for either
incompatibility or impossibility.

Table 2 .1

It is a straightforward matter to extend this
definition to the matrices set, Mn(S), obtaining
another binary external operator, *, that will
produce as a result a matrix from Mn(S). Given
two matrices Iq=(ai,~) and I'q=(bi) from Mn(S) the
resultant matrix will be Iq*I'q = ay * bij) .

It is also easy to see that Iq*Iq E Mn(S) if and only
if Iq and Iq are q-equal; in other words, the
operator is internal in Mn(S) only when q-equal
matrices are operated .



Definition 2.2 Let there be two qualitatively equal
matrices Iq and I9 E Mn(S). We define the static
fusion of these matrices as Iq*I4 = (ay * by).

Notice that asking the q-equality of the matrices to
be fused forces the result to belong to Mn(S),
ensuring a correct definition . On the other hand, it
can be noticed that the number of question marks in
the result matrix is lesser or equal than this number
in any of the operated matrices, and the equality
will only hold when Iq*1q is equal to either Iq or
I9

3 Qualitatively Equal Realities : T-Fusion

In the preceding section we have treated the fusion
between two images from a static point of view,
and we have not considered what happens when
both images represent the same object but are either
taken from different points of view or the object
has suffered some rigid transformation(s) between
the acquisition of the images . In this case, the q-
images will turn out not to be q-equal according to
definition 2.1, but still we know that they represent
the same object, as can be seen in Fig. l :
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Fig. 1

On the other hand we are interested in getting the
most described image possible, that is, the image
holding fewer question marks, and that could be
accomplished by somehow composing the data
provided by two images known to represent the
same reality. When this happens we must not fuse
the raw images, but rather one of them with a
certain transformation of the other. The kind of
transformation possible depends on the particular
application, but, because of their great practical
interest, we have focused our present work on rigid

movements, that is, transformations that preserve
distances .

If we remember that the plus sign stands for a
totally or partially occupied cell, it seems clear that
any rigid transformation will give priority to this
sign over the two others, and then to the question
mark -as it holds the possibility of being a plus
sign- over the minus sign .

The result is that every q-transformation implies
some loss of precision, since the original image was
first qualitatively encoded, but now it is
numerically transformed and its result encoded
again. As a consequence, when we transform one
image and try to fuse it with another non-
transformed one, this last image holds more precise
information, and it should be preserved by
introducing some asymmetry in the operation. The
crucial point is that a plus sign can be incorrectly
generated by the transformation, and this should
not lead us to conclude a contradiction (see Fig. 2) .
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And that creates the necessity of a new binary
external qualitative operator, *d, defined :

*d:Sxs-)S

Thus, when we find "+ *d - = -" it means that we
give more credit to the second image, the one
which had not undergone any transformation . It is
worth noticing that transforming images will never
lead us to an incorrect fused image, but can
drastically reduce its similarity index.

Now we can extend the operator between matrices
in the usual way, that is, ifIg j =(ail) and IqZ=(bi>) :

* d :M� (S)xM� (S)-~M� (S');

ly, *d lq2 =(a~i *d b;~)

If we consider T the set of every possible mapping
except Identity from Mn(S) to itself, and let T be a
subset ofT, then we can speak about:

Definition 3.1 : We say that two q-images II and 12
are t -fusible if there exist tl , t2 E T such that
tiU]) *d 12 E Mn(S) and I]*d t2(12) E Mn(S)-

Physically, we say that two q-images can represent
the same reality when they are T -fusible .

The reason for needing two transformations is to
ensure the operation symmetry, since no constraints
are imposed on the considered subset of
transformations, t , and this definition is necessary
in order to take into account the fact that two non
q-equal images can still represent the same reality .
Please observe that there exists the possibility that
more than one transformation of an image makes it
fusible with another image, and thus the set
resulting from a 't -fusion between two images does
not need to be a singleton. This set will be denoted
by Fd(I1,12).

Every matrix belonging to Fd(I1, 12) is a q-image
that includes the information from the two operated

q-images, possesses a lesser or equal number of
question marks than any of them, but also has a
possible "noise" due to the priority given to the plus
sign in our transformations . This way, it is
interesting to know which images from Dn(S) can
describe the same reality, since they are the ones
that maximize our information. In this sense it
holds that if

	

1q, I'q

	

E Mn(S) are such that
Iq E Fd(Il, I2) and Iq E Dn(S), then both q-images
can represent the same reality if and only if either
Iq Iq or Iq *d I'q E Mn(S)-

The kind of transformations applicable to a q-image
always imply a certain movement suffered either by
the point of view or the viewed object, since they
both can be indistinguishably modeled. In this
paper we have studied only rotations because of
their practical interest, but the methodology is
general enough to be applied to any kind of
transformations.

4 Similarity Index

A similarity index is a measure of the coincidence
between two q-images . There exists the need for
such a measure in the static fusion case in order to
determine the credit we can give to the resulting
image, but this need is highly increased in the
dynamic case because there can be many results,
and we need a criterion to determine which one
better meets our requirements .

This index must be designed to, on the one hand,
determine if two images are contradictory or not,
and, on the other, provide an idea of the degree of
either contradiction or coincidence. This result
must always go along with the fused image, since
two completely undefined images -full of question
marks- will produce a result neither contradictory
nor useful, and precisely the utility of the reesult is
what can be measured by the similarity index.

Thus, we need a index that is categorical in some
sense but able to further distinction. We have
chosen it to be a signed real number, whose
negative values will stand for contradiction and the
positive ones for coincidence. It can be normalized
to range from -1 to l, and these singular points,
altogether with the 0 value are assigned to singular
conditions .



We impose the similarity index to take its
maximum value in the complete coincidence case
-all cells explored and coincident, indistinguishable
images at the given resolution level-, its minimum
reflecting full contradiction -all cells explored and
contradictory-, and its zero value to express neither
coincidence nor contradiction -all cells unexplored .
Priority is given to contradiction, and whenever it
exists the similarity index takes negative values,
meaning that images can never be the same. In
between values are assigned by linear interpolation .

The way to achieve these goals is by defining the
index as a function of the number of contradictions
and coincidences, at a granularity level defined by
nxn cells. At this level the similarity index
between two images Il and 12 is :

contradictions
-

	

z

	

,

	

if contradictions > 0 ;
n

coincidences
zn

otherwise .

Of course, when two images produce a similarity
index equal to 1 it means that they are
indistinguishable at a given resolution level, not
that they are identical, as can be seen in Fig. 3 :

Fig. 3

5 Qualitative Rotations

Within this section, we will limit the studided
rotations, g,,,,, where a is the rotated angle, to those
made with respect to the image center, cp. This
implies that when our grid has a side with an even
number of cells, this center lies on a vertex, and
when this number is odd, on the middle point of a
cell .

It can be seen that many real rotations can
correspond to a q-rotation. If we put onto the
original grid R another grid R' that has been
rotated with respect to cp, then we will not be able

to distinguish the results cell by cell, no matter
which angle is rotated, until a vertex from R' falls
on a cell side in R. This leads us to define :

Definition 5.1 . Two rotations, g,,, and gp, are
q-indistinguishable if either a = (3 or for any gy
such that a < y < P, the grid gy (R) has not got any
vertex on any cell border of R;

As can be seen in its definition, this is an
equivalence relation, so we can classify the real
rotations into groups, in such a way that all of them
belonging to the same class are q-indistinguishable
for a given resolution level. This is why we call
each of these classes a q-rotation .

It is interesting to observe that the q-description is
unique for a real rotation, but usually many real
rotations correspond to a same q-rotation .
Nevertheless, there exist four q-rotations that are
equivalence classes with cardinality equal to 1,
corresponding to rotation angles 0,7r/2, 7c and 37t/2.
This four unitary rotations have the property of
preserving the number of "+", "-" and "?" cells for
every q-image, so they are called neat rotations.
Any non-unitary rotation applied to a q-image can
increase the number of either "+" or "?" signs,
introducing, respectively, noise or more
indetermination in the q-image. They are called
dirty rotations .

To put it more simply, two rotations are q-
indistinguishable when, for any real image, the q-
description obtained after applying either one or the
other is the same.

Now we study for the different values of N, the
order of the q-image matrix, which q-rotations can
be distinguished . We look for a partition of the
interval (0, 27c] corresponding to the different
q-rotations . We will center on the first quadrant,
since the series of angles will repeat itself starting
from every neat rotation . Thus we find a sequence
of angles between 0 and tt/2 such that every
interval (ai, ai+1] represents a different q-rotation .

For each grid, we only consider the vertices
belonging to the most external level of cells . This
forces us to take into account every grid Rn
contained in R with lower order. It means that,
when N is odd, n is odd and ranges from 3 to N,



and when N is even, n is also even and ranges from
2 to N.

Given a grid Rn, we have to find all the rotation
angles that make any of these rotated vertices lay
on a straight line belonging to the grid .

In order to find these angles, it is useful to take a
reference in polar coordinates, which express the
vertices as :

(~k 2 +i2 )

	

and (Vk 2 +i2 ) ,

i

	

k
with p = arctgk and p ; = arctg

f

where, if n is odd we have k = n and i is a natural
odd number varying from 1 to k. If n is odd we
have k = n/2 and i is a natural (not necessarily odd
or even) number varying from 0 to k.

It should be noticed that when rotating a vertex, in,

within the first quadrant, if it falls onto the vertical
line x = z, then the vertex with the same module
and complementary argument, m(,,2)_p, falls onto
the horizontal line y = z. In other words, it can be
proved that, if ga, (in,) meets the line x = z, then
g~(m(,7)-p) meets the line y = z. Because of this
property, we can focus our study on the
intersections between vertices belonging to the first
quadrant and vertical straight lines, in order to find
the border angles between two classes (q-rotations) .

That leads us to the necessity of solving the system
for x and a:

x=z

x= k 2 +i2 -cos((3 i +a)

andwhere i and k vary as we have specified before,
z is an integer number ranging: when n is odd, from
the ceiling of -nf2- to the floor of of , taking only
the odd values ; and when n is even, from the
ceiling of -nom/2 to the floor of nvr2-/2, taking
both the odd and the even values .

For each set of values the solutions are found :

z	i
a = arccos~

	

-arctg

	

;
k2 +i2 )

	

k
1

z
and

	

a'= arcco~
k 2 +i2 /'

k
- arctg-

i

These values, after being ordered, will give us the
partition of the interval (0, 7E/2] associated to the
different q-rotations (equivalence classes) .

6 Algorithm

Our software tool accepts qualitative images
-images assumed to have been partitioned in cells
and qualitatively encoded by another program-,
performs the direct fusion and gives the similarity
index. Whenever the user indicates that this index
is too low, and automatically when it is negative,
our program tries every significantly different
rotation and computes the i -fusion again
producing a similarity index and a combined
image.

The first thing the user must specify is the
granularity level, that is, the desired number of
cells, and then he/she is asked to introduce the
qualitative visual data of two images . Because of
the possibility of varying the resolution level, every
data structure in the program is dynamic.

The fusion algorithm is simple, and goes no further
than a cell by cell implementation of the binary
operator that refines information, also recording
each coincidence and contradiction to compute the
similarity index. The difficulty appears in the
'r-fusion operator, when we need to test every
possible rotation ; theory gives us an easy way to
compute the border angles, but we still have not
found the relation between each angle partition and
the resulting image. Meanwhile, our algorithm
performs a numeric rotation by selecting an
intermediate angle within each partition and
geometrically finding the projection of our rotated
grid onto a static one. This last point, finding out
how many and which cells of the static grid are
"stained" by each rotated cell, is the
computationally most expensive .

A first solution would have been implementing a
classical graphic algorithm testing within which



static cells every border of the rotated cells falls,
but this process is obviously slow and complex.
The chosen method takes advantage of the
convexity and geometrical simplicity of a squared
form, when we are working within a Cartesian
space, and it is based on the fact that the center and
corners of a square cover nearly all the possible
"stained" static cells, and the special case when a
cell is only stained by a segment of the rotated
square can be solved with a complementary view .
This last approach finds which vertices of the static
grid lie within the rotated squared cell (that is why
we call it the complementary point of view); there
are just three possible cases: either no vertices
found, which means that every cell has already
been marked, or only a vertex is found, meaning
that the four neighboring cells will result stained, or
two vertices are found and six cells will be marked,
in vertical or horizontal direction. This quest for
vertices is the most difficult point in the whole
algorithm, and maybe it is worth a second look :

Fig. 4

	

Fig. 5

Fig. 6

	

Fig. 7

Fig. 8

	

Fig. 9

To determine how many vertices lie under a
particular transformed cell, we first take the
coordinates of its four corners and convert them
into rows and columns, by taking the integer part of
those coordinates divided by the cells length From

them we select the maximum distance in each
direction and distinguish the four cases reflected in :
Fig 4) both distances are 0, no vertex can be
contained; Fig. 5) and Fig. 6) both distances are 1,
one vertex must be contained, and four cells are to
be marked; Fig. 7) both distances are equal to 2,
again no vertex of the static grid is found within the
rotated cell ; Fig. 8) and Fig. 9) distance equal to 2
in one direction and to 1 in the other, two vertices,
six cells to be marked, interpolating in the direction
of maximum distance . If we have stored the values
of coordinates that produced the maximum
distance, their combination gives us the cells to
mark .

The outline ofthe basic algorithm can be given this
way:

Input ofthe granularity level.
Input oftwo q-images.
Direct fusion of both images, producing a

new image anda similarity index.
Determination of the least informative

image.
For every significant angle at this

resolution

astatic grid

For every "-" cell
Rotate the cell
Mark the "stained" cells on

End for
For every "?"cell

Rotate the cell
Mark the "stained" cells on

a static grid
End for
For every

	

cell
Rotate the cell
Mark the "stained"

cells on a static grid
End for

Dynamic fusion of both images,
producing anew image and a similarity index.

End for

The result supplied by our algorithm is twofold: the
collection of all possible fused images for every
rotation angle and their associated similarity
indices. This last output really expresses the
confidence we can put on the fused image. If we
think of our explorer robot, we can work with the



resulting map whenever the similarity index is
positive, but our confidence increases as the index
does, until we are sure, when it reaches its
maximum value of 1, that the two maps are
indistinguishable at the fixed resolution level .
When we try to recognize only whether two objects
have equal shapes, the fused image holds no
interest and only the similarity index will guide us .

7 Conclusions. On Going Research

In this work we have shown the interest of applying
qualitative techniques to reduce the complexity of
visual data treatment . This complexity comes from
the overflowing low-level information they contain,
and our first step was to study a higher level, more
abstract, description of the data.

Then we wondered about when two images,
encoded this way, could be considered equal, and
when they could be considered at least not
contradictory. Both cases were studied and an
index of similarity was designed .

We also admitted incomplete qualitative images,
that is, images containing unexplored cells, and we
tried to combine two of them into a new one.
When operating with two complete images, the
result only tells us if they correspond or not to the
same reality, but if they contain unexplored cells
their combination results in a more complete
image. This way we aggregate information, and
this process can be repeated time after time .

If we only use the test for two images to represent
the same reality, a direct application is item
classification, implemented by trying to fuse the
unknown object with the ideal standard form .
Many industrial processes need to recognize items,
for instance their products, in order to control their
quality, and also many administrative processes
need to recognize when one item has the
appropriate form . Of course at present there exist
other techniques can solve this problem, but they
need to know in advance the object to be
recognized, and extract its invariant spatial
properties . Our tool can work automatically by
means only ofthe visual real-time acquired data.
On the other hand, we can start with incomplete
images (unexplored cells) and get a more refined

combination of them. Of course, the more obvious
application in this field is the fusion of two
incomplete maps, obtained from incomplete and
independent explorations of some scenery. We can
think of two robotic explorers that return to their
base where our tool tries to combine the
information they provide. This is the application
we mainly think of, and that is why we give priority
to the presence of some object within a cell,
because an empty cell means that our explorer is
able to cross it freely, and a full cell means that it is
not.

There are many fields open to future research .
Among them we can remark: the interest in trying a
more complex qualitative set -orders of magnitude-
to model more complex decision processes, where
some risks can be taken; the possibility of a
complete description of a qualitative geometry,
taking into account any transformation ; and, to
conclude this brief list, the further study of the
similarity index, how it should be formalized, its
evolution as information is aggregated and how to
correctly use it in real problems . . .

Turning our look to practical applications, we are
at the present working in a quality control system .
Images of industrial manufactured items are taken,
and they have to be compared with an "ideal
image", in order to be either accepted of rejected .
Of course, the possibility exists to get the image of
a rotated item, and classical techniques fail to cope
with this situation . Our tool simply gets the image
and binarizes it according to a grid that fixes the
granularity level; then it tries every possible
rotation and answers the question of a possible
identity between the inspected an the ideal item .
Whenever this answer is no (negative similarity
index), the possibility of being equal does not exist,
but when the answer is yes (positive index), it just
means "maybe", and in the case of a returned value
near one, it means "the two images are equal at this
resolution level" . Still if the user is reluctant to
accept this conclusion, he/she can increase the
resolution level (number of cells) and test again the
possible identity .
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