
Diagrammatic Reasoning by Propagating
Constraints Through Geometric Objects: An

Application to Truss Analysis

Abstract : A diagrammatic reasoning for
structural analysis on trusses is proposed and
demonstrated on many examples . In the
reasoning, deflected shape of a substructure is
drawn at first then it is reasoned how the
remaining substructure is affected by the
deflection . By identifying the elongated parts
are in tension and shortened parts are in
compression, a qualitative stress analysis can be
done diagrammatically . The method is
implemented on a graphical tool that allows
direct operation on geometrical objects
constraining with each other by geometric
constraints. Some theoretical correspondence
between drawing diagram and qualitative
determinacy of a stress is also addressed.

1 Introduction

There has been a long debate on whether
picture metaphor [Kosslyn 80] or verbal
metaphor [Pylyshyn 75] is close to the mental
representation and processing of human. Other
than the cognitive privilege of diagrams, [Larkin
& Simon 87] demonstrated the computational
advantage of diagrams coming from the
characteristic of the way a diagrammatic
information is represented . That is, a
diagrammatic information is represented in two
dimensions as opposed to the verbal information
is represented sequentially in one dimension .

Based on the observation that a diagram has
several advantages as a knowledge
representation scheme and as a plat form for
reasoning,

	

diagrammatic reasoning has been
proposed [ Iwasaki et al 92], and is receiving
increasing attention in artificial intelligence
research in not only its fundamental exploration
by application to many fields [Narayanan Eds 92
] . This work is also based on this line .
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Motivations behind this work are two folds;
(1) As in [Fruchter et al 91], supporting the early
design stage of structure, where exact data are not
available for a designer, (2) Expanding the
conventional CAD system capability by
introducing diagrammatic reasoning on the
graphical data, which are only used for spatial
configurations so far.

Although many applications to structural
analysis by qualitative reasoning have been
proposed ([Fruchter et al 91] and those cited in
this paper), relatively few researches have been
done [Iwasaki et al 92] on applying diagrammatic
reasoning to the field. This work follows the
same line as the latter . That is, rather than
symbolically process the qualitative equations
we more heavily depend on diagrammatic
reasoning for the qualitative analysis of the
structures . In this diagrammatic reasoning, the
target objects, (trussl structures in this report), are
represented by diagrams, and several
diagrammatic operations (deflection of
substructure

	

as stated in the next section) are
directly performed on the diagrams .

In qualitative structural analysis on trusses,
we are interested in figuring out whether a bar is
in tension or in compression (not exact value of the
internal forces) given the qualitative geometry of
trusses where only qualitative value of
angles(acute, right, obtuse) are preserved. Our
goal is to carry out the qualitative structural
analysis on the truss structure using geometrical
shape of the truss (geometrical data

	

of an

1 In geraral, a truss is a structure composed of auxially
stressed bars, some of which are in tension and some in
compression, and which the bars are arranged to form
one or more triangles ( quoted from [Chajes 90]) . For
other technicalities regarding strucural analysis, refer to
the books about structural analysis such as
[Timoshenko & Young 65].



instance of the qualitatively same class) and
heuristic knowledge (which will be discussed in
detail in the next section) related to the shape.

2 Basic Ideas

The method is

	

what we call Drawing
Deflected Shape reasoning . Given the diagram of
a truss, the reasoning goes on as follows:

1 Draw the deflected truss on the original
truss diagram.

2 Compare the deflected truss with the
original one. If the bar is elongated it is
in tension, if it is shortened it is in
compression.

Example 1
Fig. 1 shows the example of truss (solid line)

and its deflected shape(dotted line) under given
loads(arrow) . It is almost evident whether each
bar is in tension or in compression by the diagram.
Deflected shape put on the original shape
appeals to our visual perception not only from
static viewpoints but also from

	

kinematic
viewpoints. In variable trusses

	

such as found in
space structure in which the length of each bar is
controlled, it must be analyzed how the goal
shape can be attained from the current shape by
elongating (or shortening) each bar. This problem
also can be solved in the

	

Draw Deflected Shape
Reasoning .

V/////.
Fig. 1 An example of a structure(arch) and its

virtual deflected shape

In this deflection, we assume that only the
length of each bars and angles among bars are
variable . We call this deflection involving the
change of length of bars as well as the angles
among bars angle-length deflection, and
distinguish it from angle deflection where only
angles are changed. In the implementation in
section 3, we focus on angle deflection where the
bars assumed to be rigid do not change the length,
and the bars asssumed to be not rigid are removed.

Since the diagrammatic reasoning adopted
here is straightforward, it may be expected that
it has intuitive explanatory and anticipatory
powerwhen presented graphically on screens.

2.1 Drawing deflected shape

From the structural viewpoint of static
determinacy, there are three types of trusses;
determinate, indeterminate, and unstable
structure. The first two, have enough reactions to
be fixed under loads. However, the last type
(unstable structure) does not have enough number
of reactions to prevent motion (in case of
externally unstable) or deflection(in case of
internally unstable) . Hereafter, we use the term
unstable meaning internally unstable unless
otherwise

	

specified. The following

	

procedure
for obtaining deflected shape is based on this
observation.

1 . Given the original diagram of truss
and loads, remove some bars to make
it unstable.

2. Draw a deflected shape of the
unstable truss.

3. Continue the same procedure if
there is a different unstable
substructure in the original truss.

Removing one bar, in general, does not result in
unstable structure . However, in simple trusses,
removing one bar always turn out to be unstable
structure2.

In the first step of obtaining unstable
substructure, many types of heuristics are used .
Basically, searching for simple unstable
substructure such as square works well. Since we
could know whether it is elongated or shortened
for removed bars, as many bars as possible
including those of interest should be removed in
the first step for efficiency . In the second step of
drawing the deflected shape, angle deflection is
carried out for the remained substructure .
Removing one bar will create one degree of
freedom, hence two mode of deflections (one
shortening the removed bar and another
elongating the removed bar) . Among these two
geometrically possible deflection modes, we must

2 Let j and m be the number of joints and bars in a
truss . Then, it is known that the relation m--2j,
m>2j, and m<2j hold for determinate, indeterminate and
unstable case respectively . Since m=2j holds for a
simple truss constrained in a plane, removing one bar
always results in unstable structure .



select one physically possible mode; we must
select a deflection mode which has at least one
joint whose displacement is the same as the load .
When no displacement is obtained for a loaded
bar, then the bar is inactive(i.e., the bar do not
carry either tension or compression) .

The next example shows how the deflected
shape is obtained .

Example 2
In the truss shown in solid line in Fig.2, first,

two internal crossing bars are removed . Then it is
easily imagined that the remained square will be
deflected as shown in dotted line . Since the bar 1
will be shortened and bar 2 will be elongated in
this deflection, their internal force will be
compression and tension respectively.

Fig . 2 Deflected shape of a truss

3 Implementation by Constraint
Propagation Through Geometric Objects

3.1 . Primitives of Geometric Objects and
Geometric Constraints

Commercial software3 is already available,
which allow to draw simple geometric objects
such as circles, lines, and points that are
geometrically constrained with each other . Two
different types of geometric constraints may be
used . One is the hierarchical relation that a
child geometric object constrained by its parent
geometric object . For example, if a point is the
child of a line, then the point can be moved only
on the line (i .e . constrained by the line) . The
other is the geometric relations that maps one
object (or a set of objects) to the other object (or a
set of objects) . For example, a triangle consisting
of three lines can generate its mirror image
through an axis of symmetry . Other than axial
symmetry, rotation and dilation can be used to
generate the image of the original object . Other

3We used The Geometer's Sketchpad by Dymamic
Geometry .

geometric relations include perpendicular,
middle point, intersection point, etc .

3.2. Primitives for Constructing Trusses

Construction of physical objects such as trusses
by the primitives of geometric objects is not
straightforward . Consider a triangle of three
rigid bars whose one joint is fixed hence can be
rotated around the joint, that is, the triangle has
one degree of freedom (rotation around the joint) .
Fig . 3 shows all the objects for the geometric
constraints. The point D is a child of the circle 1
(hence constrained on the circle) . The point D' is
the image generated by rotating D 45 degree
around the point A . The point H is the
intersection of the circle 2 and the extended line
of AD'. The rigid triangle ADH fixed around the
point A can be constructed in this manner.

We have prepared these primitives for
constructing 2-dimensional simple trusses . The
trusses can be constructed by relating these
primitives with two types of geometric
constraints mentioned above.

Thistriangieisstiffwhichsfixedthe,
rotationcenterA.DragDarounl

Fig. 3 Physical Object of the Rigid Triangle
Constructed by Primitives of Geometric Objects
and Constraints (Hidden geometric objects used
for geometric constraints are also shown.) .

3.3. Truss Construction and Stress Analysis

As discussed in the previous section, we need
to determine which bars are of interest for stress
analysis . All the other bars are then assumed to
be rigid (the length is fixed). The construction of
the truss for stress analysis depends upon which
bars are assumed to be rigid, since degree of
freedom and types of freedom (such as rotation,
translation) depend upon the assumption . The
path of how the geometric constraints propagate
reflects one of possible multiple paths of how the
forces propagate . Thus, the truss for stress



analysis must be constructed in different ways
based on the different set of rigid bars .

Fig. 4a and Fig. 4b show two deflected shape
of the part of the common truss . The right figures
for Figs . 4a and 4b show all the hidden objects
used for geometric constraints . In Fig. 4a , the
rigid triangle ADH fixed around the joint A
(with one degree of freedom; rotation around A) is
connected to the rigid bar DD' constrained on the
horizontal line through D. A' and H' are mirror
image of A and H by the axis of vertical line
through the middle point of DD'. The bar HH' is
the child obtained by simply connecting H and H'

Length (Segmentj) = 3 .15
Length(Segment b) = 3 .70
Length(Segment f) = 1 .58

Length (Segmentj) = 3 .70
Length(Segment b) = 3 .70
Length(Segment f) = 2.01

iawmicnsrixeatne
erA.Thelengthofbis

engthofjissetfree .
DragDaroundA

Fig. 4a The Deflected Shape of A Part of Simple Truss. Triangles ADH, A'D'H' and the bar DD' are
assumed to be rigid. A is center of rotation for the triangle ADH and A' is constrained on the horizontal line
through A. Left figure shows all the hidden objects . Arrows in right figure show the load .

Lengthofj,b,g,andrarekeptconstant .
ThejointAisfixed,howeverA'isfree
tathehofzontaldirectionDragD around4.

so far obtained . By the deflected shape, the
length of HH' is known to be shortened .

In Fig. 4b, the rigid bars AD and AH are
connected to the rigid bars DD' and HH', which
again connected to the rigid bars A'D' and A'H' .
The triangle ADH in this figure is constructed as
follows . The point D is constrained on the circle
whose center is A. H is the intersection of the
vertical line through D and circle of the radius
AH whose center is again A. This triangle ADH
is connected to the same primitive as that of Fig.
4a As known from the deflected shape, DH (and
D'H') is known to be elongated .

Fig. 4b The Deflected Shape of A Part of Simple Truss. The bars AD, AH, A'D', A'H', HH' and DD' are
assumed to be rigid. A is center of rotation for the bars AD, AH. DD', HH' and A' is constrained in the same
manner as that of Fig. 4a. Left figure shows all the hidden objects . Arrows in right figure show the load .



4 Qualitative Analysis and
Classification on Simple Trusses

In order to know whether

	

the results of the
above Drawing Deflected Shape reasoning are
valid for that specific instance or for all the
instances of the same qualitative structure, we
have to know that the substructure obtained by
removing bar(s) has qualitatively invariant
pattern of shortened or elongated for all the
instances of the same qualitative structures . The
complete characterization of the structure
having such qualitative invariant pattern has
not yet been known . However, we have
characterized some typical structures which can

(1) Rigid part 1 is fixed .

	

(2) Neither of the rigid parts is fixed.
(a)

	

Two rigid parts 1 and 2 are connected by a joint .

(1) Rigid part 1 is fixed .

	

(2) Neither of the rigid parts is fixed.
(b)

	

Two rigid parts 1 and 2 are connected by a joint and two bars.

Fig. 5 Classification of the substructure by removing a bar from simple trusses.

be proved to have the qualitative invariant
pattern of deflection . Whether or not the
structure have a qualitative invariant pattern
depends also on how the load is applied. We
assume here that the load is only in the vertical
direction .

4.1 Simple trusses
In case of simple trusses, substructure obtained

by removing a bar has the structure of two rigid
parts connected in the following ways :
(a)

	

Two rigid parts connected by a joint (Fig . 5
(a)) .

(b) Two rigid parts connected by a joint and two
bars(Fig . 5 (b)) .

(c) Two rigid parts connected by two bars (Fig . 5
(c)) .



Among the cases shown in Fig . 5, the
following cases have a qualitative invariant
pattern of deflection no matter to which joins the
vertical loads are applied. (Proofs are rather
lengthy and omitted here .)
"

	

(a)

	

Two rigid parts connected by a
joint (Fig . 5 (a)) .
(b)-(1) Two rigid parts connected by a joint
and two bars where one rigid part is
fixed(Fig. 5 (b)-(1)) .

"

	

(b)-(2)' Two rigid parts connected by a joint
and two bars where neither of the rigid parts
is fixed and that the two bars connecting the
rigid parts form a line(Fig . 6 (b)-(2)') .

"

	

(c)-(1)' Two rigid parts connected by two bars
where one rigid part is fixed and the two
bars connecting the rigid parts are in
parallel(Fig . 6(c)-(1)') .
(c)-(1)" Two rigid parts connected by two bars
where one rigid part is fixed and the two

(1 )' Rigid part 1 is fixed
and the two bars connecting the
rigid parts are in parallel .

D

E
(1 )" Rigid part 1 is fixed
and the two bars connecting the
rigid parts crosses on the point of
the joint of the rigid part .

bars connecting the rigid parts crosses on the
point of the joint of the rigid part(Fig . 6 (c)-
(1)") .
(c)-(2)' Two rigid parts connected by two bars
where neither of the rigid part is fixed and
the two bars connecting the rigid parts are in
parallel(Fig . 6 (c)-(2)').
(c)-(2)" Two rigid parts connected by twobars
where neither of the rigid part is fixed and
the two bars connecting the rigid parts crosses
on the point of the hinge of the rigid
part(Fig . 6 (c)-(2)") .

In other words, the substructure obtained by
removing a bar in simple trusses does not
generally (except case (a) and (b)-(1)) have the
qualitative invariant pattern of deflection, hence
the results by Drawing Deflected Shape
reasoning is valid only for the instance
corresponding to that specific diagram.

Ara 1

(2)' Neither of the rigid parts is fixed and that
the two bars connecting the rigid parts form a
line .

Two rigid parts 1 and 2 are connected by a joint and two bars .
D 4 C

	

D 4 C

(2)' Neither of the rigid parts is fixed
and the two bars connecting the
rigid parts are in parallel .

(2)" Neither of the rigid parts is fixed
and the two bars connecting the
rigid parts crosses on the point of
the hinge of the rigid part .

(c) Two rigid parts 1 and 2 are connected by two bars .
Fig. 6 Substructure of simple trusses having qualitative invariant pattern of deflection.
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(i) Two rigid parts connected by a joint and two bars where two joints of the

two bars connecting the rigid parts are inside between two hinges and the
sum of internal angles of the square formed by two connecting bars and
one connecting joint is greater than n .

H1
\\\\

(ii) Both pair of rigid parts 1 , 2 and 2 , 3 are connected by a joint and two bars
where two joints of the two bars connecting the rigid parts are inside
between two hinges and the sum of internal angles of the square formed
by two connecting bars and one connecting joint is greater than 7c for each
square.

1 H

(iii) Both pair of rigid parts 1 , 2 and 2, 3 are connected by two bars where each
pair of bars connecting rigid parts are in parallel .

Ao~ 1

M\\\\\N
(iv) Both pair of rigid parts 1 , 2 and 2 , 3 are connected by two bars where

joints of upper connecting bar is inside between two hinges and the angle
(measured from horizontal line) of the upper connecting bar is smaller
than that of lowe connecting bar.

Fig. 7 Trusses with bilateral symmetry having the qualitative invariant
pattern of deflection.



4.2 Trusses with bilateral symmetry
Other than simple trusses, trusses with

bilateral symmetry are important since they
often appear in the real structures . We have
characterized some typical structures with
bilateral symmetry that have the qualitative
invariant pattern of deflection. We present some
results without lengthy proofs .

"

	

The following structure have the qualitative
invariant pattern of deflection when one
central bar is removed .
"

	

(i)

	

Two rigid parts connected by a
joint and two bars where two joints of the two
bars connecting the rigid parts are inside
between two hinges and the sum of internal
angles of the square formed by two connecting
bars and one connecting joint is greater than it
(Fig . 7 (i)) .

The following structure have the qualitative
invariant pattern of deflection when two bars
of symmetrical position are removed . In this
case the trusses will have three rigid parts
and we name them 1, 2 and 3 from the left to
the right .
"

	

(ii) Both pair of rigid parts 1 , 2 and 2, 3
are connected by a joint and two bars where
two joints of the two bars connecting the rigid
parts are inside between two hinges and the
sum of internal angles of the square formed by
two connecting bars and one connecting joint is
greater than n for each square(Fig. 7 (ii)) .
"

	

(iii) Both pair of rigid parts 1 , 2 and 2, 3
are connected by two bars where each pair of
bars connecting rigid parts are in
parallel(Fig . 7 (iii)) .
"

	

(iv) Both pair of rigid parts 1, 2 and 2, 3
are connected by two bars where joints of
upper connecting bar is inside between two
hinges and the angle (measured from
horizontal line) of the upper connecting bar is
smaller than that of lower connecting
bar(Fig. 7 (iii)) .

5 Conclusion
We proposed a diagrammatic reasoning for

structural analysis on trusses . It is based on
drawing the deflected shape of a substructure and
reasoning the effects of the deflection on the
other parts. Since the method is straightforward
and appealing to human visual perception, it
could provide intuitive explanatory and
anticipatory power when interactively presented
on graphic interface . The system is implemented

on the graphical tool which allows directly
operating geometrical objects constrained with
each other . Library for constructing 2-
dimensional simple trusses is constructed . The
results associating drawing a diagram with
qualitative determinacy of stress pattern are also
presented . That is, if a part is qualitatively
under compression(tension) the part can be drawn
only in shortened(elongated) manner . When the
part is qualitatively indeterminate, however,
multiple drawings exist.
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