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Abstract

A major problem in the development of a compu-
tational environment that can reason about phys-
ical systems is its ability to formulate a model.
The work here described is part of a research effort
aimed at developing a comprehensive environment
that automates the formulation of the constitutive
law of an actual visco-elastic material. In outline,
we approached the problem in two main stages : at
first, a library of models of ideal materials is gener-
ated, and then an accurate model of an actual ma-
terial, which explains the observed response of the
material to standard experiments, is selected . The
model library includes both models of ideal ma-
terials and their qualitative response to standard
experiments . The models are generated in two
different formalisms (Rheological Formulae (RF)
and Ordinary Differential Equations (ODE)), by
following an enumerative procedure and an ap-
proach which is grounded both on a component-
connection paradigm and on internal state vari-
ables . A class of candidate models, i.e . a class of
ODES, for the material is selected from the model
space through the comparison of the observed be-
havior, qualitatively interpreted, with the quali-
tative behaviors generated directly from the rhe-
ological structures . Then, the most "accurate"
model for the real material is chosen within the
selected class so that both the goodness of experi-
mental data fitting and the number of parameters
in the model are "reasonable" . This paper mainly
concentrates on the methods and algorithms, both
qualitative and quantitative, of model selection.

Keywords: Mathematical modeling, qualitative
reasoning, rheology, visco-elastic materials.

Introduction
A crucial issue in automated reasoning about a phys-
ical system is the automated formulation of an ap-
propriate model of its behavior . Recently, a great
deal of work in the Qualitative Physics framework

has been addressed to the automated model for-
mulation problem, and a number of methods and
implemented systems has been proposed (Addanki
et al., 1991 ; Bradley, 1994 ; Crawford et al., 1992 ;
Capelo et al., 1993 ; Falkenhaier and Forbus, 1991 ;
Ironi and Stefanelli, 1994 ; Iwasaki, 1992 ; Low and
Iwasaki, 1992 ; Iwasaki and Levy, 1994 ; Nayak, 1994 ;
Rickel and Porter, 1994 ; Weld, 1990 ; Weld, 1992) .
In these approaches, the model formulation problem
involves the selection, within a predefined model li-
brary, of a model in accordance with a set of assump-
tions or a user's query about the system behavior .
The model library can contain either complete mod-
els of the system under study, each of them character-
ized by different assumptions (Addanki et al., 1991),
or pieces of knowledge about the physical systems,
called model fragments, which are suitably selected
and composed to construct the scenario model (Falken-
haier and Forbus, 1991). Whereas in the former case
the formulation of an accurate model can be simply
viewed as a search process through a graph of mod-
els, where nodes represent models of the system and
arcs represent the assumptions that distinguish two
connected nodes, in the latter one two different is-
sues must be considered: the constructed model has
to be both adequate to describe the physical situation
and as simplest as possible (Iwasaki and Levy, 1994 ;
Rickel and Porter, 1994).

This paper describes our approach to the automated
model formulation of an accurate quantitative model of
the mechanical behavior of an actual visco-elastic ma-
terial (Arridge, 1975) in accordance with the observed
behavior of the material in response to standard ex-
periments. The actual difficulties in building by hand
models of materials motivated our work . Knowing the
constitutive laws of materials, i .e . the relation between
stress s(t) and strain e(t) and their time dependen-
cies, allows us both to derive predictions of a mate-
rial's behavior under the action of external forces and
to associate the material with its mechanical proper-
ties . Moreover, the mechanical properties of a material
may be correlated to some of its other properties (for
example network structure, sensitivity to erosion, hy-



drophilia, capacity either to absorb or to release active
ingredients, thyxotropy, and so on), whose knowledge
is of fundamental importance to the assessment of the
material. The measurement of these latter properties
often presents more difficulties than the measurement
of the mechanical ones . Hence, the rheological study of
a material may often be both economic and important
in the control of the industrial processing of products .
Although our approach has been tailored on a spe-

cific application domain, most ideas and techniques
underlying it can be applied to other physical do-
mains when the goal is to build an accurate quan-
titative model explaining a set of experimental data .
The whole formulation process occurs in two main
stages : at first, an exhaustive library of complete mod-
els of ideal visco-elastic materials, which differ from
each other in structure, is automatically generated,
and then an accurate model of an actual material is
built in accordance with the observed response of the
material to either creep or relaxation experiments.
As far as model library is concerned, our work is dis-

tinguished in that it automatically generates the ODE
models of materials with complex rheological struc-
tures. Such structures are automatically enumerated
by analogy with mechanical devices where components
which reproduce the fundamental elastic and viscous
responses are combined either in series or in parallel .
The symbolic description of such structures is called
Rheological Formula (RF). Then, by exploiting suit-
able connection rules and mathematical models of the
basic components, which are expressed through inter-
nal state variables, the mathematical model ofeach RF
is generated. Adequate filter procedures, based on the
algebraic properties of the connection operators and
on the mechanical equivalence which is captured by
the ODEs, allow us to control the combinatorial ex-
plosion of the model generation process. In a previous
paper (Capelo et al., 1993) we gave a characterization
of the generated ODE models and proved that four
classes of ODEs represent the space of possible linear
models of visco-elastic materials. Moreover, it can be
proved by induction that the dimension of the model
space is equal to 2n, where n is the maximum number
of components the RFs are made up . This result is im-
portant as understanding the space of possible models
is an essential step in the construction of computa-
tional environments which aim at selecting the most
appropriate model.

This paper focusses on the model selection problem
and describes an approach which results to be a mix-
ture of qualitative and quantitative techniques with
both symbolic and numeric computations . More pre-
cisely, we exploit qualitative reasoning to select the
class of ODEs which describe the qualitative behavior
of the material, and then, within the selected class we
identify the equation, namely the order of the ODE
and the numeric values of its parameter, which refines
the quantitative properties of the material . The se-

lection of the plausible class of models occurs on the
ground of the qualitative comparison of the simulated
behaviors of the models in the library with the obser-
vations . To this end, algorithms for both qualitative
simulation of the response of materials to creep and
relaxation experiments, and qualitative interpretation
of experimental data have been implemented .
The selection of the most accurate ODE model is

easily performed when the expert knows the number
of either retardation or relaxation times (Ferry, 1970 ;
Whorlow, 1980) as the order of the ODE can be corre-
lated with such a number . Therefore, in this case, the
selection problem is restricted to a parameter identi-
fication problem. When this information is not avail-
able, the order of the equation is determined through
a technique, borrowed from Statistics, which consists
in minimizing a functional which expresses the balance
between both the goodness of fitting, which increases
when the number of parameters grows, and the signifi-
cance of the numerical values of the parameters them-
selves, which diminishes when their number grows .

This paper is organized as follows: the next section
deals with the approach used for selecting a plausible
class of models, namely qualitative reasoning meth-
ods for simulation and data interpretation . Then, the
algorithm for selecting the most accurate model to-
gether with the Akaike (Akaike, 1974) method, which
has been adapted for solving our optimization problem,
are presented .

Selection of the appropriate class of
models

Qualitative methods both for simulation and interpre-
tation of observations play a key role in the first stage
of the model formulation problem. The qualitative in-
terpretation of observations gathered from ad hoc de-
signed experiments allows us to highlight some proper-
ties of the studied material, and consequently to make
a guess for a set of its plausible models . The selec-
tion of the plausible ODES occurs on the ground of the
qualitative comparison of the simulated behaviors with
the observations (Figure 1) .

For the sake of clarity and completeness, we briefly
recall the basic assumptions, definitions and methods
underlying our previous work.

Suitable modeling assumptions are made about ma-
terials, acting forces and processes . A material is as-
sumed to be a continuous, homogeneous and isotropic
medium, and processes take place in isothermal con-
dition in order to decouple the thermodynamics as-
pects from the mechanical ones . Only stable materi-
als are considered and therefore the deformation of a
body solely occurs when mechanical energy has been
provided . As many rheological experiments are car-
ried out in one dimension, that is mechanical energy is
supplied through longitudinal traction or compression
forces, we only consider one-dimensional deformation
processes.
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Figure 1: First stage in model selection: a class of
models is selected from the model library in agreement
with the qualitative interpretation of data . Thick line
arrows track data flow, while thin ones denote interac-
tions within library items

The method adopted for building the model of a ma-
terial is based on a component-connection paradigm
and on internal state variables. Each fundamental re-
sponse, in our case elasticity and viscosity, corresponds
to an ideal material which can be represented by a me-
chanical analogous device . More precisely, the purely
elastic response is associated with a material H ana-
logically represented by a spring whose response is de-
scribed by the Hooke's law of linear elasticity s = Ee,
where E is a constant which depends on the material .
Similarly, the purely viscous response corresponds to a
material N analogically represented by a dashpot, and
is described by the Newton's law of linear viscosity
s = 77e, where 77, the viscosity coefficient of the mate-
rial, is a positive constant and the dot denotes the time
derivative . Although the constitutive law of a material
may be non-linear and may contain non-constant co-
efficients, we consider linear visco-elastic models, i.e .
models whose visco-elastic behavior is described by an
ODE with constant coefficients . Nevertheless, most
materials show a linear time dependent behavior in
the limit of infinitesimal deformation and even in fi-
nite deformation as long as the strain remains below a
certain limit, which varies from material to material .

Models of complex materials are built by analogy
with mechanical devices, which are obtained by suit-
ably assembling, either in parallel or in series, com-
ponents which represent the fundamental mechanical
properties so that the whole device behaves analo-
gously to an actual material . The symbolic descrip-
tion of an analogical structure, RF, represents a model
of its corresponding material at the lowest level of de-
scription.
The model library is automatically generated and in-

cludes (1) RFsof all non-equivalent structures made up
of n components, (2) the corresponding ODE models,

and (3) the simulated qualitative responses of the gen-
erated models to standard experiments. At first, the
rheological formulae are recursively built and grouped
with respect to equivalence relations: only one repre-
sentative for each class is kept in the library. Then, the
set of formulae is mapped to its corresponding set of
mathematical models by exploiting the ODE formal-
ism, the basic component models and suitable connec-
tion rules. More precisely, when components C1 and
C2 (not necessarily basic components) are connected
in parallel (ClIC2), they undergo the same elongation
while the total stress gets distributed among the com-
ponents, that is : s = s1 + s2 , e = e1 = e2, where
ei, si (i = l, 2) are the internal variables, whose time
evolution is expressed either directly by the basic mod-
els or by differential equations obtained by the recur-
sive application of the connection rules starting from
the basic models . If the components are connected
in series (Cl - C2), each component takes the same
load and the total elongation is the sum of the elonga
tion of each component: s = s1 = s2 ,

	

e = el + e2 .
By exploiting the constitutive equations of the basic
components and the connection laws, the mathemati-
cal model of an arbitrarily complex RF can be recur-
sively derived, as described in (Capelo et al ., 1993) .
ODE models can be further grouped with respect to
their mechanical behavior by considering the structure
of their constitutive equations .

Let us call Formal Equation (FE) the symbolic ODE
obtained by giving unitary value to all non-zero coef-
ficients of the constitutive equation . In (Capelo et al .,
1993) we proved (Theorem 1) that the following four
classes of equations gather all of the admissible FEs

i-0 i=1
where m >_ 0, and D` denotes the i-th time deriva-
tive operator. If n is the maximum number of basic
components the RFs are made up, it can be proved
by induction that the ODE models space is equal to
2n . The number of equations in each class (FEi, m) is
between n/2 and n/2 + 1 .
The first stage in the model selection process consists

in taking the class of (FEi,m) which exhibits the same
qualitative behavior of the real material out of the set
{(FEi , m), i = 1, 2, 3,41 .
The qualitative behavior of the material in response

to either a creep or relaxation experiment is character-
ized by the presence or absence ofeither strain or stress

m m
(FE1, m) 1: D's D` e

i=0 i-0
m M+1

(FE2, m) E D's = E D'e
i=0 i=1
m m+1

(FE3, m) ED= s = 1: D'e
i-0 i=0
m+1 rn+1

(FE4, m) E D's = 1: D' e



properties, respectively . Therefore, the simulation al-
gorithm, as well as the observations interpretation al-
gorithm, generates qualitative profiles which highlight
such physical properties .

Qualitative simulation

The simulation algorithm (Algorithm B), which is an
extension and a generalization of the algorithm (Algo-
rithmA) previously defined only for creep experiments
(Capelo et al., 1993), generates the responses of the
ideal materials in the library to creep and relaxation
experiments. It operates at the lowest level of descrip-
tion, i.e . on the rheological formula, as symbolic in-
tegration procedures could be heavy or unfeasible to
be applied, and QSIM-like algorithms (Kuipers, 1986)
would fail because of both the need to introduce alarge
number of auxiliary variables in writing the qualitative
version of the ODES and the consequent difficulty in
controlling the proliferation of the predicted behaviors .

In order to define both the qualitative creep (QB,)
and relaxation (QB,) response let us remind that a
creep experiment consists of applying an external force
on the material and observing the caused deformation,
whereas a relaxation test consists of imposing a de-
formation and measuring the corresponding produced
stress . According to the input signal shape, we further
distinguish in static and dynamic experiments. Static
tests involve the instantaneous imposition ofaconstant
stress (or strain) and the observation of the subsequent
evolution over time of the strain (or stress) . Dynamic
tests involve the application of an oscillatory input sig-
nal. Static experiments highlight the qualitative visco-
elastic properties we are interested in better than dy-
namic tests, as in the former case the response of the
material can be analyzed even in the very initial phase
of the experiment, whereas in the latter one it provides
useful information only after a transitory phase. For
this reason we only consider static tests. The form of
the applied excitation is suggested by criteria of the-
oretical and experimental simplicity . Standard static
excitations are mathematically modelled by step func-
tions of the type :

co[H(t - to) - H(t - ti)]

where to and tl (loading and unloading instants) are
the significant time-points, H(t) is the Heaviside func-
tion, and co is constant (Figure 2) .

Creep and relaxation are dual aspects of the same
phenomenon: the molecular rearrangements occurring
inside a material subjected to external forces depend
upon time . When the stress is regarded as the cause,
the molecular rearrangements appear at a macroscopic
level as a retardation of strain : the time required can
be very short if the tested material is elastic, very long
if it is viscous, or finite - of the order of the scale of
the experiment - in the intermediate cases. Similarly,
when the stress is regarded as the effect, a stress relax-
ation is produced macroscopically over a more or less
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Figure 2: Standard static test : a stress or a strain is
suddenly imposed and then held constant for a time
At =t1-to

t

Figure 3: A Typical strain response to a stress step
excitation (creep test)

long time, depending on the mechanical properties of
the material .
The strain response to a step stress excitation re-

sults from the superposition of three basic components,
namely an elastic instantaneous eH deformation, a de-
layed (still elastic) eK one, and a viscous irrecoverable
eN deformation:

a = eH + eK + eN .

Therefore, for example, a purely viscous material,
which dissipates all the deformation energy as heat
through viscous forces, undergoes an irrecoverable de-
formation and is characterized by e = eN 54 0, eH =
eK = 0. More generally, a visco-elastic material might
store part of the deformation energy elastically as po-
tential energy and dissipate the remaining one vis-
cously as heat, featuring a strain response like the
one shown in Figure 3, which is characterized by
eH, eK, eN 0 0 . Such a material would recover a
part of the deformation instantaneously, a part more
slowly, but would also undergo a permanent deforma-
tion to a certain extent .
The stress response to a step strain excitation results

from the superposition of three stress components :

S =SH+SM+SN ,

each one associated with a mechanical property of the
tested material . More precisely: sH $ 0 means that
part of the undergone stress does not relax at all in
the time interval (to,tl) and denotes the ability of
the material to store potential energy ; sM :A 0 means
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Figure 4: A typical stress response to a strain step
excitation (relaxation test)

that part of the undergone stress relaxes slowly during
(to, t1) ; sN 0 0 means that part of the undergone stress
relaxes instantaneously at t = to and the deformation
energy is partially dissipated through viscous forces .
As an example, Figure 4 illustrates a stress response

characterized by sH, sM, sN :A 0. Let us remark that
sN 0 0 theoretically corresponds to a Dirac delta func-
tion and is graphically represented by a vertical arrow
pointing either upward or downward according to the
stress impulse sign .

Therefore, both QB, and QB,, can be described by
just three logical parameters (a,,3, 7) which are asso-
ciated with either the strain or stress properties, re-
spectively, and may take on either the value TRUE
(T) or FALSE (F) in accordance with the presence or
absence of the corresponding property in the material .
For example QB, = (T, T, T) means that the mate-
rial exhibits instantaneous elasticity (eH 54 0), delayed
elasticity (eK :0 0) and viscosity (err :A 0) . In order to
define QB, and QB,, for any complex formula, let us
remind that, according to the connection rules, strains
are added in series and stresses are added in parallel .
Therefore :
if QB,:[C1]

	

QBJC2] = (a2, 02, 72), then
QB,[Ci - C2] = QB,:[C1] V QB~:[C2] _

= (al V a2, )31 V 02, 71 V 72) ;
if QB, . [Ci] _ (a1, N1, 71 ), QB,. [C2] = (a2032,72), then

QB,. [Ci I C2] = QB,.[Ci] V QB,. [C2] =
= (al V a2, 01 V02, 71 V 72),

where V denotes the logical OR operator .
It is obvious that QB, and QB,, would be straight-

forward defined for any given complex formula C if it
could be possible to use one of its equivalent formulae
which is characterized either only by the series oper-
ator or only by the parallel one. To this end, in the
following we give theorems which state a one-to-one
correspondence between the classes of ODEs and suit-
able classes of rheological formulae (reference classes),
and the mechanical equivalence ofany complex formula

with a formula in one of the reference classes . More
precisely, let us denote by 0 the mapping of a RF to
its respective FE, by K and M the models defined
by the formulae HIN and H - N, respectively known
in the literature as Kelvin and Maxwell models, and
by Kn,, (M�, respectively) the m-th order generalized
Kelvin (Maxwell respectively) models :
K�,=K-K- . . .-K

	

(Mm =MI M~ . . .~M),

and assume, conventionally, that Ko = Mo = 0 . It can
be easily proved by induction on the connection laws
that for any integer m >_ 0:
Theorem 2.

	

The formulae K� , - H, Kn,, - N,
K�,+i, Km-M map to (FE1, m), (FE2 , m), (FE3 , m),
(FE4, m), respectively

Q(Km - H) = (FEi, m)
Q(K� , - N) = (FE2, m)
Q(Km+,) = (FE3, rn)
Q(K, - M) = (FE4, m)

Theorem 3.

	

The formulae Mm JH, M�, I N,
Mm I K, M�,+i map to (FE1, m), (FE2, m), (FE3 , m),
(FE4, m), respectively

P(M,

	

H) = (FE1, rn)
Q(Mm I N) = (FE2, m)
P(M.

	

K) = (FE3, m)
SZ(M�,+i)

	

= (FE4, m)
The formulae mentioned in Theorems 2, 3 are the ref-
erence formulae .
An important consequence of Theorems 1, 2, 3 is the
following duality property :

Theorem 4. Given any arbitrarily complex rheolog-
ical formula C, it is possible to find a mechanically
equivalent formula C_ obtained by combining in series
a suitable number of components H, N, K, as well
as it is possible to find an equivalent formula C, ob-
tained by combining in parallel a suitable number of
components H, N, M.
[Proof.
If Q(C) = (FEI, m) then set C_ = Km, - H, C1 =
Mm I H .
If Q(C) = (FE2, m) then set C_ = Km - N, C1 =
Mm I N .
If Q(C) = (FE3, m) then set C_ = Km+1, C, =
Mm I (H I N)-
If Q(C) = (FE4 , m) then set C_ = Km - (H - N),
C1 = Mm+i - ]

Let us call C_ and C1, chosen as in the above theo-
rem proof, equivalent dual (respectively series and par-
allel) representations of C. By denoting with Nt the
set of all and none but the mechanically distinct RFs,



by Theorem 4 we can state that M is isomorphic to
the dual sets :

M_ = I K,,, - H, K,, - N, K, +,, K�1 - M}

MI = {M. I H, M. I N, M,nI K, Mm+1 }

Therefore, the set of models {H, N, K} plays the
role of a "basis" of components for M_ with respect
to the series operator, as well as the set {H, N, M}
respectively plays a similar role for MI with respect to
the parallel operator .
Theorem 4 suggests a natural way of defining both

QB, and QBr associated with any given formula C by
considering its equivalent representation either C_ in
M_ or C in MI, respectively .
The algorithm for determining both QB, and QBr

associated with any given formula C is defined as fol-
lows:

QBjC] =

	

~ else, let C be replaced by its series
equivalent representation C_

QBr [C] =

If C E {H, N, K} then

QB,[H] _ (T, F, F)
QBr~ [N] _ (F, F, T)
QB,[K] _ (F, T, F)

QBc[Km - H]

QBc[C-] -

	

QBc[K,n - N]
QBc[K�,+1 ]
QBc[Km - (H - N)]

If C E {H, N, M} then

QBr [H] = (T, F, F)
QBr [N] = (F, F, T)
QBr[M] = (F, T, F)

else, let C be replaced by its parallel
equivalent representation C

Q&[Mm 1 H]
QBr

[CI]
=

	

QBr[M,,, ( N]
QBr[Mm I (H I N)]
QBr[Mm+1]

The algorithm strictly depends on the application
domain . However, its lack of generality is well compen-
sated by its completeness and soundness. As a matter
of fact ; the given simulation algorithm is the qualita-
tive transcription of the connection rules which math-
ematically express, through the internal variables, the
links between either strain or stress and their own re-
spective components . With reference to the RFs, the
strain components are added in presence of a series op-
erator, whereas the stress ones in presence of a parallel
operator . Therefore, the proof of the soundness of the
algorithm derives straightforward from the connection
rules for the series and parallel operators. The proof

of its completeness is given by Theorems 1-4. More
precisely, Theorem 1 defines the elements (FE) of the
set of the admissible ODE models ; Theorems 2 and 3
respectively state a bijective correspondence between
FEs and RFs (elements of both sets M_ and MI),
which are built by connecting either in series the ele-
ments of the set {H, N, K} or in parallel the elements
of the set {H, N, M} . Finally, Theorem 4 associates
any complex given formula, by exploiting its FE, with
its equivalent representation both in M_ and in MI .
Although in terms of computational efficiency Algo-

rithms A and B are comparable, version B marks a
significant improvement . In fact, Algorithm B is fully
justified from the formal point of view as it is based
on sound arguments such as the connection rules and
FEs, whereas Algorithm A, which recursively builds
the response of the material starting from the qualita-
tive behavior of the elements H and N, is partly sug-
gested by the connection rules and partly by intuitive
physical arguments. Moreover, Algorithm B works for
both creep and relaxation tests.

Finally, let us observe that, although Algorithm B
has been given, for the sake of simplicity, for input
signals represented by step functions, it also holds for
input signals represented by a summation of step func-
tions. This is ensured by the linearity of the ODEs or,
equivalently, by the Boltzmann principle of superposi-
tion .

Qualitative interpretation of experimental
data

Qualitative interpretation of experimental data, i.e .
their characterization in terms of relevant qualitative
physical features, is an important step in view of
model selection (Forbus, 1987 ; DeCoste, 1991 ; McIl-
raith, 1989) .

Quite generally, physical features can be captured
through the identification of characteristic shapes in
the experimental data plot . Therefore, in order to rea-
son qualitatively about the observed response, graphi-
cal data are first abstracted to a qualitative represen-
tation : a qualitative curve description is automatically
provided in terms of regions which are homogeneous
with respect to such graphical features as steepness,
convexity and linearity. This process of data segmen-
tation takes its basic ideas from pattern recognition
and qualitative physics . We would like to remark that,
though here applied to a specific domain, the adopted
approach is quite general.
In the following, for the sake of simplicity and to bet-
ter focus on methodologies, we limit our attention to
creep experimental data . As a matter of fact, analysis
of relaxation data can be carried out in quite a sim-
ilar way by suitably extending the numeric descrip-
tors and thresholds spaces as well as the vocabulary
of qualitative curve attributes, in order to account for
relaxation-specific graphical features .
Suitable numeric curve descriptors, namely the strain,



its first and second order time derivatives (e', e") and
the linear correlation coefficient (r), are chosen and a
set of thresholds, whose values are obviously domain-
dependent, is suitably defined so as to provide, through
a mapping to qualitative values, a quantization of the
continuous world.
After the definition of quantity spaces for the nu-
meric descriptors, segmentation of the experimental
time range into significant time points and time in-
tervals is performed .
More precisely, let D = {e, e', e", r2} denote the set

of quantitative descriptors; for any d E D let Q(d) be
its appropriate quantity space (see Table 1), i.e . the set
of all the qualitative values of d necessary to reason
qualitatively about the graphical features, and S(d)
the set of the intervals determined by suitable numeric
thresholds which allow to map the numeric values of d
to qualitative values in Q(d) according to the following
diagram:

S(d) E) [si (d,1), s2 (d,1)]

	

-

	

1 E Q(d)

Moreover, let time point denote the time neighborhood
of a measurement point, and time interval an interval
whose width is not negligible with respect to the ex-
perimental range. For example, if to is the first creep
instant then ro = [to, to + E[ , with 0 < E << 1, is the
time point associated with it . The distinction is made
necessary in order to reason about instantaneous prop-
erties in presence of measurement errors .
Amongtime intervals, in order to cope with asymptotic
reasoning, we will also enclose intervals extending be-
yond the experimental range up to +oo ; such intervals
will be denoted by an oo-subscript .

Then, given d E D and a time point or interval r,
the following mapping is defined

q :

	

d, r -} qd(r) E Q(d)

which associates d with its qualitative value in r, by a
suitable numeric approximation of d in 7 and mapping

linear & growing

weakly linear

weakly linear & growing

concave

loosely concave

convex

loosely convex

asymptotically
positive horizontal

asymptotically largely
positive horizontal

it onto S(d) :

gr2 (r) = 1A qe'(r) > 0

gr2 (r) = 1-

gr2 (r) = 1 - A qe'(r) > 0

qe"(r) < 0
qe"(r) < 0
qe"(T) > 0
qe"(r) > 0

qe(r,,) > 0

qe(r,,.) > +s

qd(T) = 1

	

q

	

d(T) E [si(d,1), s2 (d,1)] .

For example, if ro is atime point we say that e' takes on
the qualitative value 0 in To when the slope of the least
squares line through the experimental points in ro is
E [s, (e', 0), s2(e', 0)], where si(e', 0), s2(e', 0) E 118 are
the threshold values corresponding to the qualitative
0.
Quite similarly we say that gr2(,r) = 1 if r2 , computed
on {ti}i=i,k E r, takes on a numeric value very close to
1, while gr2 (r) = 1 - if the same quantity has a value
close to 1, but less tightly :

gr2(r) = 1

	

<* si (r2,1) < r2 < s2 (r 2 ,1) = 1

gr2(T) = 1 -

	

q si(r 2 ,1 - ) < r2 < s2(r
2

, 1 -)

where s, (r2 ' 1- ) <_ si(r2 , 1)

	

(e.g.

	

si (r2 , 1- ) = .995,
$2(r

2
, 1- ) = si(r2

, i) = .998) .

A general approach to the characterization of
graphical features by means of the numeric descriptors
is shown in Table 2 . The experimental time range is
partitioned into time points and time intervals (Figure
5) where symbolic properties, characterizing specific
graphical features, are satisfied (right column in Table

Table 1 : Quantity
tors .

spaces of the numeric curve descrip- Table 2 : Qualitative
properties featured in

characterization of graphical
a time point or interval r by

means of numeric descriptors .

Numeric
descriptor d

Quantity space Q(d)
Qualitative curve

attribute Characterization
e {0, +s, +1, +oo}

e' {-oo, -1, -s, 0, +s, +1, +oo} vertical qe'( ,r) = foo

e// {-, 0, +} steep qe'(r) < -1 Vqe'(r) > +1

r2 {0,1 - ,1} linear gr2(T) = 1
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Tv	T1	Tde

	

Tm	t

Figure 5: Data segmentation in view of qualitative
curve description

2) ; the experimental data plot is then described by the
sequence of the qualitative curve attributes (from the
vocabulary in the left column) which are appropriate
for each time segment .
Assessment of the observed qualitative behavior
In the case of creep data, two experimental stages can
be distinguished : creep, which is related to loading im-
position and holding time [to, tl [, and recovery, related
to loading removal [t1, +oo[ . As a matter of fact, ei-
ther stage can provide enough information to assess in-
stantaneous elasticity, delayed elasticity and viscosity.
However, since data are always affected by measure-
ment errors, reasoning about data can take advantage
of both creep and recovery curve analysis . For the same
reason, in the definition of clauses we require that each
property is weakly satisfied in both creep and recovery
and strongly in at least one of them .
In the light of the above considerations, the key clauses
for the assessment of each mechanical feature are now
described .
Instantaneous elasticity:
This property consists in the material ability at yield-
ing a prompt deformation to loading and unloading
(see Figure 3) . Strain jumps at to and tl graphi-
cally characterize instantaneous elasticity . Due to the
instrument limitations at coping with instantaneous
events, namely the instrumental inertia combined with
the measurement errors, this property is captured by
reasoning about the curve steepness on time-points To,
71 :

if curve is
vertical at To AND steep at 71
OR steep at To AND vertical at 71

then
property-1 is instantaneous-elasticity

else
property-1 is NOT-instantaneous-elasticity

endif

(Of course, in accordance with Table 2, vertical
at To AND vertical at 71 implies property-1 is
instantaneous-elasticity .)

Viscosity:

The presence of a constant positive deformation rate in
the late creep stage is due to energy dissipation . Cor-
respondingly on recovery the material is not able to get
back to the original length . Therefore, an eventually
linear growth at late loading or, equivalently, a finite
positive residual as t goes to infinity characterize this
property .
As regards the creep stage, the significant time interval
can be identified as follows:

where mint {t I gr2 (t, tl ) = 1 denotes the first instant
of the linear region . Similarly a time interval T,-, is
defined to characterize a weakly linear region . On re-
covery, in order to reason about asymptotic attributes,
a time interval Too := [T, +oo[ , T >> ti is implic-
itly introduced . The qualitative value of the asymp-
totic strain ge(Too) is derived by an approximation of
limt-oo e(t) obtained by extrapolating the late recov-
ery points under a simple exponential decay model .

By combining creep and recovery reasoning, vis-
cosity is finally assessed as follows :
if curve is
linear-and-growing at T�
AND
asymptotically-positive-horizontal
OR weakly-linear-and-growing at 7v-

AND
asymptotically-largely-positive-horizontal

then
property-3 is viscosity

else
property-3 is NOT-viscosity

endif

Delayed elasticity :

Tv :- [min{t I gr2(t,il) = 1} , tlt

	

1
,

In order to reason about delayed elasticity the curve
concavity must be ascertained, even when data are af-
fected by measurement errors . The expert would per-
form a subjective visual smoothing which can be emu-
lated in a number of ways . A simple and quite natural
approach consists in reasoning by intervals rather than
point-wise ; first the time interval to analyze Tde (Tae for
creep and Tae for recovery, respectively) is divided into
subintervals Tde = UhTh, and then for each subinterval
qe"(Th) is taken as the most frequent of the pointwise
computed signs of e" . Therefore:
Tde := [to, tl[ \(To U 7J)

if Tae
then
property-2 is NOT-delayed-elasticity

else
perform interval partitioning Tae = UhTh
if curve is
loosely-concave at any Th



An example

Bir j

	

Data plot )	' ~-abstraction )

	

Plausible models

	

;Done
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QUALITATIVE CURVE DESCRIPTION
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Figure 6: Selection of the plausible models class for an ink-like material

AND
concave for at least one

then
property-2 is delayed-elasticity

else
property-2 is NOT-delayed-elasticity

endif
endif

Th

The above clause is actually made more robust by in-
cluding reasoning about the convexity of the recovery
curve.

As an example, let us consider the observed data from
a creep experiment performed on an ink-like material .
Figure 6 is a screen dump which displays a plot of
the observations, and the featured physical properties
attributed to the shape of the plot (delayed elasticity
andviscosity) . As a result of the match of the identified
strain characteristics (eH =F, eK =T, eN =T) against
the qualitative simulated behaviors of ideal materials, a
class ofplausible candidate mathematical models of the
material is automatically provided . For the material
in the example, 9 candidate models, whose equations
are of the form E'o D=s D= e (where m =
1, . . ., 9) are generated.

Selection of the accurate model

Given the class (FE=, m) of ODE models which exhibit
the same qualitative behavior as the actual material,
the selection problem consists in identifying an equa-
tion Et which refines the quantitative properties of the
material . E= is the equation of order k whose para-
metric coefficients have been assigned numeric values
so that it better fits the experimental data . There-
fore, in order to solve the problem we have to deter-
mine both the order k of the equation and the nu-
meric values of its parametric coefficients, whose num-
ber n obviously depends on k (n(k)) . It is clear that
if the order of the equation is increased, and conse-
quently the number of the parameters is increased, the
goodness of fitting improves, but the significance of
the numerical values of the parameters themselves di-
minishes . On the other hand, also the possibility to
give a physical interpretation of these numerical val-
ues can fail, and even more important, the information
about the number of retardation times (Ferry, 1970 ;
Whorlow, 1980), which is a feature of the material and
is strictly related to the order of the model equation,
can be lost if we restrict the problem to the goodness
of fitting .

Let us remind that the retardation times are pa-
rameters associated with the material state changes
which subsequently occur. For example, in polymeric



materials they can be associated with the break of ei-
ther the hydrogen or Van der Waals bounds which does
not occur at simultaneous times . From the modeling
point of view, the retardation times are specified in
the arguments of exponential functions whose sum de-
fines the solution of the ODE model. In some cases,
the expert can estimate the number of state changes
the material will undergo during the rheological tests,
and then the number of retardation times. When the
user has such a knowledge, the selection problem is
restricted to a parameter identification one (Figure 7
(a)) . By exploiting arguments based on the Laplace
transform, it can be proved that there is a correlation
between the number of retardation times and the or-
der of the equation which describes the behavior of the
material . Therefore, the order k, and consequently the
number of parameters is straightforward fixed. More
precisely, if k is the number of retardation times, the
order of the most plausible ODE model is equal to k if
the selected class is either FE, or FE3, and equal to
k + 1 in the other two cases . Then, the most accurate
model of the material can be determined by comput-
ing, through ad hoc implemented techniques of fitting
of experimental data, the values of the parametric co-
efficients which appear in (Ei, k) .

The problem is more complex if no information is
provided about the ODE order. In such a case, the
quantitative model is obtained through an optimiza
tion technique whose goal is to determine the optimal
order k of the equation Ei so that both the goodness
of fitting and the significance of the identified numeri-
cal values of parameters are guaranteed . The selected
class of plausible ODES is made up of equations E;
which differ in the order but not in the structure, i.e .
(Ei, k + 1) differs from (Ei, k) only for the presence
of terms which express the (k + 1)-derivative of either
stress or strain . An analogous situation can be found
in the theory of time series where the problem to de-
termine the order of the model (e .g . AutoRegressive
Moving Average (ARMA) model) is quite important
(Choi, 1992). In this context several methods have
been proposed, and among those we consider the AIC
(Akaike Information Criterion) method (Akaike, 1974).
In our case, such a criterion can be formulated as fol-
lows :

(Akaike Criterion) The equation of order k which
best fits the experimental data corresponds to the
equation whose number of parameters n(k) is the min-
imum of the function :

(1) AIC(n(k)) = 2n(k) - 21og[maximized likelihood] .

It can be proved that the order k estimated in such
a way is never lower than the actual order of the Ei
which describes the behavior of the material . It can
be straightforward proved that if, as it is plausible in
our case, the experimental errors are independent and
normally distributed, the maximum likelihood method

QUANTITATIVE
MODEL

Figure 7: Second stage in model selection: (a) if the
number of retardation times is supplied by the User,
a single ODE is selected and the quantitative model is
obtained by parameter identification ; (b) if no informa-
tion is provided about the ODE order, the quantitative
model is obtained through an optimization technique



corresponds to the least squares method . Therefore,
apart from constant additive terms, the function (1)
becomes:

(2)

	

AIC(n(k)) = 2n(k) + m logS2(n(k)),

where m is the number of experimental data and
S2(n(k)) the sum of the squares of residuals when the
fitting is performed with a model with n(k) parame-
ters .

From the algorithmic point of view, the value of
n(k) which minimizes the function (2) is calculated
through a loop (Figure 7 (b)) whose main steps are:

" selection of an equation (Ei, k),
" parameter identification of the n(k) parameters in

(Ei, k),

" evaluation of AIC(n(k)),

" comparison of AIC(n(k - 1)) with AIC(n(k)) and
loop termination if AIC(n(k - 1)) < AIC(n(k)),
since in general the function (2) is convex .

The output of the loop, i .e . the quantitative ODE
model of order k - 1 with n(k - 1) coefficients is an
accurate model of the behavior of the material as it
guarantees both the goodness of data fitting and the
significance of the numerical values of its coefficients .

Discussion
We presented an approach to the automated formula-
tion of an accurate quantitative model of the behavior
of a visco-elastic material. Such a model can be ex-
ploited by the expert for a precise analysis of the ma-
terial during its assessment phase. More precisely, it
can be numerically simulated to predict the behavior of
the material under any complex load, and the param-
eters in the model could be interpreted as a measure
of some properties of the material itself. As far as the
latter use of the model is concerned, there is a need for
a rationale which allows us to correlate the parameters
in the model and physical properties of materials. This
issue could be a new challenge in the study of materi-
als, which has been performed at a pure experimental
level so far.

The model selection process occurs in two main
stages : the first stage is performed at a pure quali-
tatively level and produces the class of models which
qualitatively describe the material behavior, the sec-
ond one, which occurs at a pure quantitative level by
exploiting both statistical and numerical methods, gen-
erates the quantitative model of the material . The
model is selected within a library of models which are
automatically generated by connecting variously either
in series or in parallel 20 basic components . The re-
striction of the number of components to 20 is rea-
sonable as structures made up of 20 elements are as-
sociated with rather complex materials. As the model
space dimension is equal to 40, it could seem reasonable

to select directly the accurate quantitative model by
extending the optimization loop in Figure 7 (b) to the
whole set of models in the library instead of selecting
first a class of plausible models . There are at least two
reasons why both two steps are necessary. The most
important reason is that there is no guarantee that
the "best" model obtained through the data fitting by
means of all the models results to be compatible, in
qualitative terms, with the observations, or, in other
words, that it does capture some important features of
the material (e.g . instantaneous elasticity) . Moreover,
the computational cost of parameters identification
grows significantly with the number of models . Such
a number is actually not too large as we only consider
linear models of visco-elastic materials but it could be
quite high as soon as the library is extended both with
non-linear models, which will be built starting from
non-linear laws, e .g . s(t) = kl(exp(k2e(t)) - 1), and
s(t) = kl log(k2 e'(t)), for the elastic and viscous basic
components respectively, and with models which take
also plasticity into account. Therefore, the qualitative
stage seems to be essential for both an efficient and
physically correct approach to model selection.

The paper gives some contribution to qualitative
reasoning methods: both qualitative simulation and
data interpretation methods ad hoc implemented for
our specific goal have been presented. The simulation
algorithm is strictly domain-dependent but generates
all and none but the actual physical behaviors. The
data interpretation algorithm provides reasoning tech-
niques to emulate the expertlike visual interpretation
of experimental data . It has been tested on experimen-
tal data related to different polymeric materials, such
as inks, rubbers, and drugs (sodium carboximethyl-
cellulose) and its performance has been evaluated in
accordance with the interpretation provided by the ex-
perts who supplied the data . In spite of its simplicity,
the algorithm provides also useful information about
the adequacy of the models in the library to describe
the behavior of the material under study : a possible
convex shape of the data during the creep phase de-
notes that the linear theory of elasticity and viscosity
we adopted to build the model library is inadequate to
study such a material . Although it has been designed
for interpreting data in a specific domain, it results to
be a domain-independent technique as it is capable to
trasform a stream of observed data into a qualitative
description that characterizes its shape, that is it high-
lights the qualitative properties of the numerical data
such as monotonicity, convexity and linearity regions.
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