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Abstract: Boundary value problems specifying how
external influences on dynamic systems vary over time
greatly extend the scope of qualitative reasoning tech-
niques, enabling them to achieve a much wider appli-
cability. This paper discusses conceptual and practical
aspects that underlie the problem of handling bound-
ary conditions in SQPC, a sound program for model-
ing and simulating dynamic systems in the presence
of incomplete knowledge. Issues concerning the on-
tology (actions vs. measurements), the temporal scale
(instantaneous vs. extended changes), the impact of
discontinuity on model structure and the consequences
of incompleteness in predictions are discussed. On the
basis of the experimentation done so far it is claimed
that given the generality of the assumptions underly-
ing the techniques presented in the paper, and given
the relatively low computational cost that is often re-
quired to solve a boundary value problem, they are
viable and can be utilized to widen the applicability
spectrum of Qualitative Reasoning.

1 Introduction

Though qualitative simulation [Kuipers, 1994; Bo-
brow, 1993] plays a crucial role in many Qualitative
Reasoning (QR) tasks (such as control, diagnosis or
design), few QR tools are able to deal with boundary
conditions which specify how external influences on
systems vary over time. In fact, except for a few cases
(like [Forbus, 1989]), no qualitative simulator takes as
input a description of how certain variables evolve over
time, and lets them affect the simulation. These tools
solve more or less sophisticated initial value problems
where initial conditions of autonomous systems are
given. Dealing with non-autonomous systems greatly
extends the scope of QR techniques, enabling them to
achieve a much wider applicability. In fact, they could
encompass capabilities such as:

e simulating, monitoring and diagnosing systems in
realistic situations, where they are affected by
time—varying controls and environmental parame-
ters;
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e evaluating the effects of control laws (i.e. se-
quences of actions) applied to specific systems in
dynamically changing situations;

e evaluating consistency of models of dynamic sys-
tems with respect to sequences of measurements
of observable variables (for data interpretation or
theory validation).

Consider for example the problem of water supply
control. A lake has a dam with floodgates that can be
opened or closed to regulate the water flow through
power generating turbines, the water level (stage) of
the lake, and the downstream flow. The goal of a con-
troller is to provide adequate reservoir capacity for
power generation, consumption, industrial use, and
recreation, as well as downstream flow. In exceptional
circumstances, the controller must also work to mini-
mize or avoid flooding both above and below the dam.
This task is both difficult and vitally important to the
residents of surrounding areas. Careful evaluation of
the effect of actions in critical and dynamically chang-
ing situations is crucial for decision making, and sound
modeling and simulation tools could be extremely use-
ful to support this activity. They could also be used to
evaluate empirically derived models and parameters,
or to forewarn of undesired possible future situations.
This domain is challenging for existing approaches to
modeling and simulation, for it poses many require-
ments. Several forms of incomplete information ap-
pear in this domain: for example, the precise shape
and capacity of lakes or reservoirs is rarely known;
the outflow from opening a dam’s floodgates is only
crudely measured; empirical data on the level/flow-
rate curve for rivers becomes less and less accurate
when flood conditions approach. Nonetheless, rough
bounds on quantities are usually accurate enough to
support decision. Pure qualitative reasoning tech-
niques do not exploit the partial information available
and consequently provide too weak predictions. Tradi-
tional numeric methods require much more precise in-
formation than is available, forcing modelers to make
assumptions which may invalidate results and which
may be difficult to evaluate. New models need to be



constructed to cope with changes in relevant entities,
operating modes, and modeling assumptions. Accu-
rate results (instead of approximate ones) are needed
to perform an adequate risk evaluation and forewarn-
ing.

Considering boundary conditions in qualitative sim-
ulation poses a number of basic questions that are
independent from the specific framework adopted:

e Ontology: which ontology better suits the aim?
Some approaches already known in literature ex-
ploit the concept of action, while others don’t rep-
resent actions at all but focus on measurements.
What is the relationship between the two con-
cepts?

o Temporal scale: shall instantaneous oreztended
actions be allowed? The former may be adequate
in certain situations but they introduce disconti-
nuities difficult to handle, while the latter may
impose a too detailed analysis.

e Model structure: how do boundary conditions af-
fect the model? Changes in boundary conditions
may call for changes in the model to cope with
varying modeling assumptions. Do these changes
require the same mechanism for revising the model
as the ones required when operating regions are
crossed? How do these changes interact with the
chosen temporal scale?

e Incomplete knowledge and data: how will incom-
pleteness in models and incompleteness in bound-
ary conditions affect predictions? What is the sen-
sitivity of predictions with respect to such kinds
of incompleteness? What is needed to control the
additional ambiguity of predictions caused by con-
sidering boundary conditions? How does qualita-
tive time used in simulation correspond to “real”
time used in observing and acting upon the sys-
tem?

This paper discusses the main conceptual and prac-
tical aspects that underlie the problem of handling
boundary conditions in SQPC (Semi-Quantitative
Physics Compiler), an implemented program fulfilling
the above mentioned requirements for modeling and
simulating dynamic systems.

2 Semi—Quantitative Physics Com-

piler

SQPC [Farquhar and Brajnik, 1995] performs self-
monitoring simulations of incompletely known, dy-
namic, piecewise—continuous systems. It monitors the
simulation in order to detect violations of model as-
sumptions. When this happens it modifies the model
and resumes the simulation.

SQPC is built on top of the QSIM qualitative simula-
tor [Kuipers, 1986; Kuipers, 1994] and extends QPC
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[Farquhar, 1994]. The input to SQPC is a domain
theory and scenario specified in the SQPC modeling
language. A domain theory consists of a set of quanti-
fied definitions, called model fragments, each of which
describes some aspect of the domain, such as physical
laws (e.g. mass conservation), processes (e.g. liquid
flows), devices (e.g. pumps), and objects (e.g. con-
tainers). Each definition applies whenever there ex-
ists a set of participants for whom the stated condi-
tions are satisfied. SQPC smoothly integrates sym-
bolic with numeric information, and is able to pro-
vide useful results even when only part of the knowl-
edge is numerically bounded. The domain theory
includes symbolic or numeric magnitudes which rep-
resent specific real numbers known with uncertainty
(numeric magnitudes constrain such numbers to lie
within given ranges); dimensional information; enve-
lope schemas (they state the conditions under which
a specific monotonic function over a tuple of variables
is bounded by a pair of numeric functions) and tabu-
lar functions (numeric functions defined automatically
by interpolating multi—dimensional data tables). The
specific system or situation being modeled is described
by the scenario definition, which lists objects that are
of interest, some of the initial conditions and relations
that hold throughout the scenario.

SQPC employs (inheriting it from QPC) a hybrid ar-
chitecture in which the model building portion is sep-
arated from the simulator. The domain theory and
scenario induce a set of logical axioms. SQPC uses
this database of logical axioms to infer the set of model
fragment instances that apply during the time covered
by the database (called the active model fragments).
Inferences performed by SQPC concern structural re-
lationships between objects declared in the scenario,
and the computation of the transitive closure of or-
der relationships between quantities. A database with
a complete set of model fragment instances defines
an initial value problem which is given to QSIM in
terms of equations and initial conditions. If any of
the predicted behaviors crosses the operating region
conditions the process is repeated. A new database
is constructed to describe the system as it crosses the
boundaries of the current model, then another com-
plete set of active model fragments is determined and
another simulation takes place.

The output of SQPC is a directed rooted graph,
whose nodes are either databases or qualitative states.
The root of the graph is the initial database, and a
possible edge in the graph may: (i) link a database
to a refined database (obtained by adding more facts,
either derived through inference rules or assumed by
SQPC when ambiguous situations are to be solved);
(ii) link a complete database to a state (which is one
of the possible initial states for the only model deriv-
able from the database); (iii) link a state to a succes-
sor state (this link is computed by QSIM); and (iv)



link a state to a database (the last state of a be-
havior that has crossed the operating region to the
database which describes the situation just after the
transition occurred). Each path from the root to a
leaf describes one possible temporal evolution of the
system being modeled and each model in such paths
identifies a distinct operating region of the system.
SQPC is proven to construct all possible sequences of
initial value problems that are entailed by the domain
theory and scenario. Thanks to QSIM correctness, it
produces also all possible trajectories.

3 Boundary conditions and automated
modeling

The problem of performing a self-monitored simula-

tion is extended by providing as input also a stream

of measurements and by requiring that the output

consists of all possible trajectories that are compati-

ble with measurements.

A measurement is a time-tagged mapping of values

to a set of variables, which can be either ezogenous,
(i.e. representing quantities that can be affected by ex-
ternal influences), or non-ezogenous. The stream of
measurements considered in a simulation must satisfy
the following two assumptions: all critical points of
all exogenous variables should be measured (sampling
assumption); and measurements should be chronolog-
ically ordered.
For generality, we don’t require other properties on
measurements. In particular, they need not include
all variables of the system; they need not concern each
time the same set of variables; they need not be the
result of a periodic sampling process, and their time
tags and measured values may be expressed as inter-
vals over the real numbers to cope with imprecise data
and noise processing.

The following interdependent standpoints provide a
rationale for these assumptions and are tentative an-
swers to some of the questions raised in the introduc-
tion.

Ontology. An action is an activity done by some
agent affecting some exogenous variable, while a
change in such variables is the effect of an action. We
prefer to explicitly represent changes and introduce
only implicitly actions because appropriate treatment
of changes is needed even in case actions are explicitly
represented. Explicit representation of actions (like
the one adopted in [Forbus, 1989]) could be useful in
applications requiring the generation of control laws
(i.e. deciding when to apply a certain action), an is-
sue not tackled in this paper.

Measurements may or may not yield evidence of
some action: they do it if they concern exogenous vari-
ables (the measured value may reveal that a change
occurred or is occurring); they don’t if they concern
only non-exogenous ones.
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Temporal Scales. We envision two kinds of action:
(hence of changes): those with a finite duration (ez
tended changes) and those occurring instantaneously
(instantaneous changes). Both are worth considering
instantaneous changes may be used when the time-
scale of the action is much smaller than the system:
one and limited knowledge is available for modeling
the transient during which the action takes place, o1
the transient is not interesting enough. For exam-
ple, given a medium-term analysis (days or weeks), an
in—depth investigation of the transient occurring on a
‘dam-lake system during a control action of opening
a gate is uninteresting. Such a change can therefore
be conceptualized as instantaneous. Similarly if no
knowledge is at hand for modeling the dynamics dur-
ing the transient, the effects of operating an electrical
switch can be conceptualized again as instantaneous.
On the other hand, extended changes could be prof-
itably used when the actual duration is known and
predictions of events occurring during the action are
wanted; for example, to predict what actually hap-
pens inside a servo—controlled turbine when an oper-
ator changes the power level requested to the turbine.

While actions (and changes) may be instantaneous
or not, measurements are assumed to be instantaneous
events. The sampling assumption implies that the be-
ginning and end of an extended change are marked by
measurements, whereas the occurrence of an instan-
taneous change is marked by a single measurement.
Therefore, during a segment (the time interval be-
tween two consecutive measurements of the same vari-
able) an exogenous variable may be either constant or
strictly monotonic. Of course, some knowledge is re-
quired to correctly interpret a measurement (whether
it marks an instantaneous change or not) since by it-
self a measurement does not provide this information.
This knowledge derives (in the proposed framework)
from properties of measured exogenous variables de-
clared in the scenario description. Such variables may
be subject either to extended changes or to instanta-
neous ones, but not both.

Continuity. Continuity is a fundamental assump-
tion for qualitative reasoning techniques used to con-
strain the possible intra/inter-model changes that can
occur in a system. In order to manage instantaneous
changes, we assume that:

1. state variables (variables whose time derivative is
included in the model) are piecewise-C' (i.e. con-
tinuous anywhere, and differentiable everywhere
but in a set of isolated points);

non-state variables are at least piecewise~C° (i.e.
continuous anywhere but in a set of isolated
points);



If an instantaneous change occurs on exogenous vari-
ables A = {V;...V,}, in order to correctly deal with
the transient, one needs to determine how the discon-
tinuity propagates from A onto other variables of the
model. Fortunately, the abovementioned continuity
assumptions suffice to support a sound and effective
criterion (termed continuity suspension) for identify-
ing all the variables that are potentially affected by
the discontinuity of variables in A.

Given a model M, let us say that a variable Z is
totally dependent on a set of variables A iff the model
includes a non-dynamic, continuous functional rela-
tion R(Xa,..-Xi, Z, Xi41,...Xn) with n > 1 such
that Vi:(X; € A or X; is totally dependent on A).
For example, if the model includes the con-
straint (M (+ +)) X Y Z) then X is to-
tally dependent on {Y,Z}. Furthermore, let
TD(A) = {X|X is totally dependent on A}.

Let £ be the set of exogenous variables and & the
set of state variables of M. Then define PD, (the
set of variables that are potentially affected by the
discontinuity of variables in A) as the maximum set
of variables of M that satisfies:

1. A € PDa (since variables in A are affected by
the discontinuity);

2. SNPDA = 0 (by continuity assumption, PDx
cannot contain any state variable);

3. ENPDa = A (by the sampling and continuity as-
sumptions, unmeasured exogenous variables must
be continuous);

4. TDISUE — A)NPDa = @ (by definition of to-
tal dependency, if Z totally depends on a set of
necessarily continuous variables, then Z must be
continuous too and cannot belong to PDa).

Continuity suspension handles
discontinuous changes of variables in A by comput-
ing the set PDy so that, during a transient, variables
in PDp are unconstrained and can therefore get any
new value, whereas those not in PD, will keep their
previous value.

Correctness of continuity suspension is easy to prove:
if PDp were equal to the set of all the variables in the
model, then no restriction would be in effect during
the transient, yielding all possible value changes, in-
cluding the “true” ones. Since conditions 2, 3 and
4 would remove from PDp only necessarily continu-
ous variables, no variable affected by A will be ever
removed from PDa.

Unfortunately, continuity suspension is not com-
plete, for the set PDa may include also variables that
are not affected by A (for example, if y = %—‘} belongs
to the model and y ¢ TD(S U £), then y € PDa).
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Rules 1-4 are not sufficiently strong to exclude cer-
tain variables from PDpa. They exclude only vari-
ables that are necessarily continuous, leaving in PDa
those that are necessarily discontinuous (like those in
A) plus those that are possibly discontinuous (like y).
On the other hand, since PD, is determined on the
basis of the model holding before the transient takes
place, and nothing is known about what happens dur-
ing the transient, soundness demands that only nec-
essarily continuous variables are removed from PDj.

Non-exogenous variables can be measured too, but
unlike exogenous ones their behavior during a segment
is not known in advance and they do not introduce dis-
continuities. Such measurements greatly refine predic-
tions (by restricting predicted ranges or by rejecting
predictions that are inconsistent with measured val-
ues), if they simultaneously involve several variables.

Model structure. Actions may affect the model
structure in two ways.

First, they may affect the set of modeling assump-
tions, calling for a revision of model structure. Model
revision may occur either during an extended change
(e.g. when a valve is being opened the flow regime of
the fluid may change from laminar to turbulent), or
during the transient of a discontinuous change (e.g.
if opening a valve is an instantaneous action, then
a discontinuous change propagates onto other vari-
ables, and new models need to be defined to accu-
rately cover the possible consequences of such a quick
action). In the former case no discontinuity is intro-
duced, reducing model revision to the “normal” re-
vision triggered by the crossing of an operating re-
gion (in the previously mentioned example, the region
being crossed refers to the variable Reynolds—number
becoming greater than a certain threshold). In the lat-
ter case (model revision occurring during an instanta-
neous change) the discontinuity in PD, weakens the
process of determining the next model(s): referring
to the previous example, the discontinuous change in
valve section affects other variables (like fluid flow,
speed, etc.) whose “next” value will not be con-
strained by continuity, making it difficult to ascertain
whether the flow, after the change, will still be laminar
or will became turbulent. In fact, though conceptu-
ally being determined by state variables, variables in
PDa — A usually cannot be given a unique new value
if continuity is relaxed because of the inherent ambi-
guity of the qualitative algebra of signs.

Second, two modeling decisions may be inconsistent.
The decision of determining the set of exogenous vari-
ables and the decision of determining the set of state
variables may lead to two kinds of conflicts: (i) if
some state variables are treated as exogenous the re-
sulting model may be overconstrained. Analytically
this would lead, in general, to a badly defined model
whereas qualitatively this is not necessarily true, since



the incomplete knowledge used in the model and state
may supply additional degrees of freedom; (ii) state
variables may get values which are incompatible with
those measured for exogenous variables. Such discrep-
ancies are an indication that the model is clearly a
wrong description of the system under study. Both
kinds of conflicts are easily identified, though their
automatic resolution is far from being trivial since it
requires a modeling choice.

4 Semi-Quantitative Boundary Prob-
lems

In order to perform a simulation guided by measure-
ments the user has to declare which are the exoge-
nous variables, which are their properties and how to
acquire their measurements. This is done in the sce-
nario declaration form (see figure 1). The property
of being piecewise—constant or piecewise-monotonic
is invariant in a scenario.

Including a new measurement in a simulation may
lead to a model revision and/or a state change. SQPC
handles each measurement as a transition (called
measurement-transition, or M-transition) between
two models. When building a new database SQPC
adds measured values in the database and recognizes
ongoing actions by looking ahead in the measure-
ment stream for each piecewise-monotonic variable!.
The new model will include appropriate constraints:
constant for piecewise-constant variables; constant,
increasing or decreasing for piecewise-monotonic
ones, according to the difference of measured values
at the ends of the segment.

Two decisions are critical when performing a
measurement-guided simulation: realizing when an
M-transition occurs and deciding how to revise the
model and its initial state.

Recognizing M-transitions. An M-transition
occurs when simulation time T, (the time of the last
state being simulated, S) and the time T, of the
next measurement are the same. Unfortunately, un-
less predictions are very precise, this comparison is
usually ambiguous, for time ranges might be overlap-
ping. Even if measured values were extremely precise
(i.e. singleton ranges), as long as predicted ranges for
time have positive length, they would be a source of
ambiguity. In the worst case the three possible order-
ings between T, and T, need to be generated.

Two situations may occur when deciding whether to
fire an M-transition: the measurement is taken while
some action is ongoing (i.e. some exogenous variable
is moving towards its final — with respect to the on-
going action — value) or not. In the former case,

!The depth of such a lookahead is user-defined, and may
range from the next absolute measurement to the measurement
ending the next segment of each piecewise-monotonic variable.

26

information of the value of such variables in state S
can be used to reduce the ambiguity in Ty and T}y, for
example, if such variables reach their values in S and
their values are measured at time T}, then it follows
that Ty = T,,. In the latter case (only piecewise-
constant or non-exogenous variables are involved in
the measurement), or when ambiguity is not com-
pletely resolved, all three possibilities are explicitly
represented (the non-overlap situation is straightfor-
ward, and subsumed by the overlap one):

e Ty, =Ty, and S is indeed the state involved with
the measurement; if T), and T, overlap, Ty, = T,
is asserted in S (usually restricting T).

e T, < T,, which means that the simulation ad-
vanced too much. Since the M-transition check
is performed at each point state, S must be the
first point state whose T is greater than T,,. A
new state S’ is generated by copying it from the
predecessor of S (an interval state) and T, = T},
is asserted on S’. S is discarded.

¢ T, > T, meaning that we should keep on simulat-
ing. No M-transition occurs from S, and T}, > T,
is asserted on S.

Revising the model and generating an initial
state. When a model has to be revised on the basis
of a measurement, the specific details on how it does
change depend on which variables are measured and
if there are ongoing actions. There are four cases:

1. the next measurement includes only non ezoge-
nous variables. In this case the model does not
change, qualitative values inherited by variables
across the M-transition do not change either, and
the only thing that changes is their new ranges
(i.e. measured and predicted ranges are inter-
sected in the initial state);

2. the next measurement includes only piecewise-
constant ezogenous variables A. Continuity sus-
pension is applied across the M-transition by
(i) assigning measured values to variables in A,
(ii) inheriting previous values for variables not
in PDy, and (iii) leaving variables in PDy — A
unspecified. When SQPC constructs a database
from the model and the state originating the M-
transition, the usual SQPC refinement mecha-
nisms (including QSIM’s state completion) will be
used to deduce appropriate initial values for vari-
ables in PDp — A.

3. a set of piecewise-monotonic ezogenous variables
M are affected by some ongoing actions. In or-
der to revise the model, SQPC does a looka-
head searching for the next measured value for



(DefScenario LakeTravis
:entities ((travis :type
(colorado-dn :type
(colorado-up :type
(mansfield :type dams)
(turbine-1  :type mansfield-turbines))
:structural-relations ((flows-into colorado-up travis)

lakes)
rivers)
rivers)

(connects mansfield travis colorado-dnm)

(has-valve mansfield turbine-1)
:landmarks ((top-of-dam
:initial-conditions ((=
(=
(=
(=
:exogenous-variables
(((power turbine-1) :type :pw-constant)
((flow-rate colorado-up) :type :pw-monotonic))
:measurements (((7.0e5 7.01e5) ; sec
((power turbine-1) 10)) ; Mw
((4.32e6 4.33e6) ; sec
((flow-rate colorado-up) (400 420))))

(power turbine-1) 20)
(stage travis) (690.25 €90.3))

(base turbine-1) 564))

)

:variables ((stage travis)) :value 714))

(flow-rate colorado-up) (900 950))

ft

£t
cfs
ft

; cfs

Figure 1: Declaration of exogenous variables in scenario definition (clause :exogenous-variables): (power
turbine-1) is declared piecewise-constant while (flow-rate colorado-up) is piecewise—monotonic. Two mea-
surements are given (clause :measurements): one after approx. 8 days (between 7.0e5 and 7.01e5 sec.) regarding
an instantaneous action which brings (power turbine-1) to the value of 10 Mw, the other regarding an action
lasting approx. 50 days (4.32e6 and 4.33e6 sec.) specifying a decrease of (flow-rate colorado-up) from its
initial value to a value comprised between 400 and 420 cfs.

each variable in M. By comparing their cur-
rent values with measured ones, appropriate time-
dependent constraints (saying that a variable is
either increasing, decreasing or constant on its
next segment) are added to the model (if no next
measurement is available the variable is assumed
constant). The new model is then initialized with
values inherited from the transition state, since all
variables are continuous across the M-transition.

. any combination of previous cases (1, 2 and 3).
This is dealt with by a straightforward combi-
nation of respective operations, since there is no
complex interaction between the effects of simulta-
neous measurements of variables having different
properties.

4.1 Implementation issues

The solution outlined above leads to two pragmatic
issues. First, SQPC performs a model revision step
for each considered measurement. Since model re-
vision steps are expensive in terms of computing re-
sources (empirically, they consume up to 75% of the
time required by a simulation), it is worth investigat-
ing whether this activity can be made more efficient.
Fortunately, it turns out that model revision triggered
by M-transition is limited and well defined. On one
hand, if no piecewise-constant variables are involved
in the measurement, the only part of the model that
is subject to change are the constraints on exogenous
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variables and their quantity spaces. No complex rea-
soning is needed to generate the new model nor its
initial state: both can be directly derived from previ-
ous ones. On the other hand, if the measurement in-
volves some piecewise—constant variables, propagating
their discontinuities onto other variables may cause
ambiguous evaluation of operating conditions of model
fragments, leading to expensive branching in simula-
tion. Even in this case, however, there is a simple
syntactic criterion that can be used to detect whether
the discontinuity affects the set of active model frag-
ments. In fact, if variables in PDa are not used in
conditions of any model fragment, then no model frag-
ment depends on them, the model structure does not
change and continuity suspension suffices to compute
the next state. This criterion has a dramatic effect on
run—times: an activity which requires few minutes is
performed in just a few seconds.

Second, measurements introduce a number of dis-
tinctions that would go unnoticed in a non-guided
simulation.

First, each measured value is normally associated to a
landmark, which needs to be totally ordered in re-
spective quantity space. In general, increasing the
cardinality of quantity spaces increases the number
of distinctions that the qualitative simulator does.
In SQPC landmark creation can be disabled across
M-transitions, reducing the resolution of the out-
put (since variables’ values across M—-transitions are



Head (ft Power (Muw Discharge—rate (cfs
120 8 1,054
120 9 1,150
125 8 1,026
150 30 2,936

Table 1: A portion of the table describing turbine
behavior. E.g., given a head of 120 ft and a power
setting of 8 Mw, the discharge rate is expected to be
1054 cfs.

not represented as landmarks labeled with numeric
ranges), but reducing also the ambiguity that can oc-
cur when suspending continuity.

Second, a three—way branch occurs if simulation time
overlaps with measurement time. One branch is
marked with the assumption T}, = T, where T is the
time of a qualitative event (e.g. some variable reaching
a landmark). Though theoretically sound, the proba-
bility that a measurement — an instantaneous event
— is taken at the same time of an independent, instan-
taneous qualitative event (e.g. measuring a gate open-
ing exactly when the lake stage reaches a threshold) is
infinitesimal. This is another sort of distinctions that
can be neglected without much loss of information.
Third, another sort of ambiguity is caused by distinc-
tions made on order relationships between overlap-
ping ranges of consecutive measurements of an exoge-
nous variable. Special purpose user—defined predicates
can be used by SQPC for comparing two overlapping
ranges in order to reduce ambiguity.

5 An example

We will demonstrate SQPC on a problem regarding
the domain of water supply control. Consider a por-
tion of the system of lakes and rivers to be found in the
scenic hill country surrounding Austin, Texas. The
Colorado river flows into Lake Travis; the Mansfield
Dam on Lake Travis produces hydroelectric power,
controls the level of the lake and the flow into the
downstream leg of the Colorado.

The problem is to evaluate the effects of some actions
in a “what-if” scenario (figure 1). We are given an
initial level for Lake Travis (a value between 690.2 and
690.3 ft), a rough initial inflow from the Colorado river
(between 900 and 950 cfs) and an initial requested rate
of 20 Mw for the power delivered by the hydroelectric
plant. In addition it is known that the input flow is
decreasing — its minimum rate has been estimated
between 400 and 420 cfs after 50 days. The task is to
determine what happens to the lake level and evaluate
the effect of reducing the requested power from 20 to
10 Mw after 8 days.

Several model fragments describe the behavior of
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lakes, rivers, dams, turbine, etc. and envelope
schemas provide numeric bounds on relations between
quantities. Most envelopes are derived from tabu-
lar data resulting from engineering estimates. Ta-
ble 1 partially describes the behavior of turbines in
Mansfield Dam.? In this example, tables are in-
terpolated stepwise by SQPC to provide piecewise—
constant (rather imprecise, but accurate) upper and
lower bounds. Turbines are controlled by servo-
mechanisms designed to generate the desired amount
of power regardless of the hydraulic pressure, which is
determined by the head at the turbine. This is possi-
ble as long as there is sufficient head: when it drops
below the minimum threshold for a given power out-
put then less power is released. Different sets of model
fragments capture these operating modes accurately.

o
"3
1 3]
wu

3 4
1 538

Figure 2: Two behaviors are predicted for the sce-
nario, ending both in quiescent states. Each involves
four models (black squares), two M-transitions and
one transition (from model 2 to 5 for the first behav-
ior, from 1 to 3 for the second one) from a servo—
controlled to a non controlled operating regime of the
turbine

Figure 2 shows the two predicted behaviors. They
are generated because of the time—ambiguity between
the second measurement and the transition of the tur-
bine to a new operating region (the latter event occur-
ring between 9 and 87 days). Figure 3 shows the time
plot of some of the variables in the first behavior. Un-
der the specified boundary conditions the power level
of 20 Mw will surely be maintained until time T1, the
time of the first measurement (8 days); then, though
reducing the requested power, eventually there will be
insufficient hydraulic pressure to supply the requested
power. This will happen for the first behavior (fig-
ure 3) at time T3, between 50 and 76 days (i.e. after
the measurement of the input flow rate is taken). For
the second behavior, not shown, after at least & days
and not beyond 50 days (i.e. before the measurement).
Finally, the lake system reaches equilibrium with the
lake level stabilized between 568 and 588 ft.

Notice the instantaneous change occurring on vari-
able TURBINE-1.POWER at time T1 which affects other
variables like TURBINE-1.DISCHARGE-RATE. Continu-
ity suspension is applied to these variables and their

2The Lower Colorado River Authority has contributed ac-
tual tables of empirical data to the Qualitative Reasoning
Group of the University of Texas for evaluation.
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The first M—transition occurs at time T1 (notice the sudden drop of TURBINE-1.POWER and af-

fected variables TURBINE-1.DISCHARGE-RATE and COLORADO-DN.FLOW-RATE). The second one at T2, where
COLORADO-UP . FLOW-RATE becomes constant. Finally, at T3 a transition occurs to a region where the turbine is
no longer servocontrolled (TRAVIS.STAGE reaches the threshold 688 ft). TURBINE-1.POWER is no longer treated
as an exogenous variables (since the servo-mechanism does not operate any more) and it becomes a dependent
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behavior across the M-transition occurring at T1 is
not constrained. On the other hand, the second M-
transition occurs when the input flow rate reaches
its lowest value and since it involves a piecewise—
monotonic variable, all variables are continuous across
the transition.

If measurements included observations for other
(non-exogenous) variables, then the ambiguity in
times could disappear and certain ranges shrink. For
example, if the second measurement were

((4.32e6 4.33e6)
((flow-rate colorado-up) (400 420))
((stage travis) (688.5 688.7)))

(i.e. of the same input flow-rate, taken at the same
time [4.32e6 4.33e6] but involving in addition the non-
exogenous variable stage travis), then only the first
behavior would be consistent with the observed value
of the lake stage. In fact, only in the first behavior the
ordering of the events “head reaching the minimum
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threshold (when stage= 688 ft)” and “measurement
at time [4.32e6 4.33e6]” is compatible.

5.1 Implementation status

SQPC is fully implemented in Lucid Common Lisp as
an extension to QPC, which in turn uses QSIM. We
are currently experimenting SQPC in the water sup-
ply control domain and in economics. It has been run
on several examples comparable to the one shown in
this paper.

The runtime for this example is around 8 minutes on
a Sun 20. The bulk of this time is spent computing
order relations with interpreted rules during the three
full-fledged modeling steps. Using a special purpose
inequality reasoner, whose implementation is under-
way, will result in a substantial (orders of magnitude)
speedup.



6 Related work

Several efforts facing the issues discussed in this paper
have been reported in literature, but none of them
covers the whole problem or provides viable and sound
solutions.

[Kuipers and Shults, 1994] and [Forbus, 1989] pro-
vide some means to represent external influences on a
system and to implement a guided simulation. Ezpres-
sive Behavior Tree Logic [Kuipers and Shults, 1994] is
a temporal logic (integrated in QSIM) that can be
used to specify, in logical statements, the qualitative
behavior of variables and have QSIM generate a sim-
ulation compatible with them. This method, still un-
der development, is complementary with respect to
the one presented in this paper since it does not han-
dle model revisions caused by external influences nor
quantitative information.

Forbus [Forbus, 1989] explicitly introduces the con-
cept of action, with pre and post—conditions. The
purely qualitative total envisionment that is gener-
ated includes all possible instantiation of known ac-
tions. Forbus allows only instantaneous actions and
adopts heuristic criteria to handle discontinuities. No
provision is made to handle quantitative information,
nor to focus the envisionment process.

One work that centers on discontinuities either caused
by external influences or autonomous, is that of
[Nishida and Doshita, 1987]. Nishida and Doshita de-
scribe two methods for handling discontinuities: (i)
approximating a discontinuous change by a quick con-
tinuous change and (ii) introducing mythical states to
describe how a system is supposed to go through dur-
ing a discontinuous change. The former requires a
complex machinery to compute the limit of the quick
change, whereas the second is based on heuristic cri-
teria for selecting appropriate states.

Many other approaches have been described which
aim to interpret measurements of dynamic systems.
Some of them do not perform a simulation, like
DATMI [DeCoste, 1991] which interprets measure-
ments with respect to a total envisionment. Oth-
ers, like MIMIC [Dvorak, 1992], though performing a
semi—quantitative simulation and refining predictions
with measured data, do not cope with model revi-
sions nor with guided simulations. (Indeed, some of
the ideas presented in SQPC descend from techniques
first applied in MIMIC, e.g. for integrating measure-
ments into simulations.)

7 Conclusion

The main issues arising from considering measure-
ments in a self-monitoring simulation have been dis-
cussed. Boundary conditions expressed in terms of
instantaneous or extended changes of exogenous vari-
ables are used to guide and refine an online or of-
fline (depending on the depth of the lookahead) in-
cremental simulation of incompletely known lumped-
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parameters systems.

From the conceptual analysis and from the experi-
mental activity done so far it appears that considering
boundary conditions by itself does not aggravate the
uncertainty of predictions. If measurements are added
to a scenario of an incompletely known situation, the
precision of the output does not change significantly.
Nor does it change if measured values become less
precise. It does worsen considerably though if uncer-
tainty affects the time of events, because of range over-
lap, which is dealt with by representing the different
orderings of events. If inter—dependent variables are
simultaneously measured, however, the output preci-
sion increases since ranges can be restricted and in-
consistent behaviors refuted. Furthermore, it would
be straightforward to extend SQPC in such a way to
suggest to the user when some additional measure-
ment would be needed to reduce the ambiguity.

Discontinuous changes are comparatively more dif-
ficult to handle. The adopted criterion to handle the
transient, continuity suspension, limits the combina-
torial growth of possible trajectories taking place dur-
ing the transient by restricting the number of variables
that could be affected by discontinuities. The method
is correct and, though being incomplete, it has not
proven yet to be a bottleneck. Furthermore, though
being used only on M-transitions, continuity suspen-
sion is a general criterion that could be used also to
handle other kinds of transitions imposing discontinu-
ous changes on variables (for example to model abrupt
faults).

Computationally, the cost of handling non-
autonomous systems is often relatively low (even in
cases where a limited model revision is needed). It
may well happen, however, that dealing with instan-
taneous changes requires a complex modeling activ-
ity. Even though appropriate precautions are taken to
limit the number of such activities, a substantial num-
ber of measurements with ambiguous events quickly
leads to intractable problems.

In conclusion, we believe that given the generality of
the assumptions underlying the techniques presented
in the paper, and given the relatively low computa-
tional cost that is often required to solve a boundary
value problem, it seems worthwhile employing them to
widen the applicability spectrum of Qualitative Rea-
soning.
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