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Abstract: We present a compositional model of pa-
per transportation in a photocopier that is meant to
support different problem solving tasks like simula-
tion and diagnosis, and to be applicable to a variety
of configurations. Therefore, we try to avoid making
hard-wired implicit assumptions about design princi-
ples and possible scenarios. In order to simplify our
analysis, the model abstracts away from the physical
forces and reasons only about velocities. Nonetheless,
it succeeds in determining essential features of the mo-
tion of the sheet of paper like buckling and tearing.
The framework provided is quite generic and can be
used as a starting point for developing models of other
transportation domains.

1 Introduction

A photocopier is a device with a clear and fixed struc-
ture that seems to lend itself to standard component-
based modeling techniques. However, as already
pointed out in reports about earlier modeling at-
tempts [ST87], this is true only if we ignore the sheets
of paper that move around and interact with the
copier’s components, often in a way that forces us as
users to sequences of recovery actions. Paper handling
in a copier is an instance of a class of transportation
processes whose modeling requires the modeling of the
transported subject as well.

An attempt to model the forces, motions and de-
formation of a sheet of paper under the influence of
some rollers can lead to quite sophisticated mathe-
matical models [SL81b, SL81a]. As a result, the work
we report here had to address two basic problems:

¢ modeling a device with a topology changing over
time.

¢ finding an appropriate level of abstraction of mod-
eling that still allows us to determine most of the
interesting features, for instance buckling or tear-
ing of paper sheets.

This work was done while visiting The International Com-
puter Science Institute, Berkeley.
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Furthermore, guiding principles were to

¢ exploit features of the physical domain for sim-
plifying the model, but avoid hardwired implicit
assumptions about possible scenarios, design prin-
ciples etc.

e aim at reusable model fragments that can be fur-
ther specialized and composed to cover different
instances of devices, and tasks such as simulation,
design and diagnosis.

The key step was to create locally acting transporta-
tion processes (in our domain the interaction between
a sheet and, for instance, a pair of rollers). and of
the interaction between them mediated by the trans-
ported subject, the sheet. This is a fairly general ap-
proach and should be of use in modeling other types
of transportation devices as well.

In this paper, we present a description of an interme-
diate conceptual model which is still under develop-
ment and implementation. It succeeds in determining
essential features of the motion of the sheet, despite its
simplicity that stems from considering velocities only.

We briefly introduce the domain by discussing an ex-
ample of a copier paper path (section 2) and present
the intuition underlying the model in section 3. Sec-
tion 4 describes the model formally and attempts to
reveal the underlying assumptions and restrictions.
We apply the model to an example in section 5, and
summarize in section 6.

2 The Domain: Paper Transportation
in a Photocopier

Our problem arose in the specific domain of photo-

copiers, so in this section we describe the paper path

of a simple photocopier, and we will illustrate the con-

cepts developed in this paper on this machine.

In this photocopier, paper is loaded in a paper tray
at the left of the machine (see Fig. 1). When a sig-
nal is received, the acquisition roll is lowered onto the
paper and pulls the top sheet of paper towards the
first set of rollers (1). (We will assume here that there
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Figure 1: A simple photocopier

is some mechanism to ensure that it pulls only one
sheet.) After the paper is grasped by the first set of
rollers, the acquisition roll is lifted, and the rollers pull
the paper forward. The image is transferred onto the
paper by the image transfer mechanism, and it then
travels to the right. If it is desired that the paper
be printed on both sides, it is inverted by diverting it
into the inverter by means of a gate. The inverter rolls
pull it in, then stop, and push it out to the right. It
then goes through the top loop, where it is stopped at
roller number 10, thus slipping on belt 9. On receiving
another signal, roller 10 pulls it forward, and then the
other side is printed. Then it is inverted again and
sent through the exit into a tray.

This simple copier has most of the kinds of trans-
portation elements that are found in the real machines
— rollers, reversible rollers, belts etc. Most of the in-
teresting situations in a real copier are illustrated here.
The sheet can be under more than one driven roller
(rollers number 1 and 2), the rollers can change direc-
tions (6), and there is a belt (9), which has low sliding
friction. In addition, rollers have different speeds, for
example we will assume that the belt and roller 8 in
the upper loop of the path move faster than the rollers
in the lower part of the path. Thus the paper is pulled
by the roller pair number 8.

[SL81b] have shown that under normal operating
conditions the coefficient of friction between paper and
rollers is sufficiently high to prevent any slipping. On
the other hand, the friction between belts and paper is
quite low, so sufficient slipping may occur. We will as-
sume that the paper itself has negligible inertia. Hence
when it comes into contact with a roller, it is instan-
taneously accelerated, and when it is in contact with
the belt, the small friction force is sufficiently large to
move the paper at the same speed as the belt (unless
some other transportation element prevents this).

There are of course several scenarios which no copier
would probably contain, however our model is suf-
ficiently general to consider these. For example, if
we had two successive rollers moving in opposite di-
rections, then the paper would tear. If the back
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roller moves faster than the front roller, the paper
can buckle. OQur model is able to predict this. This is
necessary from several points of view. Firstly the de-
signer may have made an error, in which case simulat-
ing with this model would reveal the error. Secondly
something may have gone wrong in the machine, then
this prediction would be required for diagnosis. And
in any case this is necessary from general design prin-
ciples, since we want our model to work with as few
assumptions as possible, and assuming good design is
certainly a strong assumption.

3 Modeling the Paper Transportation
— The Intuition

Before we present the formal model of the paper trans-
portation, we try to convey its intuitive background.
The overall motion of the transported sheet, as well as
potential deformations of the sheet, such as buckling
or tearing, result from interaction of the sheet with
one or more belts, pairs of rollers, or other potential
means (or its inertia, if there is no such interaction).
Each interaction of this kind is local, and it is influ-
enced by the type and actual properties of two basic
classes of objects: the sheef, which can be a trans-
parency, paper, etc. and accordingly have different
properties (smoothness of the surface, stiffness, resis-
tance against tearing etc.), and the transportation el-
ements of different kinds: for instance, a roller with a
clutch may spin faster than with its nominal speed if
driven by a sheet, whereas a belt does not. In combi-
nation, these objects determine, in particular, whether
or not slipping occurs, i.e. the speed of the sheet at
this point deviates from the speed of the transporta-
tion element. However, this local interaction does not
necessarily determine the actual speed of the sheet at
this location completely. This also depends on a po-
tential impact of other transportation elements acting
on the sheet. For instance, a faster front roller may
make the sheet’s speed exceed the nominal speed of
the second one. Or a nip can completely stop the
sheet, thus letting it slide on the rotating belt.

A model that actually attempts to explicitly cap-
ture all forces acting on and within the sheet and the
way they combine their effects becomes quite compli-
cated, as it would lead to considerations of accelera-
tion, mass, inertia etc. Our solution that a) avoids to
explicitly introduce the forces and b) keeps the anal-
ysis local, is based on the following idea: If the nomi-
nal speed of a transportation element te, (see Fig. 2)
does not differ from the actual speed of the sheet at
the immediate neighboring transportation elements,
ten—1,ten41 (if extant), then there is no reason for
the actual speed of the paper at location n to devi-
ate from the nominal velocity of te,,. If a neighboring
speed of the paper is different from this, it may cause
a different speed of the paper at location n. Whether
or not this actually occurs, depends on the property
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Figure 2: The influences on the local actual speed of
a sheet

and current status of the segment of the sheet between
the neighboring transportation elements.

For instance, if the sheet is straight between te, and
tens1 and vUspeet,,, 1S greater than vnem,, this will
tend to accelerate the sheet at location n, or tear the
sheet. If the sheet was buckled between n and n + 1,
this “pulling forward” would not occur. Similarly, the
sheet could be “pushed” at location n, if and only if
the segment between n — 1 and n is stiff (i.e. not, or
not very, buckled).

Thus the actual speed of the sheet is influenced by
three quantities: the local nominal speed and (poten-
tially) two neighboring actual speeds (Fig. 2). Note,
that by considering the neighboring actual speed, the
analysis can be kept local. These actual speeds may
well differ form the respective nominal ones, as a result
of an impact futher downstream, say, an even faster
ien+2,

We can get more than merely the statement about
the kind of influences occurring, namely bounds on the
local speed of the sheet: the paper may travel faster or
more slowly compared to the nominal speed of the
transportation element (by means of the clutch or
through slipping). But if it does, it cannot go faster
(or more slowly, resp.) than both neighboring speeds.
This is true if we assume that nothing else acceler-
ates the paper at this location (e.g. internal elastic
forces). As a result, we obtain a chain of local con-
straints which have to be satisfied, thus determining
(or restricting) the local speed of the sheet and ac-
tual properties of the segments, such as buckling or
tearing.

We will now turn this intuitive understanding into a
set of model fragments.

4 Description of the Model
4.1 The Paper Path

In principle, a sheet transported in a copier corre-
sponds to a 2-dimensional surface being deformed and
moving around in a 3-dimensional space in a continu-
ous way (unless it tears). A model based on this spa-
tial representation would be very complex. It turns
out that a simpler representation suffices to solve
many interesting problems in the domain. It is ob-
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tained by exploiting the fact that there exists a 2-
dimensional surface that is (supposed to be) the set
of possible locations of a sheet. This is the paper-
path whose projection is shown in Fig. 1. Of course,
restricting the potential locations of a sheet entirely
to the paperpath corresponds to the built-in assump-
tion that the sheet actually travels along the intended
path. This prevents the model from properly handling
fault situations and cases of bad design.

The model we present here includes an even stronger
simplification by considering a cross-section of the ac-
tual 2-dimensional paper path. We mention that this
decision actually excludes the explicit representation
of some phenomena relevant to the copier domain,
e.g. skewing of the paper due to different speeds of
the left and right rollers. Another 2-dimensional fea-
ture which occurs even under normal operation is the
buckling of the sheet in a direction orthogonal to the
cross-section, created in order to increase the stiffness
of the sheet, i.e. prevent buckling in the direction of
the paperpath.

The cross-sectional representation of the paperpath
as for instance depicted in Fig. 1 is a set of con-
tiguous curve sections. We ignore the curvature of
these sections and consider distances only along the
trajectory’ This gives us locally a representation by
an interval of the real number line—except at branch
points, which we have to take into account as they oc-
cur in our domain as illustrated by our introductory
example. Indexing the maximal linear sections of the
paperpath by integers i € N, and denoting the length
of the section by length;, we represent a section by a
pair section(i) = (1, (0, length;)) € N x I(R{), where
I(RY) is the set of intervals on the positive reals (in-
cluding 0). Let PATHSECTIONS be the set of such
pairs. The point locations on the sections are then
described by SECTIONPOINTS = {(i,L) |0 < & <
length;} € N x R. The structure of the path is cap-
tured by a set of branching points that sit between
sections and specify which sections are possibly con-
nected (perhaps depending on the state of a gate). Let
BRANCHINGPOINTS be the set of these points.

Thus the paperpath is represented by

PATH = SECTIONPOINTSUBRANCHINGPOINTS

with an appropriate topology on PATH that treats
the branching points as least upper bounds or great-
est lower bound resp. of the section intervals. Thus
each branching point by determines a set of (poten-
tially) connected sections, i.e. all sections that inter-
sect with arbitrarily small open neighborhoods of b.
Let connections(be) = {(¢,7) | 1 # j} C N x N denote
the set of (theoretically) possible section transitions
of bx. As sheets cover a contiguous part of the path

! This is another simplifying assumption — in many analyses
it is necessary to consider curvature as it determines the weight
of the sheet. Also the path cannot curve too sharply.



Figure 3: Two different intervals on PATH (dashed
line and dotted line) with the same endpoints.

(by definition, if they are torn apart they are consid-
ered to constitute several sheets), we need to define
intervals of PATH. Note that because of branching, it
is not enough to specify the lower and upper bound of
an interval. This may lead to ambiguity as indicated
by the scenario in Fig. 3.

We define an interval I, of PATH as an image of
the interval [0,1] C R under a continuous bijective
mapping. Thus possible positions of sheets on a pa-
per path are intervals. We denote by I(PATH) the
set of intervals on PATH. The length |I;| of I, is a
real number, and is simply the sum of the lengths of
the component sections and tail fragments. The lower
bound and upper bound can be defined as the images
of the points 0 and 1. Note that due to branching,
intersection of intervals is not necessarily an interval.

In order to simplify the presentation, we will assume
that the mapping of [0, 1] to PATH (later on represent-
ing a sheet or a segment thereof) uniquely induces the
same orientation on all sections in I,. This is possible
as we assume that the sheet cannot cover the same
section twice (by being folded backward).

To describe the motion of points along PATH, we
need a generalized derivative of PATHPOINTS that
takes transitions at branching points into account: for
p€ PATH,

ditp = (trans,v) E(NxN) xR

, where v is the real-valued velocity, and trans = (i, j)
specifies a transition from one section to another one.
Of course, this is interesting only at branching points,
as for any point on section i, trans = (i,7). trans
has to be continuous at branching points in the sense
that it can change from (i,1) to (j,j) only by going
through (7, j). Note that trans = (7, 1) is possible at a
branch point, but only if an extremum is reached and
v=0. If v # 0, then the topology enforces trans €
connections(by).

With this representation of the paperpath the prob-
lem of modeling the motion of a sheet is basically
turned into a l-dimensional locally linear problem
which can be handled by real-valued variables, except
for branching points, where a decision has to be made
about the continuation of motion.
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4.2 Transportation Elements

We now turn to the models of the objects and pro-
cesses invloved in the paper transportation. For this
purpose, we use a representation inspired by the CML
proposal [F*94] and close to QPE [For84] which read-
ers may be more familiar with (we do not claim how-
ever, that what we present here are valid CML mod-
els!).

Each concept class will be described by entries for
the following slots:

o Subclass-of: specifying links for inheriting entries
from other concepts.

e Parameters: listing name and domain of static
properties, e.g. length € R for a sheet.

e Variables: listing name and domain of features
that may dynamically change over time, e.g.
pos_int € I(PATH) for the position interval of
a sheet.

e Participants: specifying instances of concepts that
have to be present, and their names (used as local
variables), e.g. te : TransportationElement is one
participant in the SheetTransportation process.

e Conditions: statements that have to be satisfied
to establish the existence or the activity of the
model, e.g. te.engaged = T is necessary for a
SheetTransportation, where engaged is a variable
in the participant fe.

e Consequences: Statements that are implied by
the existence or activity of the model, such as
|pos_int| < length for a sheet.

We will first describe the components of the copier
that drive the sheets along the paper path — the re-
spective models are shown in Table 1. Any transporta-
tion element has a parameter surfacetype which will be
used to distinguish between different effects of friction
e.g. between a belt which allows slipping of the sheet
(as in belt 9) and a roller that does not. Furthermore,
a transportation element has a position pos_int which
is an interval on the paperpath. If we wish to ideal-
ize the interaction between a transportation element
and the sheet as happening at a single point this can
be realized by making pos_int a one-point interval.
Note that we introduce pos_int as a parameter, which
means it is considered to be fixed. Thus we do not
cover transportation elements that may act at various
positions or themselves move while transporting the
sheet. It does not imply, however, that the component
is always physically located at pos_int. The variable
denotes the interval on the path where it is supposed
to interact with the sheet, provided it is engaged. It
may be displaced, for instance due to disengagement
or a fault. engaged is the variable that specifies this.



We assume that transportation elements do not
overlap on the paper path, and that there is no branch-
ing happening within pos_int. The variable vyom de-
notes the speed with which the component would carry
the paper along the interval pos_int in the absence of
all other forces. It is assumed to be constant along
pos_int, and is determined by the speed of the motor
that drives it. Although for most components v,om is
fixed, there are exceptions: the inverter roller (roller 6
in Fig. 1) changes the direction of its movement, and
roller 10 goes from 0 to a positive velocity. Finally,
there is the actual speed of the transportation element
Uget, Which may differ from the nominal speed. Dif-
ferent types of components impose different relation-
ships. This is captured by the different subclasses of
TransportationElement in Table 1. There are rollers
with a clutch that allows the roller to spin faster than
the motor driving it, namely if the sheet is pulled by
a faster roller upstream. In contrast, a transportation
element without a clutch enforces equality of v, ,m and
Ugct- Copier belts are examples of such components.

Note that these models cover a variety of different
physical mechanisms, that are used in such compo-
nents, for instance normal spring or vacuum forces. If
these details matter, e.g. for diagnostics, the compo-
nents classes could be further specialized.

Transportation Element
Parameters
posant € I(PATH)
surfacetype € STYPES
Variables
engaged € {T, F}
Vnom, Vact € R

RollerWithClutch
Subclass-of
TransportationElement
Consequences
[vact| 2 [vnom|

TEWithoutClutch
Subclass-of
TransportationElement
Consequences

Vact = Ynom

Belt
Subclass-of
TEWithoutClutch

Table 1: Model fragments for transportation elements.

4.3 Sheet and Sheet Segments

The second basic class of objects is, of course, the
sheets that are being moved around. Parameters char-
acterizing a sheet are its length, a surfacetype, that to-
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gether with that of the transportation element deter-
mines sliding phenomena, and stiffness, which allows
us to determine whether or not a sheet will buckle
(Table 2). Our current model treats these properties
as homogeneous across the whole sheet. Future ex-
tensions have to drop this restriction — the reader
is familiar with transparencies with a white strip at-
tached for increasing friction.

A sheet has a position pos_int on the path, i.e. occu-
pies an interval on PATH. For reasons of compact rep-
resentation we introduce sheet conditions straight and
buckled, which give the relation between the length of
the sheet and the length of pos.int, as shown in the
consequences of Sheet in Table 2.

We add another variable, tearing, a flag that indi-
cates that the sheet is being torn apart. This should
last only for an instant: as soon as a sheet is torn,
we stop the simulation, and can raise an exception.
The fact that a sheet is not torn is captured by the
consequence |pos.int| < length.

As already indicated in Fig. 2, we consider a sheet
with n transportation elements acting on it, where
n > 0. Since transportation elements are assumed to
have disjoint positions on the path, this induces a seg-
mentation of the sheet — an alternating sequence of
segments on which the transportation elements act or
not (Fig. 4). Our model treats these segments as the
primitive “parts” of a sheet that together determine
the motion and condition of a sheet through their own
motions and conditions.

Note that the segments are “virtual” parts in the
sense that, over time, they represent different physi-
cal portions of the sheet and that they are created, de-
stroyed and changed in type as the sheet moves along
the path.

As captured by the concept of SheetSegment (Table
2), each segment belongs to one particular sheet, has
a position pos_int on the path and a length. Also,
like a sheet, it can be buckled or straight, with the
same definitions, and tearing, and has some stiffness
(which may change for a segment depending upon its
length). The magnitude of length — |pos.int| deter-
mines the amount of buckling, which has to be limited
in a copier.

The consequences express certain obvious con-
straints between the condition of a sheet and a seg-
ment, for instance, that all segments of a straight sheet
are straight, too.



Sheet

Parameters
length € R
surfacetype € STYPES
stiffness

Variables
pos_int € [(PATH)
condition € {straight, buckled}
tearing € {T, F}

Consequences
|posint| < length
condition = straight < |pos_int| = length
condition = buckled & |pos_int| < length

SheetSegment

Participants
sht: Sheet

Variables
pos.ant € I[(PATH)
length € R
Vieft, Uright € R
impactiep, impactrighe € R
condition € {straight, buckled}
stiffness, tearing € {T, F}

Conditions
pos_int C sht.pos_int

Consequences
|posant| < length
£b(pos_int) = (transien, vies:)
Sub(pos_int) = (transrighe, Vright)
condition = straight & |pos_int| = length
condition = buckled < |pos.int| > length
sht.condition = straight = condition = straight
condition = buckled = shi.condition = buckled
tearing = T => sht.tearing =T
stiffness = T = condition = straight
impactiepe X impactrighe < 0
stiffness = f(sht.stiffness, |pos.int|)
Vs : SheetSegment.(s.sht = shiA

s.posint Nposint # @ = s.pos_int = pos_int)

ContactSegment

Subclass-of

SheetSegment
Participants

st : SheetTransportation
Conditions

pos.int = st.contactint

sht = st.sht
Consequences

Uleft = VUright

condition = straight

FreeSegment
Subclass-of
SheetSegment
Conditions
Ib(pos_int) = lb(sht.pos_int) V 3cs : ContactSegment
(sht = cs.sht A ub(cs.pos_int) = Ib(pos_int))
ub(pos_int) = ub(sht.pos_int) V 3cs : ContactSegment
(sht = cs.sht A Ib(cs.pos_int) = ub(pos_int))
Consequences
condition = buckled = impactiy = tmpactrighe =0
condition = straight A vrighe > viep = tearing =T

:tearing=F
tearing=

LeftTailSegment
Subclass-of
FreeSegment
Participants
cs : ContactSegment
Variables
leading, trailing € {T, F}
transien € Nx N
Conditions
sht = cs.sht
Ib(pos_int) = Ib(sht.pos_int)
ub(pos_int) = lb(cs.contactint)
Consequences
impactrigh: =0
condition = buckled = vy =0
condition = straight = viep = vrigh:
leading =T 4 viese < 0
trailing =T & viepe > 0
trailing =T = (transip = (1,7) &
3pos_int’ C pos_int, |pos_int’| > 0A
Ib(pos_int") = Ib(pos_int) A pos_int' C section(j))

InternalSegment
Subclass-of
FreeSegment
Participants
CSleft, CSright : ContactSegment
Conditions
sht = cSiepi.sht = c3pigne.shi
Ib(pos_int) = ub(csicp.pos.int)
ub(pos_int) = Ib(csrighe.pos-int)
Consequences
condition = straight A stiffness=F
= impactiept = maz(0, Vright — CSlesr.5t.1€.Vnom)
Atmpactrighe = min(0, Viese — CSright.51.1€.Vnom)
stiffness=T
=> tmpactiest = Vright — CSieft-S1.1€.0nom

For the purpose of modeling the transportation, the
key part concerns velocities which are considered at
the left edge and right edge of the segment’s position
only. Furthermore we introduce variables impact.p
and impact,igh:, that represent the potential impact
the forces and motion of the right-hand edge of the
segment may have on the left-hand edge and vice
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AImpactright = Vieft — CSright-St.1€.Unom

Table 2: Model fragments for the sheet.

versa, as already explained in the previous section.
(fmpacte;e means impact on the left because of the
right).

The constraint impactis x impactrign: < 0 in the
consequences is a central one. It eliminates implicit
cycles in causality: both impacts cannot go in the
same direction. Intuitively, if the right side tends to
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Figure 5: Class hierarchy of sheet segments.

“pull” at the left side, then the left side cannot si-
multaneously “push” the right. They could however
pull each other. Finally we have a consequence stating
that no two segments of the same sheet may overlap,
this comes from our intuition that the sheet cannot
fold back on itself.

As indicated above, we distinguish between different
classes of segments depending on how they are related
to the transportation elements. ContactSegments (Ta-
ble 2 and Fig. 4) are the segments directly under the
influence of a transportation element. This influence
will be modeled in the SheetTransportation process de-
scribed in Section 4.4. Here it suffices to understand
that a SheetTransportation is related to one sheet and
has a position contactint that is the overlap of the po-
sitions of the sheet and the TransportationElement.
The condition for a ContactSegment is, hence, that
it shares both with an existing SheetTransportation.
Our model assumes that both ends have the same ve-
locities and that no buckling occurs — actually this
might be violated on a belt, at least under fault con-
ditions.

The other segments are FreeSegments. The two con-
ditions say that FreeSegments are maximal in the
sense that they are on both sides limited by the edges
of the sheet or the boundary of a contact segment.
The first consequence states that a buckled sheet does
not transmit any impact from one side to another, an
aspect of the simplified binary treatment of buckling.
Furthermore, a straight segment is tearing if its right
speed exceeds its left speed, but the last consequence
makes tearing an exception, reflecting the assumption
that sheets are usually strong. It is a default rule in
the sense of [Rei80] and means that if the model al-
lows for a solution without tearing, then tearing will
remain false. In the comparison of velocities at differ-
ent pathpoints, we exploit the assumption stated in
Section 4.1 that the sections are aligned.

The first kind of segments are tail segments, which
have a contact segment on one side only. The class
LeftTailSegment describes such a situation. Since
nothing acts on the left edge, the impact on the right
side, where the transportation element applies, is 0.
The RightTailSegment is analogous. In the current
model we do not consider situations when no trans-
portation element is acting on the sheet (e.g. at the
output). This would require considering gravity and
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inertia, both of which are avoided in our model.

We distinguish between a tail segment leading i.e.
moving its edge beyond a currently occupied position,
or trailing. This is relevant as the leading tail seg-
ment determines the motion of a sheet, particularly at
branching points (see Section 4.5), while the trailing
segment just follows the sheet. The latter behavior
is expressed by the last consequence in LeftTailSeg-
ment. Note that for a buckled sheet both edges could
be leading or trailing.

Finally, there are the free segments with contact seg-
ments on both sides, the class Internal Segments. The
core of the model is again the set of constraints on the
impact variables. For example, a straight segment that
is not stiff can only “pull”. This means that impact .z
is always positive and it may increase the speed of the
sheet on the left above the nominal speed of the trans-
portation element there up to the speed on the right.
Similarly impact igne can only be negative, “pulling
backwards”. However, a stiff segment can “pull” and
“push”, so its impacts can be in either direction. The
last consequence indicates that whether a segment is
stiff or not depends on the sheet’s stiffness and the
length of the segment. This binary valued model will
be further refined, and may include a dependency on
whether a segment is straight or not. The concept
of the impacts captures the intuition we tried to con-
vey in the previous section. Their combined effect is
computed by the SheetTransportation.

4.4 Sheet Transportation

This concept (Table 3) involves a transportation ele-
ment and a sheet. Its conditions state that the trans-
portation occurs if the transportation element is en-
gaged and some part of the sheet is in contact with
it. The contact position is given by the intersection of
the positions of the sheet and the transportation ele-
ments, and may vary as the sheet travels through the
transportation element. The next consequence states
that there must be a unique contact segment of the
sheet corresponding to this sheet transportation, this
is called contseg, and is used in the later consequences.
The impact variables receive inputs from the left and
right free segments, if they exist. The left and right
speeds are also identified with the speeds of any adja-
cent segments.

The next consequence is the crucial one for deter-
mining the actual speed of the contact segment. The
speed is bounded by the potential modifications of
the nominal velocity of the transportation element
through the impacts of the neighboring free segments.
What is actually expressed by the inequality is some
explicit resolution of the influences on the speed of the
segment, and hence involves a closed world assump-
tion — if there were other forces acting on the paper,
it might violate these bounds.

The second contribution of the Sheet Transportation



SheetTransportation
Participants
sht : Sheet
te : TransportationElement
Variables
contactint € I(PATH)
slide € {T, F'}
tmpactin € R
impactrigh: € R
Conditions
te.engaged =T
te.pos_int N shi.posint # @
Consequences
contactint = te.posint N sht.pos_int
Jlcontseg : ContactSegment.contseg.sht = sht
Acontseg.pos_int = contactint

If 3segiess : FreeSegment[sht = segi.p.sht
Aub(segies:.pos_ant) = lb(contactint)]

then impactiep: = segiep.impact ighe
AUlept = S€Gleft Uright

else impactin = 0

If 3segrighe : FreeSegment[sht = segrigne.sht
Alb(segright.pos_int) = ub(contactint)]

then tmpact ight = S€gright.itmpacti. g
AUright = S€Gright-Vieft

else impactright = 0

min(te.vnom + tmpacties, te.Vnom + tmpactrigh: )
< sht.viepn
< maz(te.Vnom + tmpacties:, t€.Vnom + iMpactright)

slide = f(te.surfacetype, sht.surfacetype)
slide = F = te.vaer = contseg.vip

min(te.vnom, CONtSEg.vies)
S teqvcgg
< maz(te.vnom, contseg.vies)

Table 3: Model fragment for SheetTransportation.

is to determine the actual speed v, of the transporta-
tion element. Remember that it has been related to
Unom i models for the transportation elements, e.g.
by |vact| > |vnom| if @ clutch is present. If no sliding
occurs (determined in a binary way from the surface-
types), va.t equals the segment speed. The last conse-
quence expresses that if ve.; deviates from v,om, then
this can be only due to the segment driving it, and is
hence bounded by its speed.

As indicated in the previous section, we now have
constrains on the velocities local w.r.t. the Sheet-
Transportation processes. These interact by transmit-
ted impacts through free segments. This is the basis
for determining bounds for the speeds of the segment
edges and of the entire sheet. In section 5, we illustrate
this by applying the model to a non-trivial example.
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4.5 Branching

What remains to be modeled is the motion at branch-
ing points. In the copier, this is controlled by
gates which either permanently (gate 12 in Fig.
1) or dynamically (gates 11 and 13) restrict the
section transitions that are possible in principle
(connections(branch)) to a subset. This is captured
by the Gate model in Table 4. We have to introduce
gates at all branching points, even though the restric-
tion of the section transitions may be due to geometry
rather than a real physical gate (e.g. near roller 2 in
Fig. 1).

As stated earlier, the direction of the motion is deter-
mined by a leading tail segmeni. Hence, the Branch-
ingLeft process (Table 4) involves a Gate and a Left-
TailSegment, which has to be leading and have its
edge at the branching point of the gate. The conse-
quences then restrict transj.s of the tail segment to
the connections allowed by the gate. Continuity of
transys (see Section 4.1) will select those that match
the section from where the edge is approaching. In a
designed artifact, this should uniquely determine the
transition under normal conditions. Again, Branchin-
gRight is symmetric to this model.

Gate
Parameters
branch: BRANCHINGPOINTS
Variables
connections € N x N
Conditions
connections C connections(branch)

BranchingLeft
Participants
tseg : LeftTailSegment
gate : Gate
Conditions
tseg.leading =T
Ib(tseg.pos_int) = gate.branch
Consequences
tseg.transiu € gate.connections

Table 4: Model fragment for gates and branching.

5 Example
As an example to illustrate the use of our model, we
apply it to the scenario in Fig. 6. Scenarios in copiers
are much simpler than this due to design principles.
The sheet is in contact with all 4 rollers. It is ini-
tially straight, and is not stiff anywhere. All rollers
contact the sheet at a point, so all contact segments
are of length 0. We will thus identify the v,z and
Vright, and simply call it v; for each contact segment
t, where a contact segment is given the number of the
transportation element it is under.



Roller 1 Roller 2 Roller 3 Roller 4
Vnom= 10 Vnom= 13 Vnpom= 10  Vnom= 15

3 4
Onenuuon

One way clutch One way clutch  One way clutch No clutch
no sliding no sliding noshding  sliding possible

Figure 6: An example scenario.

There are 5 free segments, of which segment 0 is
the left tail segment, and segment 4 is the right tail
segment, while all the others are internal segments.
The sheet is not stiff, so none of the segments is stiff.

As there are 4 transportation elements, there are 4
instances of the class SheetTransportation. For the
first 3, we assume slide = F, whereas for the fourth,
slide = T.

Thus we get the following equations from the various
model fragments.

Rollerd.vg,.

15

(no clutch)

Rollerl.vgee > 10 (clutch)

vy = Rollerl.vge: (no sliding)
Roller2.vg,: > 15 (clutch)

v2 = Roller2.vse: (no sliding)
Roller3.vgee > 10 (clutch)

va = Roller3.vae (no sliding)

Seg(i)-viese v; = Seg(i — 1)-Uright

Besides this we also get equations for the impacts on
either side of the segments. Substituting some values
from the equations above, we obtain the following.
The second to seventh equations follow as the sheet is
straight and not stiff.

0 (left tail)
maz(0,v2 — 10)

min(0, vy — 15)

maz(0, va — 15)

min(0, v, — 10)

maz(0,vs — 10)

min(0,vs — 15)

0 (right tail)

Seg0.impact,;gh:
Segl.impactes
Segl.impact righe
Seg2.impact jup
Seg2.impact right
Seg3.impact jop
Seg3.impact righe
Seg4.impact j.p

(L L [ I (I

From the model fragment for SheetTransportation
1, we thus get the following inequality.

10 < vy < maz(10, maz(10, v;))

Since v > 15, this means 10 < v; < wvy. Thus
Segl.impactis: > 0, so Segl.impactighe < 0.
Now we apply this information to the equation for

SheetTransportation 2. We then get

15 € v3 < maz(15, maz(15,vs3))
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i=1,234

If v3 > 15, then Seg2.impacti > 0. This
means that Seg2.impact,ine = 0, thus we would
get from the equation for SheetTransportation 3 that
Segd.impact;,x > 5. But that would mean that
Segd.impact igne < 0, which would give v4 = 15, thus
Seg3.impact.se = 5. This is a contradiction, thus
v < 15, so we conclude v, = 15.

Now we can conclude that Seg2.impact ign: = 0, so
the inequalities for SheetTransportation 3 and Sheet-
Transportation 4 yield:

10 < v3 < maz(10, vs)
min(15, v3) < vg < maz(15, min(15, v3))

Note that v3 > 15 gave us a contradiction before.
So v3 < 15. Thus we get 10 < v3 < vyq < 15.

Since there are no other equations available, we ap-
ply the no-tearing default rule to Segl and Seg3. This
gives us v < v; as tearing = F, thus v; = v;. Simi-
larly, we get vs = vq, which gives us 10 < vz = v4 <
15.

There are no more equations, so this is the best re-
sult our model can provide. And it agrees with what
one would expect: it tells us that the sheet has a speed
15 at rollers 1 and 2, roller 1 spins faster than its nom-
inal speed. At rollers 3 and 4 the speed is between 10
and 15. Thus segments 1 and 3 remain straight, while
segment 2 may buckle if vs < 15, and then sliding
would occur at roller 4. A more accurate model which
had information on the relative friction forces between
the rollers and paper would enable us to give precise
numbers for vs and v4, rather than an interval.

6 Summary and Discussion

The work presented here is a first step towards a
declarative and general model of paper handling in
a copier. The concepts, however, are more general
and should be useful in other transportation processes
(e.g. in textile manufacturing or printing). The key
point is splitting the overall process into locally acting
transportation processes, which are then related by
impacts transmitted by the transported object. Par-
ticular properties, such as elasticity, of these objects
can then be expressed at these points.

The model provides a good coverage of the actual
and conceivable scenarios in paper handling, with
some limitations pointed out in section 4. This has
been achieved at a fairly abstract qualitative level of
representation that refers to velocities only.

A weakness of the model that needs to be overcome
is the binary treatment of features like stiffness, slid-
ing etc. A related deficiency is the necessity to resolve
some ambiguities through the non-tearing default. A
solution to these problems has to take forces into ac-
count, for instance through a qualitative comparison
of friction to the strength of the sheet. We are cur-
rently working on such an extension and will present
it separately. The key idea is to analyze and compare



forces in the same structural scheme as the veloci-
ties, and to assume that everything is at equilibrium.
Thus we can draw free-body diagrams for each of the
components, the resulting constraints are solved to
determine the motion of the paper. This analysis de-
termines which features occur, e.g. sliding or tearing,
and hence the appropriate velocity model. In this way
we still avoid a detailed study of acceleration. How-
ever, a “gold-standard” model that includes forces,
accelerations, mass and inertia, has to be related to
our model in order to reveal its assumptions and limi-
tations (e.g. using the theory of model transformation
and simplification of [Str92]).

As of now, this model exists and has been analyzed
on paper. We plan to formulate it as a domain the-
ory in CML ([F*94]), and also implement it in tcc
([SIG94, SIG95)), a reactive declarative constraint-
based language. An efficient implementation would
have to exploit good solutions to the creation, mod-
ification and elimination of sheet segments. This is
possible in tcc since these actions are tied to particu-
lar events — a sheet entering or leaving a transporta-
tion element, engagement of a transportation element,
tearing etc.

In order to evaluate the model and its implementa-
tion, the first goal is to perform simulation of a pho-
tocopier, and use it to check the control code. Later
we will use it for code generation, explanation and
diagnosis also.
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