
Introducing Default Models to Diagnose and Monitoring
Dynamic Processes

Abstract: In this paper we describe an approach for
introducing default models in the task of diagnosis.
V6'e are interested in diagnosis systems using a model
of correct behavior of dynamic processes, and based
on a causal representation . The objective is to allow
these systems to continue monitoring after localizing
faulty parts.

I Introduction
Diagnosis Systems operating with only a model of
correct behavior of processes, are unable to continue
their task after default components localisation . How-
ever, Large-scale mechanisms such as chemical plants,
space vehicles, and the human body have many self-
regulatory systems, and are expected to continue func-
tioning even in the presence of numerous faults .
Diagnosis thus, must blends smoothly into monitor-

ing, where the task is to maintain an accurate model
of a mechanism and its state, even while faults occur
and are repaired [Kuipers 93] .
A number of systems have been developed that deal

with diagnosing and monitoring continuous dynamic
processes: MIMIC [Dvorak 89], DOC [Kapadia &
al .94] .
Unlike these systems, our approach addresses the

issue of introducing default models as an extension
of some existing diagnosis systems that make use of
only a model of correct behavior . Our contribution
consists of an explanations module, which is coupled
with a diagnosis engine . An overview of the resulting
system is provided in Figure 1 .
To perform the monitoring task, the explanation

module has to

1 . associate a faulty mode to the anomalous compo-
nent ;

2. give an information about the (quantitative) im-
portance of the fault ;

3. allow to continue a safe operation of the process
by simulating the faulty behavior .

'in the sense of giving more details about the fault
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Figure l : From Diagnosis to Monitoring

In this paper, we apply the above approach to a
model-based diagnosis system for dynamic processes:
PRIMACAUSE [Tomasena & al . 93] . Section 2 de-
scribes briefly PRIMACAUSE and its main tasks,
while section 3 introduces default models.
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Diagnosis System
There are two steps during the diagnosis task

" The detection of a malfunction, based on a com-
parison of measured and simulated evolutions to
detect malfunctions as early as possible

" The search of the primary causes of the malfunc-
tion, represented by a set of faulty components .

To reduce the algorithm's complexity [Gallants &
al . 89], [Mozetic & Holzbaur 91] in the search for
primary causes, PRIMACAUSE uses hierarchical di-
agnosis based on the integration of two levels of ab-
straction (quantitative and qualitative) .
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Modeling and causal reasoning

Causal reasoning is a central concept in Diagnosis,
since it is used in the backward search to indicate what
could have caused the malfunction.
The physical system is represented by a set of inter-

connected components (variables), and a set of func-
tions called propagation functions, representing the
cause-effect relations between the variables.
- The propagation functions associated with the
causality links represent the way in which a change



" monitoring the process by maintaining an accurate
model .
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Introducing Behavioral Modes
Introducing behavioral modes in diagnosis system
dealing with only a model of correct behavior is done
through two phases
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Off-line Phase
This phase is performed with the contribution of the
process engineer, when the process is still off-line . The
goal is to give answers to two questions

" How to represent faults ?

" and, How to establish a relation between the fault
and the faulty component ?

The first question addresses the task of modeling,
while the second tries to introduce causality to deal
with the representation used by the target systems.
The process engineer use two kinds of knowledge:

" experience acquired from similar processes ;

" chemical, hydraulic . . . laws .

Modeling
Let us see the example of leak (or blockage) occurred
on Tank-1 . We can "intuitively" Consider it as an
outlet, as shown in Figure 7.

IF

Figure 7: Representing leak and blockage

The new causal graph is obtained by associating a
node to the fault (leak or blockage) and arcs between
fault and component as shown in Figure 8.
In the case of leak (if L represents its outlet), we can

establish that:
AL = f4 (OWL) = a .OWL ; (Step function) with

"a" a coefficient representing the valve open impor-
tance .
AWLL = f5(AL) = -b.OL .time ; (Rampfunction)

with "b" a coefficient representing the influence of leak
flow on the tank level.
The AWLL influence is added to the other influ-

ences coming to WL.
The sign (-) means that the leak tend to lower the

tank level.

Figure 8 : Faults on the causal graph

Coefficients "a" and "b", will be identified analyti-
cally later on the On-line phase. They will allow us to
quantify the importance of the fault and to simulate
the faulty model.

In the general case a default is characterised by

a variable (node) ;

" propagation functions (arcs) ;

" type of functions (step, ramp) ;

" general expression of functions (with unknown co-
efficient values) .

Construction of decision trees
In order to reduce the algorithmic complexity of the
candidate generation, all the possible faults which may
occur on a given component (variable) are classified
in a decision tree whose root represent the "qualita-
tive" foreseeable discrepancy between simulated and
measured values ofthe variable, and whose leaves rep-
resent faults . A given fault Pj is classified according
to its effect on the component when it may occurs .
Figure 9 shows the tree related to variable y.

Figure 9 : Construction of a decision tree
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On-line Phase
The second phase of the module is the dynamic one,
it consists in four main tasks

1 . Candidate generation;

2 . Coefficient instantiation ;



3 . Candidate discrimination;

4. Simulation of the accurate model .

Their sequence in time is related to three events as

shown in Figure 10 :
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Figure 10 : Sequence of On-line tasks

Candidate generation

The qualitative value (sign) of the discrepancy at the
Primary-Cause variable is the key to prune the search
space of candidate hypotheses . The result of using the
decision tree is a set of hypotheses which may explain
the discrepancy.

Coefficient instantiation

For each hypothesis generated by the decision tree,
we try to instantiate its model scheme by computing
(identifying) the coefficient values . This can be ob-
tained by performing a counterbalance to the discrep-
ancy between simulated and measured values . Thus,
the leak variable evolution is, in fact, the evolution of
the entity : WLsim - WL,,,, .
Figure 11 shows the evolution of variables related to

the tank in presence of a leak that occurs at time t2,
and that is detected at time t3 .
Let us show how the explanation module computes

the coefficients "a" and "b" .
We have already established that : OLtd =

a.AWLtd ; so the coefficient "a" is given by the fol-
lowing expression :

_ ALtd
a OWLtd

OWLtd = (WLsim)td - (WLsim)td-1-

The expression of OLtd follows from:

AL, = (WLsim - WLmes)tl ;

OL2 = (WLsim-WLmes)t2-(WLsim -WLmes )t l ; . . . etc.

ALtd = (WLsim-WLmes)td-(WLsim-WLmes)td-1
where td is the fault detection time .
Likewise

01

(AWLtd)L = -b.ALtd-1 ;

so "b" is given by:

t
0

FIF

Figure 11 : Evolution of some variables in presence of
a Leak

b = -0(WLtd)L
OLt d- 1

with

(OWLtd)L = (OWLsim)td-(OWL,)td = [(WLsim)td-(WL;

and

OLtd-1 = (WLsitn-WL�,es)td-1-(WLsim-WLmes)td-2

Candidate discrimination

In this step, we obtain additional information in order
to discriminate among multiple candidates (faults) ;
so the result is the hypothesis that makes the best
explanation on what happened in the process.
A local simulation is used to determine the new devi-

ation index of each candidate Dl{,} (WL), which rep-
resent the DI(WL) after introducing the fault in the
causal graph .
Three cases may arise

* c explains DI(WL) if Dl{,}(WL) = 0 ;

c does not explain DI(WL) if jDI{,}(WL)j
IDI(WL)I ;

c
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An explanation degree

DI{,}(WL)
PE (DI{~}(WL), DI(WL)) = max(0, 1-I

DI(WL)

	

~)

is determined at each step until we obtain a
significant2 advantage of one candidate.

Unknown faults :
We are in presence of an unknown fault, if no can-

didate explains the abnormal behavior of the process.

Simulation of the accurate model

We have now to maintain an accurate model of the
process behavior by simulating the kept candidate.
PRIMACAUSE is transformed to make simulation

on a new causal graph obtained by adding the fault
models (nodes, arcs and propagation functions) .
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General Structure of the module

To summarise our approach, Figure 12 gives the gen-
eral structure scheme of the module : Off-line phase
is a knowledge acquisition phase whereas the On-line
phase treats data coming from the diagnosis module .

Knowledge Acquisition

Hydraulic, chemical

. . . laws

Experience

Primary cause

Nature & Importance
of the fault

Accurate behavior

of the process

Knowledge-Base

Causal graph

Heuristic Knowledge

Decision trces

Processing

Candidate

genereuan

f
coefficients

instantiation

Candidate

discrimination

Simulation of an
accurate model

Figure 12 : General structure of the Explanation Mod-
ule

2 We do not try to define the word "significant"
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Related Work
Our work can be compared to MIMIC [Dvorak 89], as
it uses fault models to continue monitoring and safe
operation in the presence of faults . It tracks in paral-
lel different behavioral modes, and thus the diagnosis
approach relies completely on the anomalous modes.
In our approach, we operate downstream the diag-
nosis module, which is able to isolate the anomalous
component, even if modes of anomalous behavior are
absent .
There are other works on operative diagnosis and

monitoring : DRAPHYS [Abbott 90], PREMON
[Doyle & al .], which are similar in objective with our
work, but differ substantially in several aspects, espe-
cially the utilization of a single fault-free model.
More recent works are those on QHI [Catino & Un-

gar 95] and DOC [Kapadia & al . 94]. QHI (Qualita-
tive Hazard Identification) matches a library of gen-
eral faults such as leaks, brocken filters, blocked pipes
and controller failures against the physical description
of the plant. Faults may perturb variables in the origi-
nal design model or mayrequire building anew model .
This is close to our approach of extending the original
causal graph to fault models . However, in QHI, fault
models are generated using QPC (Qualitative Process
Compiler) [Farquhar 93] and simulated using QSIM
[Kuipers 86] . We can also refer to DOC (Diagnoser Of
Continuous valued systems) based on combined qual-
itative and quantitative analysis of an analytic con-
straint equation model of the process. It extends the
parameter-based diagnosis techniques [Gallanti & al .
89], and apply them to component-based diagnosis.
DOC performs a consistency-based dignosis and uses
prior probabilities of component failures to generate a
set ofcandidates that explains the observed deviations
[Biswas & al . 94] .

5 Conclusion
The aim of our work is to deal with default models
in the context of diagnosing dynamic processes. We
have described a general approach to extend diagnosis
systems , based on a correct behavior of the process,
and we have shown that it is possible to quantify pa-
rameters related to a default . This enable diagnosis
systems to get more details about the process devia-
tion, and track the default model.
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