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Abstract

Many of today's electro-mechanical devices ex-
hibit both continuous and discrete behavior .
Modeling these hybrid systems presents special
challenges for automated modeling and simula-
tion . We show how nonstandard analysis over-
comes these challenges, provides a firm mathe-
matical foundation, and satisfies our intuitions
about the behavior of hybrid systems.

Many of today's electro-mechanical devices exhibit both
continuous and discrete behavior . Modeling these hybrid
systems presents special challenges for automated mod-
eling and simulation . Work in discrete event simulation
[Cassandras, 1993] assumes that all change is discrete ;
work in quantitative and qualitative simulation assumes
that all change is (at least piecewise) continuous . The
behavior of hybrid systems, such as digitally controlled
copiers, chemical plants, automobiles, etc., is not appro-
priately characterized as either continuous or discrete .
A hybrid model of a system is often the result of an

abstraction that simplifies analysis and the prediction of
behavior . For example, we often view closing a switch
as causing the voltage difference across the switch to be-
come 0 in an instant; a level sensor in a reactor vessel
causes a pump to shut off and a valve to close in an
instant. In principle, it is possible to construct continu-
ous models of these behaviors, but they are considerably
more complicated. In practice, the use of discontinu-
ous abstractions is both ubiquitous and necessary. For
instance, the transient behavior of control electronics is
often irrelevant to the task of analyzing the overall sys-
tem . Complex sequences of discrete actions are also pos-
sible, such as when an automobile ignition is turned on
(relative to the vehicle's motion) or a camera's shutter
is depressed .
A satisfactory model for hybrid systems must support:
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" discrete actions occurring in the presence of contin-
uous change ;

" complex sequences of discrete actions;

" the abstraction that discrete actions are instanta-
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We can refine the third criterion: it must not be possi-
ble to measure the duration of a discrete action with a
continuous real-valued clock .
There have been several attempts to introduce discrete

changes into a standard continuous model [Forbus, 1989 ;
Nishida and Doshita, 1987 ; Iwasaki and Low, 1992].
Problems with the mathematical semantics arise, how-
ever, because discrete changes violate the assumption of
continuity. Giving sound semantics to the representation
of discrete changes while employing the real number line
as the model of time (as is usually employed in model-
ing of continuous systems) and respecting the underlying
semantics of continuous change turns out to be very dif-
ficult .
We provide a sound mathematical basis for modeling

hybrid systems that satisfies the three desiderata listed
above. The hybrid systems are specified by discrete ac-
tions as well as qualitative or quantitative continuous
functions. Our solution is based on the calculus of hy-
perreals, i .e . nonstandard analysis [Hoskins, 1990]. We
employ a nonstandard model of time, which captures
the intuitive distinction we would like to make between
discrete and continuous changes. More importantly, it
allows us to model both continuous and discrete changes
uniformly without contradictions or introducing unnec-
essary complexity.

This paper is organized as follows. In Section 2, we
discuss the problems that arise when discrete changes are
introduced into simulation of continuous systems. Sec-
tion 3 reviews several fundamental definitions from non-
standard analysis that are important for our purposes .
Section 4 shows how nonstandard analysis can be used
to provide a basis for modeling hybrid systems. Section
5 presents an example of a logic constructed for the pur-
pose of modeling hybrid systems. Section 6 discusses
related work .
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Discrete Actions in Continuous
Systems

Consider the simple circuit shown in Figure 1, in which
electric power is provided to a load either by a solar
array or a rechargeable battery. The charge on the bat-
tery is also maintained by asolar array. When the charge
level of the battery exceeds a threshold, a charge-current
controller opens a relay, allowing the battery to provide
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RA: Relay
LD : Electrical load

	

BA: Rechargeable battery
CCC : Charge current controller
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Figure 1 : A simple circuit

C0 : (Shining Sun) A (Closed Relay) =~' Il = il
When the sun is shining and the relay is closed, the solar array acts
as a constant current source .

C1 : (Closed Relay) =~, h + 12 = 0
When the relay is closed, it acts as a simple conductor .

C2 : -(Closed Relay) = :>. h = 12 = 0
When the relay is open, it conducts no current .

C3 : -I2 = a
The battery accumulates charge .

Figure 2 : Axioms to describe the continuous behavior of the recharger circuit .

D1: (High Signal) A (Closed Relay) --> ---(Closed Relay)
When the signal from the controller goes high, the relay opens .

D2 : -(High Signal) A -(Closed Relay) --} (Closed Relay)
When the signal from the controller goes low, the relay closes .

D3: QBA > q2n -(High Signal) - (High Signal)
When the controller detects the charge level in the battery has reached q2,
it turns on the signal to the relay.

Figure 3 : Discrete actions for the recharger circuit .



power to the load . When the charge level drops below
another threshold, the charge-current controller closes
the relay, allowing the solar array to recharge the bat-
tery . It is natural to model this system by a mixture of
continuous and discrete behavior .

Figure 2 defines the continuous behavior of the system.
A continuous change is specified by a form C : c #,
e, where C is the name of the continuous change, c is
the condition for the change to take place, and e is its
consequences . The antecedents, c, and the consequences,
e, hold simultaneously . We will use the notation c(t) to
denote that c holds at time t . Thus, given C : c =*~ e, if
c(t), then e(t) .

Likewise, Figure 3 defines the discrete behaviors of the
relay and controller . A discrete behavior is specified by
a form D : c -" e, where D is the name of the discrete
change, c is the condition for the change to take place,
and e is its effect .
Since each one of D1 - D3 represents an actual ac-

tion of a physical component, it does take some non-
zero amount of time for the consequences to take ef-
fect after the condition becomes true . However, the dis-
crete actions are extremely fast relative to the contin-
uous changes, and their dynamics are uninteresting for
the purposes of modeling the overall circuit. Thus, we
would like to model them as being instantaneous. In
other words, we would like the model to capture the no-
tion of almost instantaneous change taking place without
any measurable duration .
While intuitively plausible, this interpretation of in-

stantaneous changes raises a fundamental problem in
modeling of continuous systems . Typically, time is taken
to be isomorphic to the real number line . Thus, any
temporal behavior can be viewed as a sequence of states
that hold alternately over an instant and an open inter-
val (the representation that is also used in qualitative
simulation) . It works very well when there are no dis-
crete changes. Without the discrete behaviors specified
by Dl through D3, qualitative behavior of the systems
may be something like what is shown in Figure 4(a). In
the portion of the behavior shown in Figure 4, QBA is
steadily increasing, until it reaches the threshold q2 at
time t = t2 . States so and 52 are instantaneous states at
time points to and t2 ; sl and 53 are states corresponding
to the open intervals (t i t2) and (t2 + 00)-
Add to this behavior the actions of the controller and

the relay represented by the actions D1-D3. The an-
tecedent of D3 becomes true in the instantaneous state
s2 . Thus, at the time t2 .1, immediately following t2, the
signal goes high . At yet another time (t2.2) immediately
following t2.1, the relay opens due to action Dl . Our in-
tuitive notion about these instantaneous changes is that
they happen so fast that the values of continuous vari-
ables do not measurably change during the short time
required for the consequence of an action to take effect .
This intended sequence of states are shown in Figure
4(b). The contents of the states are summarized below.

52 at time t2 QBA = q2n (Closed Relay) n

	

(High
Signal)
The antecedent of D3 holds, which makes the con-
troller turn on the signal to the relay.

96

S2 .1 at time t2 .1 (High Signal) n (Closed Relay)
The consequence of D3 holds . Also, the antecedent
of Dl holds, which makes the relay start to open .

S2 .2 at time t2 .2

	

(Closed Relay)
The Consequence of Dl holds.

Ifwe use the real number line as the modelof time, it is
impossible to produce a description that matches exactly
our intended interpretation of the discrete actions. On
the real number line, there is no well-defined notion of
a point immediately following a point. Even though we
would like to say that there is a time point at which
Signal goes high and which "immediately follows" t2,
we cannot because the point t2 must be followed by an
open interval of non-zero length . This forces us to take
one of the following approaches :

1. Since actions are supposed to take little time, as-
sume that they take no time . In other words, rules
such as D1 through D3 are treated just like ordinary
logical implications with respect to time .

2. Always insert a small, open interval of unspeci-
fied length between the time points at which conse-
quences of actions become true . This corresponds
to the state sequence in Figure 4(c) . States 52 .0 .1
and 52_1 .1 last over small open intervals.

3. Make the consequences of an action true in either
the point or the interval that immediately follows
the current state. This corresponds to the state se-
quence in Figure 4(d) . States 52 and 52 .2 are instan-
taneous while 52 . 1 lasts over a small open interval .

There are problems with all of these approaches . Op-
tion 1 is obviously problematic - if actions are taken as
logical implication, then any of the rules D1 through D3
directly produces a contradiction. In general, there are
many control actions that take place only if the desired
effect is not already in place. The antecedent for such
actions must include the negation of the consequence,
and this will immediately lead to a contradiction if such
rules are taken as logical implications .
With both Options 2 and 3, the value of "continuous"

variables will be unknown after a sequence of actions.
There are two possibilities for the value of QBA at time
t2 .2 as shown in Figure 4(a) . Since the sun remains up
and the relay remains closed until state 52 .2, QBA con-
tinues to increase past q2 until 52,2 . Since there is a
non-zero amount oftime that passes between 52 and 52.2,
QBA must have some value over q2, say q2 +b, where b is
some positive quantity of unknown magnitude. As sim-
ulation continues and other discrete actions take place,
variables can accumulate a number of such unknown Vs,
unnecessarily complicating value computation .

If we ignore such Vs (since actions happen so fast
that any change in the values of other continuous vari-
ables over the time is negligible), we introduce a con-
tradiction . In the above example, if we assert that
QBA(S2) = QBA(S2 .2) = q2, it will be inconsistent with
the basic assumption that QBA is a continuous quantity
and the fact that, in the given situation, the condition
of C3 holds and therefore QBA should be continuously
increasing over the interval between 52 and 52,2 .



state sequence

QBAk

q2 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Option 3 has the additional disadvantage of arbitrarily
assigning an instant or an open interval to the duration
of an action depending on where it happens to appear
in a sequence . If the first action in a sequence occurs at
a time instant, then all odd-numbered actions will occur
at an instant. If it had occurred over an interval, then
all odd-numbered actions would occur at intervals. This
is an undesirable and bizarre artifact of the particular
model of time employed and has nothing to do with what
the actions represent.
This example demonstrates problems which arise

when one tries to represent hybrid systems while using
the real number line as the model of time . The problems
can be summarized as follows:

1. We cannot have a sequence of instantaneous states
one immediately following the other.

2. We cannot ignore the change, if any, in the value of
continuous variables over the time in which discrete
actions take place.

We propose to use the hyperreals as our model oftime .
This allows us to represent discrete actions in a natural
way and to overcome these two problems . The main
advantages of using hyperreals are as follows:

1. Hyperreals allow us to have a sequence of time
points one following the other such that the gap
between the points are infinitely small.

2. Hyperreals allow us to ignore any change in the
value of continuous variables over a finite sequence
of discrete actions .

. . . . . . . . . . . . . . . . . . . . . . . .~--------~.-

	

I

J

S2 S2.2

Figure 4: Behavior of the circuit in Figure 1 .
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Calculus of Hyperreals

This section briefly reviews the fundamental concepts in
nonstandard analysis that are relevant to our approach .
The calculus of hyperreals is defined over the set *R,

such that *R is a totally ordered field and *R contains
R as its proper subfield . The members of R are called
standard members of *R. Nonstandard members of *R
include infinite and infinitesimal numbers. The elements
of * R can be generally classified as follows:

" An element w of *R is called an infinite hyperreal
number if b'a E R, w > a . We will denote the set of
all infinite hyperreal numbers as *Ro,, .

" An element e of *R is called an infinitesimal hyper-
real number if ba E R, Icl <_ jal . We will denote the
set of all infinitesimal hyperreal numbers as *Ro .
Note 0 is the only standard member of *Ro .

" An element b of *R is called a finite hyperreal num-
ber if there is a positive number a E R, such that
obi < a. We will denote the set of all finite hyperreal
numbers as *Rf . Note *Ro C *Rf .

We will use lowercase alphabet letters to denote a
member of *Rf, e with or without a subscript to denote
a member of * Ro, and w with or without a subscript to
denote a member of *Roo .
The standard arithmetic operators are defined over *R

in an intuitive manner. Thefollowing axioms follow from
their definitions .

E1+E2=E3

aE *Rf=:>, a*e1=e2



The value of w * E can be a member of *Rf , *R, or *Ro .

We will also use the notation N to mean "infinitely
close" defined as follows:

Definition 3.1 :

	

a :t: b = la - bI - E

The following theorem holds:

Theorem 3.2 :

	

Each member of *Rf is infinitely close
to a unique member ofR.

In other words, 'da E

	

'Rf, 3r E R such that a - r + E

and r is unique . We will call such r the standard part of
a and denote it as oa .

Corollary 3.3:

	

Each interval of an infinitesimal length
contains at most one element of R. Some examples are
(t - E, t + E), (E, 2E), and (w, w + E) .

In summary, a system *R of hyperreal numbers is R
extended with infinite numbers of infinitesimal and infi-
nite elements, and it is closed under addition and mul-
tiplication . A significant aspect of *R for our present
purpose is that it gives us the notion of infinitesimal dif-
ferences between two points of time (or quantity values)
that are smaller than the difference between any two
standard real numbers. Furthermore, infinitesimal dif-
ferences never add up to a standard number as long as
there are only a finite number of them .
In order to make *R our model of time (and the range

of continuous functions), we must have a definition of
continuity in *R. In standard analysis, continuity of a
function f at a is defined as

Definition 3.4 :

	

f is continuous in R iff

`dead bx[Ix - al < d - If(x) - f(a)) < e] .
In nonstandard analysis, continuity' of a function * f is
defined in an analogous manner as :

Definition 3.5 :

	

* f is Q-continuous in *R iff

dx [x ti a =>

	

*f(x) ^

	

f(a)] .

The derivative *f' of * f is defined as follows:

Definition 3.6 :

	

If E1, E2 54 0 and E1, E2 E* Ro,

fl(a)
= 0 (*f(a+

E1) -* f(a) 1

E)1

and

o (*f(a+E1)-* f(a) 1 - o (*f(a+E2)-* f(a) 1

Cl	E J2

In other words, the derivative is defined to be a stan-
dard number and the derivative is constant in the vicin-
ity (a - E, a + E) of a .
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A Nonstandard Model of Hybrid
Systems

We now describe our model of hybrid systems based on
calculus of hyperreals . We will also show how the ap-
proach overcomes the difficulties discussed in Section 2 .

We use the hyperreals as the model of time as well as
of the domain of continuous functions . We assume that

'There are actually several different notions of continuity
that can be defined in *R . Q-continuity is one of them .

the functions used to describe the continuous part of the
behavior are Q-continuous in *R . As for discrete actions
D : c - e introduced in Section 2, we formally define
their semantics as follows:
Definition 4.1 :

	

A : c -+ e means that c(to) =* 3tl
such that tl > to and to ~ tl and e(tl).

In other words, when the antecedent of an action be-
comes true at time to, the consequence of the action
becomes true at time t i , which comes after to but is
infinitely close to t o .

This definition of an action allows us to have a se-
quence of instantaneous states one after another, each of
which is distinct but infinitely close to its predecessor.
Furthermore, the value of a continuously changing vari-
able changes only by an infinitely small magnitude over
a sequence of such instantaneous states as long as the
sequence is finite . Thus, in computing the standard part
of the value of a continuously changing variable, we can
always ignore the nonstandard part as long as the num-
ber of discrete changes is finite, because the nonstandard
part can never become large enough to make a difference
in the standard part.
Note that the definition 4.1 itself does not require that

e entail -c (as is the case in all the examples of discrete
actions in Figure 3) . However, it is in general agood idea
to represent actions in such a way that the consequence
invalidates the condition because, otherwise, the action
will end up being repeated an infinite number of times.
The example in Figure 1 yields a state sequence as de-

picted in Figure 5, where the x- (time) and y-axes (QBA)
are now hyperreal number lines. The states s2, s2.1, and
s2 .2 are distinct states, but the gaps between them are of
infinitesimal magnitudes . Thus, we can safely say that
the standard part of the value of QBA in state $2.2 is
equal to that in state s2 without contradicting the con-
tinuity assumption or the equation in C3 .

Notice that this semantics of continuous and discrete
behavior based on nonstandard model of time allows us
to capture in the most natural way what we mean in-
tuitively by discrete actions without violating the basic
continuity assumptions. It also allows us to avoid in-
troducing S's of an unknown magnitude into the value
of continuously changing variables, unnecessarily com-
plicating computation.

4.1

	

Temporal Projection
The task of modeling hybrid systems requires both a
mathematical foundation that allows the behavior of a
hybrid systems to be described and algorithms that pre-
dict the behavior from such a description. In this section,
we discuss the problem of prediction, particularly with
regard to predicting behavior across discrete changes .

Predicting behavior requires us to solve the "temporal
projection" problem. During phases of continuous be-
havior, temporal projection is straightforwardly solved
by differential calculus . The equations describing a sys-
temtogether with the values of variables can be solved to
determine future behavior . Difficulties may arise when
a discrete action occurs since a single discrete change
may cascade through equations and other constraints,
resulting in discontinuities in the values of many other



state sequence

*QBA

si

continuous quantities . For instance, dumping hot wa-
ter into a container holding some cold water results in
discontinuous changes in the mass of water, its level,
temperature, pressure at the bottom, and so on . It does
not, however, change the specific heat of the water, the
location of the pot, its color, and so on. In the circuit
of Figure 1, opening the relay may immediately result in
discontinuous changes in the values of the current and
voltage at various points but not in the charge level of
the battery.
What we are faced with is a special case of the prob-

lemof retaining predications across an action, which has
been widely studied in the AI literature . There are two
basic approaches : either explicit frame axioms are re-
quired to carry predications across discrete changes (e.g .,
STRIPS [Fikes and Nilsson, 1971]), or the logic is ex-
tended with some sort of accessibility relation and pref-
erence relation between possible worlds (e .g ., Action-
Augmented Envisionment [Forbus, 1989] or any of the
non-monotonic logics for expressing action). Unfortu-
nately, neither approach is altogether satisfactory. Pro-
viding explicit frame axioms is error-prone and difficult
because the frame axioms cannot be specified for indi-
vidual actions or predicates in isolation. Providing an
accessibility and preference relation that eliminates im-
plausible consequences (but not plausible ones) while be-
ing computationally tractable remains elusive. Further-
more, as Forbus points out in [Forbus, 1989], there is no
formal standard for correctness here ; there are only infor-
mal desiderata . The primary one is that changes should
be minimal and causally related to the action . Neverthe-
less, in the case of predicting behavior ofhybrid systems,
combinations of the two approaches appear to be quite
promising.
The Device Modeling Environment (DME) [Iwasaki

and Low, 1992] combines explicit frame axioms with a
preference relation . DME uses an algorithm for tem-
poral projection over discrete changes that appears rea-
sonably efficiently and avoids implausible consequences .
DME is a modeling and simulation program for hybrid
systems where continuous changes are described by a set

S2.2

S3

Figure 5 : Behavior of the circuit in Figure 1 with a nonstandard model of time.

of algebraic and ordinary time differential equations and
discrete changes are described by actions as discussed
throughout this paper. When a discrete change takes
place, DME prefers among all the states that can result
from the action those states that satisfy the following
criteria :

1 . The consequence of the action is true in the state.

2. The values of a variable that is exogenous, inte-
grated, or discrete remains the same unless the vari-
able is explicitly changed by the action .

3. The values of the variables that are specified not
to change across discrete changes in user-provided,
domain-specific frame axioms remain the same .

Integrated variables are those quantities whose val-
ues at time t is the integration of changes up to that
time ; unless changed explicitly, their values should not
change instantaneously. Likewise, exogenous variables
are those controlled by entities external to the model;
unless changed explicitly, their values are not likely to
change . Finally, since DME assumes that all mecha-
nisms for change (continuous or discrete) are represented
as equations or actions, and continuous equations cannot
change the value of a discrete variable, the value of such
a variable is likely to remain the same unless changed
explicitly by an action .
Based on the projected variable values, DME deter-

mines what equations should be in effect and recomputes
the values of all other variables using the equations. This
may or may not result in discrete changes in the values
of recomputed variables. If there is not enough informa-
tion to complete the state description after projecting
values from the previous state, the behavior prediction
will branch and DME will produce all possible successor
states . DME also allows the user to specify explicitly
what quantities can be projected over discrete changes,
since the user or the model builder often has knowledge
that allows her to provide such domain-specific frame
axioms a priori .

This strategy avoids producing inconsistencies by be-
ing conservative about value projection while allowing

3
q2

.... . . ... ... . . ... . . . ... . ... . . . . . ... ... ..... ...

-.~ ... . ... .... . ... ... ..... . .. . ... . .f. . . .
I I I

I I1
J I I 1,

*t
t0 t2 t2 t2 2



improved efficiency when domain-specific frame axioms
are available.
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A Logic for Hybrid Systems
Section 4 has defined a model of hybrid systems based
on nonstandard analysis that satisfies the desiderata out-
lined in the introduction. This model may be employed
in several ways . It may be embedded into first order
logic. A common method for representing actions and
change in first order logic is to take time-varying pred-
icates and augment them with an additional argument
that ranges over the times that the predicate holds . This
argument may be allowed to range over the hyperreals
instead of the reals. If the mathematical definitions of
continuity, etc., over the hyperreals are added, then one
can reason about the behavior of systems so described .
It is often desirable, however, to construct a slightly re-
stricted logic that will enforce the common idioms and
allow them to be more succinctly expressed. For exam-
ple, temporal logics typically prevent explicit reference
to and quantification over time, as well as making tem-
poral statements much more succinct . It is possible to
define a temporal logic similar to Henzinger's HTL [Alur
et al ., 1993], and replace the real line with hyperreals .
We will pursue yet another possibility here and construct
a logic specifically for the purpose of predicting and an-
alyzing the behavior of hybrid systems. The key idea is
that the denotation of sentences will be given by possi-
ble temporal behaviors where time can take on hyperreal
values .
Our logic is based on the approach of concurrent con-

straint programming [Saraswat, 1993] . Concurrent con-
straint programming uses the idea of a store as the set
of possible values of the variables. Programs can then
add constraints to the store, and ask the store if some
constraints are valid.
Our language modifies the standard concurrent con-

straint languages, which are atemporal, by allowing the
language constructs to extend across time . Thus, the
store also varies over time . The language is built over
a constraint system, and we assume that the constraint
system is powerful enough to express the desired prop-
erties . In particular, the constraint system can express
differential equations and propositional logic.
The syntax of the language is :

A ::=cI c=~. AI c-+E AI A11AIfirst c

c represents the constraint being added to the store. We
will assume that it stays there until a discrete action
adds its negation to the store. c =:> A is used to repre-
sent simultaneous actions, for example those in Figure 2.
c --.E A represents a discrete action, so A holds an e time
after c becomes true . A11B is used to put together sev-
eral such constructs to form a program. first c is used
to specify that c is true at the start of an interval .
The model we have for these programs is a set of func-

tions from the hyperreals to sets of constraints. Each
such function represents a possible evolution of a pro-
gram, describing the constraints that are present in the
store at any time instant . The only restriction that we

place on these sets of functions is that they be deter-
minate . That is, for any evolution o up to time t, the
set {f(t) I f extends o} is closed under greatest lower
bounds. This enables us to determine uniquely the out-
put of a process given as a set of functions .
The denotation of a program P in our language, writ-

ten [P], is the set of all of its possible evolutions . We can
define the denotation compositionally as follows. [c] is
the set of all functions where f(t) D c until some t when
f(t) Q -c . [c =~- A] is the set of all functions in which
whenever c is true at time t, then the function starting
at t is in [A] . [c -"E A] contains those functions f in
which whenever c is true at t, then f starting at t +e is
in [A] . Notice that in order to get determinacy, we need
to know a fixed e, and also since e is an infinitesimal,
we need hyperreal functions here . [A11B] = [A] (l [B] .
This last definition provides the motivation for including
all of the functions f(t) 2 c, rather than something like
f(t) = c. Including the supersets allows composition to
be defined as intersection .

As an example, consider the following program:

x' = l11first(x = 0)Ilpower-onll
x = 3 -+E, relay-openll relay-open -+E, power-of£ll
power-off -+E, x' = 0.

For any function f in its denotation, we must have

" f(0) Q {x' = 1, x = 0, power-on} ,

" f(3) 2 {x' = 1, power-on},

" f(3 + ei) -={x' = 1, power-on, relay-open},

" f(3 + ei + e2) ; {x' = 1, power-off, relay-open},

and so on. This gives us all the information we need
about the process, and we can use it to deduce various
things as shown below.
Once we have a denotational model for our programs,

we immediately get a logic for the language . Given pro-
grams A, B we say A ~- B if [A] g [B], that is every
possible evolution of A is a possible evolution of B. We
then build up an inference system for this logic. We can
use this logic to reason about programs . For example, if
B is known never to get into a bad state, and A ~- B then
we know that A can never get into a bad state. Thus, in
the above example we can prove that P f- x <_ 3, which
might be a desired safety property .
The language described here is, of course, not a full-

fledged modeling language . It does not provide a suc-
cinct way of characterizing temporal evolution using de-
faults such as TCC [Saraswat et al., 1994], nor does it
provide asuccinct syntax for describing physical systems
and the processes that effect them such as the CML
[Falkenhainer et al., 1993]. However, it does illustrate
the basic ideas described in this paper.
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Related Work
There has been a considerable amount of work that ad-
dresses the problems of reasoning about hybrid systems

2f extends o if f(x) = o(x) for all x < t, where o is defined
up to t.

3See [Saraswat et al., 1994] for details .



or has looked at the issues of using nonstandard anal-
ysis to represent processes acting at different orders of
magnitude.

Rayner [Rayner, 1991] suggested use of nonstandard
analysis to model continuous systems with discrete
changes in his defense of classical logic as means of mod-
eling continuous system behavior .

Henzinger's hybrid temporal logic [Alur et al., 1993]
allows the behavior of piecewise-continuous systems to
be described and enables properties of these behaviors
to be verified (by hand). This work uses a real model
of time together with limits to describe discontinuities.
HTL does not allow for a sequence of actions . The work
has been mostly "descriptive", rather than "predictive" .

Forbus introduced the notion of an "action augmented
envisionment" [Forbus, 1989] that incorporates discrete
instantaneous actions into his Qualitative Process the-
ory [Forbus, 1984]. It appears likely that this approach
is consistent with the representation that we have de-
scribed. It is difficult to be certain, because there is no
commitment to a model of time .
There are several limitations of Forbus' approach .

First, only a single action may occur at a time . For-
bus observes that this is not a fundamental limitation,
as compound actions may be defined. This is, however,
an important practical limitation -it makes it impos-
sible to define any action in isolation of others . This
may seem palatable when considering actions taken by
a single agent, but when there are multiple agents it
becomes problematic. Second, there cannot be any se-
quences of actions. Third, actions can only change the
truth of atomic ground formulae (the STRIPS action
model) . This means that actions cannot introduce new
objects into the system depending on its state. Fourth,
the algorithms presented to infer the behavior of a sys-
temto which actions might be applied do not scale. They
effectively apply each action whenever it can be applied
to all possible states that the system might ever be in .
Forbus suggests that incremental algorithms should be
possible, but they have not been further developed. One
can view the algorithms described in this paper and im-
plemented in the DME system as incremental algorithms
for achieving this purpose. Finally, the state that results
from applying an action is determined heuristically. The
state that results from applying an action is the state
that is consistent with the action and most like the one
in which the action was applied . In his implementation,
"most like" means sharing the maximal number of as-
sumptions. There is no place in the representation for
explicitly stating frame axioms, but they are all implic-
itly defined by the "nearest neighbor" heuristic. Forbus
observes that there is no formal standard for correct-
ness - only an informal set of criteria that should be
satisfied . In particular, an action should result in no ex-
traneous changes and that only the minimal necessary
changes should be predicted .

Nishida and Doshita proposed twomethods, called ap-
proximation and direct methods, to handle discontinu-
ous changes in simulating the behavior of a mostly con-
tinuous system [Nishida and Doshita, 1987]. The ap-
proximation method models a discontinuous jump in a

continuous variable value as a gradual change and car-
ries out envisionment of the behavior during the gradual
change using infinitesimals . The approximation method
works well when discontinuous change is in an input vari-
able value, and the variable is a continuous-valued vari-
able . However, Nishida and Doshita state that it is not
clear how well the method will perform in other cases
where a discontinuous change is caused by a mode tran-
sition, positive feedback without time delay, or a change
in the value of a discrete-valued variable .
The direct method predicts a sequence of mythical in-

stantaneous states between normal states when a dis-
continuous change takes place. The mythical instances
are states where the variables do not satisfy all the sys-
tem constraints ; the method produces a series of them
as it searches for a consistent state by relaxing assump-
tions that cause inconsistencies one by one. This method
seems to predict correctly the consequences of discrete
changes while producing a causal account of what hap-
pens when such discrete changes take place for any types
of discrete changes. De Kleer and Brown also uses the
notion of mythical states to produce a causal account of
how disturbances propagate through a model to cause
a change, though they do not handle discrete changes
[de Kleer and Brown, 1984] . The problem with the no-
tion of "mythical" states in both cases is that it is not
clear what they actually represent . In other words, it is
not clear whether mythical states represent very short
but real instances or are an artifact of the representa-
tion and reasoning procedures . If they do represent real
instances, the semantics of the underlying model of time
becomes unclear.
Raiman used nonstandard analysis as the basis for his

theory of order of magnitude reasoning [Raiman, 1991].
His work on order of magnitude reasoning is totally
within the realm of continuous systems . Even though we
believe that some types of discontinuous changes can be
modeled as continuous changes using order of magnitude
reasoning, as Nishida and Doshita showed, other types of
discontinuous changes such as changes in symbolic vari-
ables, do not lend themselves easily to this approach .

Weld has developed a qualitative simulation algorithm
based on nonstandard model of time and quantities in
detail [Weld, 1990] . The motivation for his work is to an-
swer comparative analysis questions about the behavior
of dynamic systems by changing the value of a model pa-
rameter to an extreme (infinite or an infinitesimal) value
and simulating the behavior . Davis has also developed a
theory that combines order of magnitude reasoning and
envisionment of qualitative differential equations based
on nonstandard analysis (Davis, 1989]. Davis' motiva-
tion is to reason about the behavior of dynamic systems
containing parameters of widely ranging magnitudes . A
notable difference between Weld's formulation and ours
is that while Weld allows derivatives to have nonstan-
dard magnitudes (including infinite and infinitesimal),
we define derivatives to be standard numbers, follow-
ing the definitions in several textbooks on nonstandard
analysis (e.g . [Hoskins, 1990]) . Exactly why Weld al-
lows derivatives to have nonstandard magnitudes is un-
clear since it is not essential for his formulation and only



increases the complexity of his transition tables unnec-
essarily. Despite this difference, our formulation seems
generally consistent with those of Weld and Davis, and
the work described in this paper can be seen as exploring
yet another use of the nonstandard model, namely simu-
lation of both continuous and discontinuous changes. It
is interesting to note that Weld and Davis resorted to
nonstandard analysis in order to reason explicitly about
infinitesimal (and infinite) values, while we did so in or-
der to ignore infinitesimal differences .
Tanaka and Tsumoto [Tanaka and Tsumoto, 1994]

present a qualitative calculus employing ranked hyper-
reals that is quite similar to the one presented here.
They show how it can be used to do qualitative order-
of-magnitude as well as time-scale analysis . Unfortu-
nately, the analysis and algorithms presented remain at
the qualitative symbolic level. The semantics of the sys-
tem is not defined in terms of the properties of functions
on ranked hyperreals (such as continuity) . They do not
discuss the use of ranked hyperreals to model discrete
changes, but limit its use to describing physical systems
that are described as continuous down to the lowest level
of detail . The system is an extension of Kuipers' time
scale abstraction [Kuipers, 1987], which allows a system
to be decomposed and each time scale simulated inde-
pendently.

7 Conclusion
While hybrid systems have become evermore common-
place, analysis methodshave failed to keep pace and have
focussed on either (piecewise) continuous or discrete sys-
tems. A contributing factor has been the lack of an ade-
quatemodel for the behavior of hybrid systems. We have
shown that approaches in which time is modeled by the
real number line fail to satisfy key desiderata . Fortu-
nately, we have also shown that an approach in which
time is modeled by the hyperreal line can satisfy these
desiderata . Our model for hybrid systems supports :

discrete actions occurring in the presence of con-
tinuous change . Continuity is well defined on the
hyperreal line and the standard part of the value of
a continuous function is unchanged across any in-
finitesimal interval . Thus, values can be projected
across actions without introducing any contradic-
tions.

complex sequences of discrete actions. Arbitrary
finite sequences of actions may occur in our model.

the abstraction that discrete actions are instanta-
neous. A real valued continuous clock cannot mea-
sure the infinitesimal duration of a sequence of ac-
tions.

Furthermore, our model allows actions to take different
amounts of time before their consequences take effect
(e .g . one action can be twice as fast as another) .
We have used our model in two ways : to provide a

semantics for DME's algorithm for predicting behavior
of hybrid systems, and to define a simple logic for the
prediction and analysis of behavior . We are working
to extend the logic to support defaults and the proper-
ties necessary to succinctly solve the temporal projection
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problem. This will enable us to provide aclean composi-
tional semantics for rich device modeling languages such
as CML and, with appropriate computational support,
allow for properties of hybrid systems to be verified .
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