
Abstract: Qualitative Reasoning has been a field ofgreat
interest in various areas of research for the last ten years .
Its ability to deal with incomplete knowledge can be very
helpful when only a general description of a system or
phenomena is available. Obviously, any lack of informa-
tion in a model may lead to indeterminacy when using this
model to make behavioral predictions. Moreover, a calcu-
lus based upon qualitative algebras properties induces
additional loss of information . Non-transitivity of quali-
tative equality and indetermination generated when
adding negative and positive values are the main causes
ofambiguities in qualitative calculus .

Our purpose, in this paper, is to show how it is possible to
increase the expression of knowledge in order to avoid
ambiguities and generation of irrelevant behavior during
qualitative simulation. We will first show that classical
mappings of the real t operators onto qualitative ones are
not sufficient to express all the knowledge embedded in
the definitions of the former. We will then describe how
a formal calculus can be used to draw additional conclu-
sions using transitivity of the real operators in order to
dynamically refine the resolution process and to reject
many irrelevant states . We will also present a general
method for building functional relations which are very
useful to describe characteristics ofphysical components.
We will, finally, illustrate our method by modelling and
simulating an example using the SQUALE2 qualitative
simulator.

1 Introduction
Qualitative Reasoning has been used in numerous fields
ofapplications during the last ten years . Qualitative mod-
els have been applied to different tasks such as designing,
diagnosing or supervising systems that cannot be
described by a precise set of equations but about which
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general laws are known . Qualitative Reasoning is particu-
larly interesting when modeling complex systems com-
posed of numerous interconnected components and for
which numerical models are hard to develop because of
the difficulty of giving compatible values to all parame-
ters and constants .

We will focus here especially on such kinds of complex
systems because they typically match the industrial prob-
lems we are daily faced with. Aircraft circuits (hydraulic,
pneumatic, electric . . .) have become more and more com-
plex and it is worth designing them and controlling their
design with the help ofnew CAD tools and simulators . We
have developed a new kind oftool to help designers in the
early phases oftheir job . This tool, SQUALE, is based on
symbolic and qualitative reasoning. It provides a knowl-
edge representation language that supports qualitative
modeling and an inference engine able to predict global
behaviors ofancillary circuits.

Qualitative modeling and simulation appear especially
interesting when we want to know if the global architec-
ture of an ancillary circuit works as it is expected to . If a
contradiction is pointed out during qualitative simulation,
it will be not worth continuing with this architecture .
Qualitative Reasoning can thus be a powerful tool in
design control for comparing the behaviors predicted by
the simulation with the behaviors described in the specifi-
cation without having to go through a complete and costly
phase of numerical simulation . However, both qualitative
and numerical simulations are then complementary, as a
numerical phase may still be necessary to test precise
models once qualitative simulation has pruned the incor-
rect alternatives .

We shall present here the different particularities ofSQU-
ALE . We will first describe the basic real operators we are
able to handle and the way they are generally expressed
in their qualitative form. We will then show that, using
these general expressions, we lose a great part of the
knowledge embedded in the real operators . In order to
recover some of this knowledge, we define a new map-
ping of the real operators and we extend the inference
engine by using formal calculus to compute the transitive
closure lost by the qualitative calculus .



Then, we will focus on functional relations giving a gen-
eral method to represent them, and finally, we will give an
example of an ancillary circuit, modeling it using the
introduced operators and relations, and give the results of
the simulation.
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Basic operators and relations

Qualitative calculus is based on sign algebra properties .
Sign algebra is the smallest algebra we can build from R .
Values can be either negative (-), positive (+) or null (0) .
We will call these values "signs".

SQUALE uses two basic operators and two types ofbasic
relation :

2.1 addition and multiplication

These operators are defined by the following tables :

2 .2 equality

This relation is defined as:

[x] 3 = [y] p [x] = [y]

23 inequality

Few qualitative approaches consider inequality as a basic
operator. However, in the case ofancillary circuits, we are
daily faced with models expressing comparisons between
values or variables . For example, we can be told that
'pressure inside the tank is higher than external pres-
sure " . It is obviously possible to handle this type of
information using the addition operatorby defining a pos-
itive variable that, added to the lesser, will give us the sign
ofthe higher. The relation x < y can then be mapped to :

[pos] = +. !Xl ® [pos] = [v]
However, this introduces a useless variable .

In our formalism, we consider qualitative inequality as a
basic relation. In fact, we give two distinct qualitative
relations to express strict inequality (--<) and large
inequality ( --< ) between two signs . These relations are
defined as :

(x)

	

[y] a [x] < [y] or [x] = [y]

[x]

	

(y] p [x] < [y] or {[xl,[y])

	

or {[x],[y]) _

3.

	

(xjstandsfor "sign ofthe real value x".

given the general order between signs :

These relations can be viewed as "poor" and therefore
useless in a qualitative formalism because, in terms of
signsonly, we are not able to distinguish between two pos-
itive or two negative values . However, we will show here-
after that, with good expression of knowledge, these oper-
ators can help to make very important deductions.
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The problem of qualitative mapping

Ifwe want to transpose the real operators into their quali-
tative counterparts, we have to replace values with signs .
A basic level ofmapping could then be :

X+y=z
X.y=w
X =Y
X <Y
x :5 y

3.2 constant

-<0<+.

AI ® [Y] = !z]
[X1 ® [Y] = fz1
!X] = LY]
1X] [Y]
A] [Y]

However, expressing only the signs of qualitative parame-
ters gives us very poor information . We are not able to say,
looking at all the parameters, what is the current evolution
of the system. We do not capture any dynamics.

We would thus like to represent knowledge about trends
of variables . To handle this knowledge, two new qualita-
tive constraints are given :

3.1 derivative

The derivative constraint is considered with respect to
time . It is then possible to express dynamics in the model .
If we have X = x(t) then the derivative of X will be noted
dX/dt . In terms ofsigns, if we know that dX/dt is positive
(resp . negative) then we know that X is increasing (resp .
decreasing) . If dX/dt is null, then X is possibly reaching
an extremum or possibly constant.

Saying X = x(t) is constant means :

dt, dXldt = 0

® - 0 +
_ + 0 _

0 0 0 00 +

® _ 0 +

0 - 0 ++



33 expressing order(s) of derivation

Classical qualitative approaches [DEK 84], [KUI 86],
consider qualitative variables as <value,trend> pairs . To
deal with trends, it is necessary to assume that all the vari-
ables are continuous functions oftime and thattheir deriv-
ative does exist . Added to this, the first order derivatives
are themselves considered as continuous functions of
time. Mathematically speaking, these approaches con-
sider that any qualitative variable is a Ct function of time
(continuous and continuously derivable).

The basic operators can then give informations about the
derivatives . If we have X = x(t), a function of time, and
X' = dX/dt the derivative of X. We then have :

X+Y=Z ==:- X'+Y' =Z'

X.Y=Z=0, X'.Y+XY'=Z'

X=Y=::- X'=Y'

The qualitative mapping of the real operators becomes
then more precise than the one given before :

X.Y = w

X =Y

X <Y
xSy
y = dx/dt
constant(x)

1X] ® !YI - IzJ
IX 7 ® [Y7 --- ft 7
1X1(9[Y] = fz1
Ix 701y] ®1X1®&7 -1z7
1XI =1YI
1X7 =1Y7
1XI -<1YI
[XI ::~ 1YI
IX 7 =[Y]
1X7=0

Expressing higher orders of derivation is necessary to
capture more information from the real operators . In Kui-
pers' approach, it is possible to deal with second order
derivatives [KUI 87] making some "smoothness"
assumptions. Missier (MIS 91] also gives a mapping for
the qualitative operators at the second level of derivation
and explains how to avoid this smoothness assumption.
Yannou [YAN 93] gives the ability to formally derive the
operators at even higher orders according to the higher
order derivatives expressed in the system.

Finally, the choice ofthe qualitative mapping is a question
of representation depending on the level of information
we want to capture and depending, of course, on the task
we want to achieve . To compare different qualitative cal-
culators, it is necessary to know the different mappings
they use and the level of dynamics they take into account.

In SQUALE, we consider that a qualitative variable is a
Ct function oftime. Each variable is represented by a pair
<value,trend> . We then have to map operators onto at
least one level of derivation .

We do not have to take into account higher orders of der-
ivation since the physical systems we are modeling do not
necessitate a deeper representation . If we were dealing
with systems with higher dynamics, it would ofcourse be

possible to expand our mapping to deal with second or
even third order derivatives . However, along with Maka-
rovic and Mars [MAK 89], we believe that qualitative cal-
culus is not well suited for solving highly dynamic sys-
tems . Solving suchproblems at a given level of derivation
only passes ambiguities to the immediately superior level .
We have then decided, in our case, to stop at the first level .
This corresponds, in fact, to the common reasoning level
ofthe engineers we are working with . They are interested
in representing ancillary circuits which are mostly quasi-
static systems with few dynamic features. Stopping at the
first order of derivation is then sufficient to manage this
type of circuit .

Because of this restriction, SQUALE is not adapted to
solve QDEs expressing dynamic behaviors . For example,
if the differential equation X + X" = 0 is given, SQUALE
will only discover a unique oscillating behavior. It will be
unable to distinguish between amortized and non-amor-
tized cases .

In any case, even ifwe choose to express higher orders of
derivation to precise the mapping of the real operators,
loss of information already occurs at the basic level (con-
cerning only values) if we use the "classical" mappings
described above .

3.4 Loss of knowledge

In the first versions of our qualitative simulator, using
Kuipers' mapping for QSIM, we were quickly faced with
well known phenomena of spurious behavior generation
even on rather simple circuits . However, these spurious
behaviors were not only due to occurrence branching or
indetermination on Higher Order Derivatives. Many of
them occurred because the mapping ofreal operators was
insufficient. We describe here some of the problems
encountered and explain how we have solved them.

EXAMPLE 1 : Let us consider a simple system:

X>0,X=z.X+Y=Z

Mapping this system at the basic level gives :

1XI = +.1X1= [z]. IX] ® [Y] ---N
We expect to find the unique solution

1XI = +.1z1= +,1y1= 0.
However, qualitative calculus gives three compatible
solutions :

1X1= + . Iz1= +.[Y] = -.
1X1= + . Iz1= +. !YI = 0.
IXI = +.[a] = +,[Y] = +

The impossibility of deciding between the three cases is
due to the definition ofqualitative addition (see the above
table) . Any qualitative value added with a positive value
may give another positive value .

EXAMPLE 2: Let us consider another system :



x >O,x<z,x+y=z

Mapping this system into qualitative equations gives

1x1= +, lxl --< 1z1. lx1® [Y] =1Z1
We expect to find the unique solution

1x1= +.1Z1= +, [Y] = +.

However, the qualitative calculus again yields three com-
patible solutions

1x1= + . [Z] = + . [Y] = -,
1x1= + . [Z] = +, 1Y1= 0,
1x1= +,1Z1= +[Y] = +

In this case, again, the resolution gives two incoherent
qualitative states.

When both variables have the same sign (x and z are both
positives in the above case) we lose all the knowledge
contained inside the inequality semantics .

Each example clearly leads to two incoherent qualitative
states . We must thus enhance our mapping onto qualita-
tive operators and relations in order to avoid such irrele-
vancies.

35 Expressing signs of differences

In the above examples we know that the solutions are
unique by 'commonsense' reasoning . We mentally com-
puted the simple system to find out that y had to be null
or positive . One way to formalize this computation is to
take into account the differences between variables .

Equality x = z also means z - x = 0 and x - z = 0.

Inequality x < z also means z -x > 0 and x - z < 0 .

Addition x + y = z also means x = z -y andy = z - x.

Expressing this knowledge when transposing usual equa-
tions into the qualitative formalism is useful to avoid
ambiguities . The translation of the above example then
becomes:

EXAMPLE 1

EXAMPLE Z

fx] = +, lx] = fz1, ft. -x1= 0, Ix-ZI = 0

N®fy1 = [z], [Y] = lzx], lx] = lzY]

With this data set, qualitative calculus succeeds in finding
the unique solution :

lx] = +.Al=+.[Y]=0

[XI =+,1XI~N,lzx1=+, ft-Z] =-
lx1® IV = [Z]. [y] = IZXI . lx] = lZY1

With this data set, qualitative resolution gives us the
unique compatible solution :

1XI = +.Al = +,1Y1= +

3.6 Expressing constancy

Other problems occur when we use the constant
constraint . Mapping the constancy operator into its quali-
tative counterpart might be easy. It would be natural to
say

constant(

	

=,~ [dXldt] = 0

However, things are not so simple !

EXAMPLE 3 : Let us consider the system

y = dxldt, x = dwldt, constant(w)

Transposing this system into its qualitative expression
then gives :

[Y]=lx11[XI =lw7.1w7=0
We expect to find the unique solution

x = [0] andy = [0] .

However, the qualitative calculus yields three compatible
solutions

lx]=0" [Y]=-.
lx] = 0, 1Y1= 0,
[x] = 0, [y] = +

EXAMPLE 4 : ifwe consider the system :

z = dyldt, y = x, x = dwldt, constant(w)

Mapping this system gives us :

1Z1= lY 7- [Y] =1x1. lY I = lx 7,
Al =[WI. fw7=0

We expect resolution to find that x is null but also that both
y and z are null . However, the calculus is unable to
constrain z enough . Therefore, three compatible solutions
are found :

[XI = 0. [Y] = 0. [Z] = - .
1XI = 0,1Y1= 0.121 = 0,
lx1 = 0, [Y] = 0, [Z] = +

Both ofthe above problems occur because only part ofthe
definition of the derivative has been expressed . Our
translation only considers one level of derivation while
the usual definition implicitly considers all levels :

Ht, dxldt = 0 =~>

	

Vt, b'n E N *, d"xldt" = 0

We must thus take into account all the derivatives of
constant parameters expressed in the model.

Moreover, it is possible (as in EXAMPLE 4) that the
information of constancy is transmitted indirectly via
other basic links (addition, multiplication or equality) .

We expose below a general method able to propagate the
constancy information to all the variables via the opera-
tors .

3.7 Constancy propagation

To be sure that we capture all the information, we
associate each parameter of the system with a boolean



information concerning its constancy. This information is
computed by each operator in order to propagate it
throughout the resolution .

" x+y=zandx.y=z

" X=y

"

	

y = dx/dt

" constant(x)

In addition to this, we can define a general relation
between the derivative of a variable and the information
of constancy. This relation is given by the following
table

Table 3
General relation between the derivative ofa variable andits constancy

Applying these propagators to our examples gives us

EXAMPLE 3

we can add the following information :

We finally find the expected result :

EXAMPLE 4

Table 1
Propagation ofconstancy with the

addition and multiplication operators

c(x) = c(y)

C(X) c(y)

yes yes

no no

no yes

Table 2
Propagation ofconstancy by a derivation link

c(x) = yes'

y = dyldt, x = dwldt, constant(w)

c(w) = yes', c(x) = yes', c(y) = 'yes'
1w7= 0, 1x7 = 0,IY7 =0

1x]=0, [y]=0.

z = dyldt, y = x. x = dwldt, constant(w)

the resolution tells us that

c(w) = yes', c(x) = yes', c(y) = yes', c(z) = yes'
fw7=0,1x7=0, [y]=Oand [z7=0

We finally get the unique correct result:

1x1= 0,1Y1= 0.121= 0.

3.8 The SQUALE mapping

As we have shown above, a "naive" mapping onto the
qualitative formalism leads to a significant loss of knowl-
edge and to the generation of many irrelevant solutions.
Each of these irrelevant solutions produces at least one
instance of spurious behavior in the qualitative simulation
tree .

To reduce these spurious behaviors, we have extendedour
mapping to capture more knowledge in our qualitative
description . In the SQUALE formalism, each real param-
eter x(t) of the modelled circuit is associated with three
additional variables :

one representing the sign of the parameter: [x],

one representing the sign of its derivative : [x'],

one representing the boolean information on con-
stancy of the parameter : c(x).

These three variables are used by each qualitative opera-
for and relation.

Moreover, addition, equality and inequalities apply to
other internal variables expressing sign of differences
between the involved parameters .

x+y=z
1x] ®1Y1= [z],
1x 7 ®1Y 7 --1z7,
c(x), c(y) and c(z) are linked according to table 1,
ft ] and c(x) are linked according to table 3
[y'] and c(y) are linked according to table 3
[z'] and c(z) are linked according to table 3
1x1 =1zY],
[y] =1zz].
X.y = z

[XI ®1Y1=1z1
ft ]®1YI ED 1x1®fY ] ,-_ 1z]
c(x), c(y) and c(z) are linked according to table 1
ft ] and c(x) are linked according to table 3
1Y ] and c(y) are linked according to table 3
fz7 and c(z) are linked according to table 3 .
X = y

1x1=[Y]

1x7 =1Y7
c(x) = c(Y),
ft 7 and c(x) are linked according to table 3
1Y 7 and c(y) are linkedaccording to table 3
IX -Y] =0,
fYX1= 0 .



x<Y
[X] ~ fy1
ix-Y] =- .
Lvx1= + .

" x<Y
[XI -~ fy1
IX-Y] ;d + .
Lvx1 ;d _ .

"

	

y = dx/dt
&I =Ix 7
c(x) and c(y) are linked according to table 2
ft 7and c(x) are linked according to table 3
fy 7and c(y) are linkedaccording to table 3
[X Y1 = 0 ,
[Y_X1 = 0 .

" constant(x)
Lx1=0,
c(x) = yes' .

It is important to notice here that the qualitative mapping
is automatically done by the SQUALE modelling inter-
face . The designer has only to describe the high-level
model of the circuit (i .e . using only real operators) . The
qualitative model is then generated from this high-level
description . The designer does not have to "think qualita-
tively" .
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The problem of transitivity

We have previously given more precise definitions ofthe
basic operators and primitives necessary to build enriched
qualitative models. These definitions were directly drawn
from the mathematical properties of the operators . In all
the above cases, qualitative calculus and constancy prop-
agation were sufficient to drive resolution to good real
results . However, transposing knowledge to its qualitative
counterpart can still hardly be done without losing some
ofthis knowledge .

The qualitative equality introduced above is a typical
example. Let us consider the system

x>O,x=YY=z,x+w=z

If we map this system into the qualitative formalism
described above, we get4:

1XI = +,
1X1= Ly1, [y-X1= 0, IX Y] = 0
[y] = All 1ZY1= 0. [Y-z1= 0

14E fw1= 14, fx1= fz-w]. fw1= 1z-x1
This set ofqualitative relations is not able to drive the res-
olution to the expected solution (x > 0, y > 0, z > 0 and w
= 0) . Since w is not constrained enough, the three qualita-
tive values -, 0 and + remain compatible .

4.

	

Themapping ofirends and constancy information do not appear
here since theyhave no effect in the reasoning.

This loss of knowledge is due to the fact that we are not
able to directly express that

x = y andy = z implies x = z.

The transposition into sign algebra is not conservative
with respect to transitivity. This is an inherent property of
sign algebra . It is thus illusory to search for a better for-
malization of qualitative operators. If we want to find a
solution to this problem, we have to exit the qualitative
formalism and reason at the formal level .

* 4.1 Qualitative and Formal Calculus for Deduction

The SQUALE qualitative solver is based on the CQFDS
algorithm. This algorithm deals with two sets of rela-
tions : high-level relations expressed in their usual form
and their automatically mapped qualitative expressions .
The set of qualitative relations is viewed as a constraint
satisfaction problem (CSP). The set of high-level rela-
tions is kept in the resolution process in order to make for-
mal deductions .

We are able to make obvious deductions by applying alge-
braic inference rules such as :

x = y andy = z implies x = z
x = y andy < z implies x < z
x<yandy<zimplies x<z
x+y=zandx>0implies y<z

These deductions are then mapped into the qualitative for-
malism to expand the global CSP and give additional
information about some variables .

CQFD processes as follow :

Solve the constraint satisfaction problem (CSP)

M Apply inference rules to make formal deductions .

© Map the deductions into qualitative expressions .

Expand the old CSP and solve the new one.

p Get all the compatible solutions .

U

This algorithm uses two passes of the constraint solver
because the first pass can find local information (as x > 0
above) which can lead to the firing ofuseful rules during
the step of formal deduction.

4 .2 Adding new algebraic inference rules

The combination of qualitative calculus and algebraic
inference rules necessitate a compromise between
expressive power and complexity. It is obviously ofgreat
interest to add new inference rules in order to make more
algebraic deductions . However, this increases the com-
plexity in step ® of the CQFD algorithm . We thus prefer
to limit the set ofinference rules and to refine as far as pos-

5.

	

Calcul Qualitatif et Formelpour la Deduction (Qualitative and
Formal Calculus for Deduction) .



sible the expressions of the qualitative operators to draw
more conclusions from the calculus .

43 Incompleteness of Qualitative Simulation

Qualitative simulation has been proved sound but incom-
plete [KUI 86] . This means that qualitative simulation is
able to find all the real behaviors of the modelled systems
but can also generate spurious behaviors which cannot
occur practically. The formal step ofour algorithm elimi-
nate many spurious behaviors generally due to non-tran-
sitivity ofthe qualitative operators . We still cannot assure
completeness because we cannot make all possible infer-
ence and we are not able to capture all the knowledge of
the real operators in their qualitative counterparts as we
must limit the mapping at one given level of derivation .
However, in the case of quasi-static systems such as
ancillary circuits, we are able to prune most of the spuri-
ous behaviors by mapping only onto a first level ofderiva-
tion .

4.4 Extended qualitative calculus in other work

Some other approaches also add a step of formal or semi-
quantitative calculus to refine the results of the simula-
tion . Berleant [BER 88] and Treteault [TRE 92] extend
the mapping of the operators to manage some quantitative
information to reduce ambiguities. Simmons' Quantity
Lattice [SIM 86] and Williams' MINIMA calculator
[WIL 88] also merge the algebras of signs and reals to
make formal deductions . SQUALE differs from these
other "enhanced" qualitative systems in using only sign
algebra . Formal deductions are made at a purely symbolic
level and no quantitative information is required toreduce
ambiguities. SQUALE is then closer to Farquhar's QPC,
[FAR 94], in which algebraic rules are also used to add
new qualitative constraints into QSIM's network .
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Building functional relations

Ifthe only manageable qualitative operators and relations
were those described above, qualitative calculus would
not be justified since models would be better suited to
numerical simulators . The main advantage of qualitative
reasoning is its ability to deal with partial or approximate
knowledge .

In the Kuipers' formalism [KUI 86], such approximate
knowledge is expressed by using relations named M+
(resp. M-), signifying that two variables are increasing
(resp . decreasing) functions ofeach other.

Functional relations are necessary and well suited to deal
with physical parameters . However, monotonic func-
tional relations do not represent all classes of functional
relations. Many physical behaviors are expressed by poly-
nomial relations or combinations of monotonic behav-
iors. Kuipers gives, for example, the ability to express U+,

U-, S+ and S- behaviors but these specific functional
relations do not cover the whole range of possible func-
tional relations needed to model real behaviors (see fig.
1) . It is also possible, in QSIM, to compose monotonic
functions in order to build any specific function but it is
then necessary to define operating regions and a way of
switching from one to another.

In the following, we propose a way ofdefining functional
relations as global qualitative constraints by assembling
three types of monotonic behaviors M+, M- and Mo
(constant) .

These relations are mapped, at a first order of derivation,
as :

M+(x,Y)

	

1x7 = (}' 7
M-(x,Y)

	

(x 7 = -!Y 7
MO(x,y) constantly)

Figure 1
Anyfunctional relation can be defined by assembling together three

types ofmonotonic segments .

To define a functional relation, we have to describe all the
corresponding points at which the general behavior is
possibly changing. In order to respect the continuity prop-
erties of the C1 variables, we cannot change from a M+
segment to a M- segment without the derivative dy/dx
becoming null . Each corresponding point separating two
segments of different behaviors is then an extremum
where [dy/dt] = 0 .

The modeler is also given the ability to define free
extrema on the extremities of the relation and between
two segments having identical behaviors .

r4

y3

D2

vi

Figure 2
Example ofa point to point constructed functional relation in SQU-
ALE. . Each 'region' located between two points can be labelled.



The point to point construction of a functional relation is
then computed by SQUALE as a set of qualitative
constraints mapped from the M+, M- and Mo relations.
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Modelling a circuit with SQUALE

The different operators and constraints described above
are generally sufficient to model many physical systems.
We will deal here with an example representing a basic
hydraulic circuit that can be used to generate pressure and
flow to activate brakes, flaps or flight controls in an air-
craft.

This circuit is composed of

"

	

atank used as fluid supply,

"

	

an actuator used to activate the required parts of the
aircraft (flaps, traps . . .),

a self-regulated hydraulic pump used to generate flow
and pressure in the circuit,

a pressure-reducing valve used to evacuate part of the
fluid in case of surpressure,

a four--poM three-osition, hand-operated direc-
tional control valve dispatching or blocking the flow
to the actuator.

four ports, three
positions directional

control valve
(DCV)

Tank

Figure 3
The hydraulic generation circuit

The tank is modelled as follows :

vmin < V < vmax
DV = dVldt
DV = Qin - Qout
We assume moreover that the internal tank pressure is
negligible compared to other pressures :
P = zero
The pump is modelled by a functional relation :

Pout

pmax
pnom

zero
gnom qmax Q

The directional control valve is modelled as follows :

left position :
QI = Q2, Q3 = Q4, PI = P2, P3 = P4

middle position :
Q1=0, Q2+Q3= Q4, P2=P3=P4

right position:
QI = Q3, Q2 = Q4, PI = P3, P2 = P4
The pressure reducing valve is modelled by a functional
relation :

Q

zero ," popen DeltaP
with DeltaP = Pin - Pout
The actuator is modelled as follows :

the client strength F is assumed to be a constant equal to
the symbolic value ';/
the mechanicalpressure Pmec applied by the client is an
increasingfunction ofF
Phyd + Pmec = Pout
DeltaP = Pin -Pout
Acceleration is an increasingfunction ofDeltaP
Acceleration = dSpeedldt
Speed = dXldt
thesection Softhe actuator is a constant equal to the sym-
bolic value "section "
SSpeed = Q

6.1 Positioning symbolic values

The model refers to symbolic values which have to be
positioned relative to each other to describe the circuit . In
our example, we have chosen the following positioning :



zero < pnom < pmax < popen
zero < gnom < gmax < glim

We also have to mention corresponding values in the rela-
tion between F and Pmec in the actuator:

Pmec = pf when F = f

We consider that the nominal pressure of the pump is suf-
ficient to counter this pressure :

pf< pnom

6.2 Connecting equations

We must then connect the components together in order
to propagate pressures and flows all along the circuit . We
consider here ideal connections without any loss ofcharge
or energy. We are then able to express two general laws
relating flow and pressure at the connecting points:

Pressures are all equal.
The algebraic sum ofallflows is null.

We can notice that these two laws are equivalent to
Kirscho$''s laws transposed from the electric field to the
hydraulic field. Here we deal with flows and pressures
instead of intensities and tensions .

Considering the above circuit, we get :

Tank-gout + pump-Q = 0
Pump-Pin = Tank-P
Pump-Pout = PRV-Pin =DCV-PI
Pump-Q + PRY-Q + DCV-Ql = 0
DCV-Q2 + Actuator-Q = 0
DCV-P2 =Actuator-Pin
DCV-Q3 + Actuator-Q = 0
DCV-P3 =Actuator-Phyd
Tank-Qin + PRV-Q + DCV-Q4 = 0
Tank-P = PRY-Pout = DCV-P4

63 Simulating

Once the global model is built, it is translated into a quali-
tative one. To do this, we have developed a general tool
able to compute general information given by the
designer and draw additional conclusions concerning, for
example, partial orders between symbols. The connecting
equations are also generated by this tool .

The complete model is then compiled into the qualitative
formalism. General laws are mapped, as described pre-
viously, into qualitative constraints . Parameters are
associated with quantity spaces containing only the
required symbols. The set of all parameters, operators and
relations is viewed as a Constraint Satisfaction Problem
which can be solved by SQUALE using the CQFD algo-
rithm stated above. Applied to the previous example, the
simulation is able to predict the correct behaviors corre-

sponding to the chosen configuration ofthe control valve .
The actuator can then move to the right (DCV in left posi-
tion) or to the left (DCV in right or middle position) . In all
cases of configurations, we get only possible states (one
<value, trend> pair for each parameter) and no spurious
behavior is generated . We give hereafter some graphical
outputs from SQUALE corresponding to the first configu-
ration (DCV in left position) .

Figure 4
Some outputsfrom SQUALE applied on thegiven exmple.

The control valve, initially closed is opened at left position. The pump
pressure is then able to push the actuator which moves to its extreme
right position. When moving, the actuator consumes flow and volume
andgenerates a pressure drop of thepwnp anda diminution ofvolume
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7 Conclusion

Qualitative calculus can be used to draw conclusions from
physical systems even if some information is missing .
This can obviously lead to several different predictions
concerning the behaviors of those systems . We would
ideally like to constrain branching ofbehaviors only to the
lack of knowledge coming from the user's description and
to avoid indeterminacy due to the qualitative calculus
"limitations" .

We have shown that it is possible to improve qualitative
calculus by a better expression of the knowledge
embedded into the different real operators . To solve ambi-
guities due to the intrinsic properties of sign algebra, we
have added a set of formal inference rules able to make
transitivity propagation between the parameters using the
"real" properties of the operators .

All these improvements aim at drawing a maximum of
conclusions at the basic level as formal inference rules do
not deal with trends or higher orders of derivations . Our
goal is not here to build a general tool able to solve highly
dynamic systems or sets ofcomplex QDEs. We are trying
to make a tool able to take into account ancillary circuits
with relatively low dynamics.

The discussed work has been implemented into the SQU-
ALE simulator which is used to assist designers and to
predict general behaviors of aircraft circuits in the early
stage ofdesign. Using this tool, engineers are then able to
compare general alternatives and to eliminate those
which do not fit the specifications .

We are now intending to extend the functionalities ofour
tool to new qualitative operators in order to express more
knowledge about the modelled systems . Designers often
use simplifications in their systems by considering that
some parameters are much greater or evolve much faster
than others. We would then like to express this kind of
knowledge in our models . Works are going on to improve
SQUALE in order to make model based diagnosis
[MIS 93] . We would like also that specific questions such
as "can this parameter reach this value?" or "show me all
the behaviors fitting this specification" could be answered
as it is done, for example, in Yannou's QDES [YAN 93]
by intersecting a functional specification representing the
desired behavior and the behaviors found during the simu-
lation .
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