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Abstract:
In control engineering, diagnosis and process super-

vision are important tasks where qualitative models
can be applied. In this paper, the problem of observ-
ing the internal states of a dynamical system is solved
by means of a qualitative model that has the form
of a nondeterministic automaton. In the qualitative
observation problem, the current qualitative state of a
system has to be inferred from measurement sequences
of qualitative inputs and outputs. An observation al-
gorithm is described and illustrated by applying the
algorithm to a three-tank system. Due to the struc-
ture of the qualitative model used, the observation
algorithm can be practically applied under real-time
constraints .

1 Introduction
This paper is concerned with the reconstruction of un-
measurable signals of a dynamicalsystem by means of
a model and of the sequences of measurable input and
output signals. This problem is called the observation
problem . It has to be solved because there are a lot of
physical variables that are unaccessible to measure-
ment but have to be known if for the technological
process under consideration control actions should be
appropriately selected .
In the following, the observation problem is formu-

lated and solved on a qualitative level of abstraction,
which is reasonable for process supervision and diag-
nosis. The qualitative values of internal signals of the
process have to be found from given qualitative input
and output data . This problem is called qualitative
observation problem . The paper shows, that a nonde-
terministic automaton as a qualitative model of the
process is appropriate for solving this problem .
The literature on qualitative reasoning, which is sur-

veyed in [10], [12], focuses mainly on the prediction of
the qualitative behaviour of a given system by means
of qualitative simulation . For a given qualitative ini-
tial state, the future movement of a physical system
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has to be determined . The observation problem dealt
with in this paper refers to the "inverse" problem :
For a given output sequence the initial state has to
be found. Hence, this paper differs from the literature
on qualitative reasoning not only with respect to the
kind of model used but concerning the aim for which
the qualitative model is set up .
The paper is organised as follows: In Section 2 and

Section 3 the state space model of dynamical systems
and signal quantisations are described. Qualitative
signals can then be defined in accordance with these
partitions . In Section 4, the qualitative observation
problem is given and compared with the classical ob-
servation problem, which is well known in control the-
ory. In Section 5 the qualitative model of the process
is presented, which is used for the qualitative observa-
tion algorithm given in Section 6. The applicability of
the observatoin algorithm is demonstrated in Section
7 for an interconnected tank system .
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State space models of dynamical sys-
tems

The behaviour of dynamical systems is described by
signals, i.e . by time-dependent variables . Dynamical
systems transform input signals ui(t), (i = 1, . . ., rn)
given by the environment of the system into output
signals yi(t), (i = 1, . . ., r) that can be observed by
the environment. This fact is described by the block
diagram in Figure 1, where the arrows denote signals
and the block a dynamical system.

Figure 1 : General dynamical system

For the description of the dynamical behaviour, the
state x = (xi, x2, . . ., x,,)' of the system plays an im-
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portant role . If all state variables xi(t~, (i = 1, . . ., n)
at time t as well as the input signals ui(t) in the time
interval t < t <_ T are known, the output signals yi (t)
can be uniquely predicted for the same time interval .
Thus, all the information about the past and the pos-
sible future evolution of the system is stored at each
instant of time in the vector x(i) . In contrast to this, if
only the output vector y(tO = (yi (t~, y2(t~, . . . , yr(O)'
is known at time t, the future behaviour cannot be
uniquely determined .
For the sake of simplicity of presentation we focus

on the class of linear multiple-input multiple-output
(MIMO) discrete time systems although all results can
be easily extended to nonlinear systems. The dy-
namics is modelled for discrete time points t = kT
which are enumerated by the integer variable k. The
correlation between the state x(k) E IR" and input
u(k) E IR' at time k and the successor state x(k+ 1)
or the output y(k) E IRr, respectively, is given by the
state space model

where xo denotes the initial state and A E IR"x"
B E IR'xl C E IR''x" and D E IRrx' are matri-
ces describing the system parameters . Discrete-time
dynamical systems (1)-(3) map a given initial state
xo and an input sequence
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Quantisation of the signals
In process supervision the operator is interested in
knowing the qualitative rather than the quantitative
behaviour of the process. For example the operator
wants to know whether the process works "stable" or
whether the outputs are in the desired region . In order
to represent such an assessment of the sequences (5)
and (6), partitions Qs, Qu and Qy of the spaces of
the state, input and output signals are introduced . A
partition Q of some set M defines disjoint subsets Qi,
which altogether cover the set M:

U Q(i)

Q(i) n Q(j)

For technical reasons, these subsets are often rectan-
gular . Thus, the partition is given by intervals for
each of the variables (Figure 2) .

Figure 2: Partition of a two-dimensional space

[u(k)] = v(k)

	

b

	

u(k) E Q.(v(k))

	

(9)
[x(k)] = z(k)

	

x(k) E Q.(z(k))

	

(10)

[y(k)] = w(k)

	

4--~

	

y(k) E Qy(w(k)) .

	

(11)

That is, these values are the numbers v(k), z(k) or
w(k), respectively, of the regions to which u(k), x(k)
or y(k), respectively, belong at time k .
Eqns . (4)-(6) yield the sequence of qualitative inputs

(also called qualitative trajectory) and the qualitative
output sequence

[Y]

	

=

	

([y(0)] , [y(1)] , . . ., [y(T)]) .

	

(14)
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Classical and qualitative observation
problem

In control theory, the following problem has been in-
tensively studied (cf. egns . (4)-(6)) :

Classical observation problem:

That is, for given input and output sequences, the
unknown initial state xo and the whole state sequence
X has to be reconstructed.

Q(0) - Q(10) Q(1'1)
Q(12)

Q(5) Q(G) Q(7) Q(8)

Q(1) Q(2) Q(3) Q(4)

x(k + 1) = Ax(k) + Bu(k) , (1) The qualitative values [u(k)], [x(k)], [y(k)] of the in-
y(k) = Cx(k) + Du(k) , (2)

put, state and output at time k are defined by

x(0) = xo . (3)

= Nt (7) Given: Input sequence U,
Output sequence Y.

= 0 b' i 0 j . (8 ) Find : State sequence X.

U = (u(0), u(1), . . . , u(T)) (4)

into unique state and output sequences

(5)
Y = (y(0), y(1), . . ., y(T)) (6)

[U] = ([u(0)] , [u( 1)] , . . ., [u (T)]) , ( 12 )

the sequence of qualitative states

[X] _ ([x(0)] , [x( 1 )] , . . ., [x(T + 1)]) ( 13 )



Figure 3: Classical Luenberger observer

This problem can be solved by means of the classi-
cal Luenberger observer depicted in Figure 3 [8] . As
the main component, the observer includes a model
(1)-(3) of the system whose state x has to be recon-
structed . The feedback of the difference y-y between
the predicted and the actual output is used to adjust
the actual state of the model assuring that

klim lix(k) - x(k)JI

	

=

	

0

	

(15)

holds . That is, at each time k the model state a(k) is
an approximation of the system state x(k) .
We want to mention two important facts for the ap-

plication of Luenberger observers . First, it is known
that the observation problem can be solved if and only
if the system is observable [1], which can be checked
in terms of the matrices A, B, C and D. Second, it
is known how to find a feedback matrix K (cf. Figure
3) such that the convergence (15) of the observer is
ensured.
In process supervision, a similar observation prob-

lem has to be solved (cf. egns . (12)-(14)) :

Problem of qualitative state observation:

Given:

Find :

Qualitative input sequence [U],
Qualitative output sequence [Y] .
Qualitative state sequence [X] .

This problem is similar to the classical observation
problem. However, the important distinction concerns
the qualitative nature of the known signals [U] and
[Y] and of the state sequence [X] to be reconstructed.

Figure 4 : Qualitative observer

The remainder of this paper is devoted to the solu-
tion of this problem. A qualitative observer, which to
a certain extend is similar to the Luenberger observer,
will be explained (Figure 4) . Like in the Luenberger
observer, a model of the system (1)-(3) plays the key
role in the observation algorithm. We will use a quali-
tative model of the form described in Section 5. Then
the observation algorithm will be given in Section 6
and illustrated by an example in Section 7.
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Nondeterministic automata as qual-
itative models

The modelling problem

This section surveys the results described in [9] and
extends the model proposed there. For details, the
reader is referred to this reference and to [10], [7] . This
is an alternative approach compared with the methods
in qualitative reasoning described, for example, in [2],
[5] .
For every given qualitative initial state [z0] = z(0)

and input sequence [U] = V, the system (1)-(3) gen-
erates a set of qualitative states and qualitative out-
puts which can be described as follows. First, the set
X(klV z(0)) of (quantitative) states that the system
can assume at time k is given by

X(OIV z(0))

	

=

	

Q.(z(O))

	

(16)

i=Ax+Bu
X(k+11V z(0)) = i u E2�(v(')) (17)

x E X(klV,z(0))

By using these sets, the sets of qualitative states and



outputs are given by

[X (kIV z(0))]

[Y(k I V, z(0))]

Nondeterministic automata

The nondeterministic automaton

{[z] Ix E X(klV z(0))}

	

(18)
y=Cz+Du

[y]

	

z E X(kJV z(0))

	

(19)
u E Qu (v(k))

(cf. egns . (1)-(3)) .
The aim of qualitative modelling is to find a concise

representation of the relation among the qualitative
values of input v, state z and output w . Due to the
fact that [X(klV z(0))] is, in general, a set with more
than one element unless the matrix A in eqn. (1) sat-
isfies the restrictive condition given in [9], a nondeter-
ministic automaton N is used as qualitative model of
the system (1)-(3) with quantised signals.

N(Ar.,,Vv,N, L(z', wlz, v), zo)

	

(20)

has at each time k some output w(k) E Ny , input
v(k) E N, and state z(k) E Nz . The behaviour rela-
tion

L (z', wlz, v) : rVz X 1V� x NZ x rV,, -. {0, 1}

	

(21)

provides the information, whether a transition from
state z to state z' while getting the input v and giv-
ing the output w is allowed (L(z', wlz, v) = 1) or not
allowed (L(z', wlz, v) = 0) . The behaviour relation
L(z', wlz, v) can be expressed for any combination of
inputs v E Nz and outputs w E Nu, as a Boolean
transition matrix L(wiv) E {0, 1}NxN, where N is
the number of automaton states . For each element of
these matrices

(L(w I v)) Z , z

	

=

	

L(z', wIz, v)

	

(22)

holds.
This notation is illustrated for the example where
NZ = {1, 2, 3}, N, = {1, 2} and /Vu, = {1, 2} holds.
The automaton is described by 4 matrices for any
combination of the inputs v E N� with the outputs
wEJV.

(23)

Each of the columns of the transition matrix L(wiv)
gives a set of successor states . The state z(k) = 2 in
the example (23) has successor states z(k + 1) = 2
and z(k + 1) = 3 for the input v(k) = 2 while having
the output w(k) = 1 (second column of the matrix
L(1I2)) .
In Figure 5, an automaton graph is drawn for the

nondeterministic automaton of example (23) . The
nodes represent the states of the automaton . All di-
rected edges show state transitions where the corre-
sponding inputs and outputs are given by the draw-
ing style of the edge . All movements with v = 2 have
dashed edges to distingush them from movements with
v = 1 (normal lines) . Also, any edge generating the
output w = 2 is black, while the edges with output
w = 1 are grey.

Qualitative modelling

Figure 5 : Automaton graph

In order to use the automaton as qualitative model,
one now identifies each automaton state with a quali-
tative state z(k) = [z(k)], each automaton input with
a qualitative input v(k) = [u(k)] and each automaton
output with a qualitative output w(k) = [y(k)] .
To make the automaton (20) a qualitative model of

the system (1)-(3), it is necessary that the automaton
generate all qualitative trajectories [X] and output
sequences [Y] that the system (1), (2) can generate .
This can be ensured if the behaviour relation L gen-
erates the set of all qualitative successor states that
the system can take from arbitrary states z belong-
ing to one qualitative state z = [z] while getting an
arbitrary input u belonging to one qualitative input
v = [u] and having an output y that is given by (2)
with qualitative value w = [y] .

0 0 0
L(1I1) = [ 1 0 1

1 1 0
1 0 1

L(1I2) = ( 0 1 1
1 1 0
0 1 0

L(2I1) = [ 0 0 1
0 1 0
0 0 1

L(212) = [ 1 0 0
0 1 1



In extension of the results of [9] it can be proved
that the automaton has to satisfy the relation

with

L(z', wJz, v) > L* (z', wiz, v)

	

b' w, v, z, z'

	

(24)

L*(z', wlz, v)

	

= if

else

x, u with
[x]=z,[u]=v
[Ax + Bu] = z' (25.)
[Cx + Du] = w

Eqn. (25) can be easily extended to a set S of sys-
tems . A nondeterministic automaton is a qualitative
model of a set S of systems of the form (1)-(3), if
the behaviour relation L satisfies eqns . (25),(24) for
all matrices A E A, B E B, C E C, D E D, where
the sets A, B, C and D define the set S. That is, the
qualitative model simultaneously describes the qual-
itative behaviour of all systems (1)-(3) of the set S.
For making the automaton a qualitative model of a
nonlinear system, the linear model used in eqn. (25)
only has to be substituted by the nonlinear model.
Qualitative simulation
Since qualitative models are, in general, used for qual-
itative simulation, we mention in passing that our
model can also be used for predicting the future qual-
itative behaviour of the system under consideration.
In qualitative simulation, the qualitative initial state
z(0) and a sequence of qualitative inputs

V

	

=

	

(v(0), v(1), . . . , v(T))

	

(26)
are known and one is interested in the set W of all
possible output sequences

W

	

=

	

(w(0), w(1), . . ., w(T))

	

(27)

that the system (1)-(3) may produce . The sim-
ulation task can be solved by means of the model
(20),(24) because it can be proven that the set
$(V z(0)) of trajectories generated by the model in-
cludes the set [S(V z(0))] of qualitative trajectories
of the system (1)-(3) :

8(Vz(0))

	

;?

	

[X(V z(0))]

	

(28)
(for details cf.[10]) .
For better handling, a state transition relation and

an output relation

F(z'l z, v)

	

:

	

Nz x Nz x N, --. {0,1}

	

(29)
G(wlz, v)

	

:

	

Nw xNZ x N, , {0, 1}

	

(30)
are introduced, which can be derived from the be-
haviour relation L(z', wiz, v) with the following equiv-
alences :

F(z'lz,v)=1 t~ 3w with L(z',wJz,v)=1 (31)
G(wI z, v) =1 ~3 z' with L(z', wIz, v)=1 (32)

If an actual state z(k) and the actual input v(k) is
known, the transition relation F gives a set of succes-
sor states z(k+ 1) while the output relation G gives a
set of outputs w(k) .
As an example, the automaton (23) is started with

initial state z(0) = 2 and the input v(0) = 2 . The
set of successor states z(1) E {2, 3} as well as the set
of outputs w(1) E {1, 2} can be obtained from the
behaviour relation L.
The observation problem, which will be solved now,

is a completely different problem, because the initial
state z(0) = [x(0)] is unknown but a sequence W =
[Y] of outputs is given.
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A qualitative observation algorithm
Now we are able to solve the qualitative observation
problem given in Section 4 by means of the qualitative
model N(N,,,N� N~� L(z', wI z, v), zo) .

	

The problem
is to find the set of all qualitative trajectories that
are consistent with the model (1)-(3), the sequence of
qualitative inputs V and the sequence W of measured
qualitative outputs . This set is defined by

[X(V W)] =

([x(0)] , [x(1)] . . . . )

The aimnow is to find the set [X(V W)] with the help
of the qualitative model N.
Because of the nondeterministic behaviour of the

qualitative model, there is a set of states that the
automaton can assume at each time k . To represent
this set in a convenient way, a binary state vector
z E {0, 1}rv is introduced where

zi k

	

=

	

1

	

4=-*

	

state i at time k possible
0

	

~

	

state i at time k impossible(34 )

holds. Then, a set of possible qualitative initial states
can be represented by a vector zo .
We are now in a position to describe the observa-

tion algorithm by means of which the qualitative state
z(k) can be recursively determined . For a given set
z(k) of qualitative states at time k, known input v(k)
and measured output w(k), the set of successor states
z(k + 1) can be determined by means of the relevant
matrix L(w(k)J(v(k)) defined in eqn. (22) as follows:

z(k + 1)
z(0)

3 x(k), y(k), u(k)
satisfying (1) and (2)
[y(k)] = w(k),
[u(k)] = v(k),
[x(0)] = zo
dk E {0,1,2, . . ., T}

(33)

L(w(k)lv(k)) o z(k) ,

	

(35)

The Boolean matrix multiplication operator o is de-
fined as usual : Addition is replaced by logical or and



multiplication is replaced by logical and:

Vi (L(w(k)Iv(k)))1j n zj(k)

Uj (L(w(k)(v(k)))Nj A zj (k)

If N is a qualitative model of the system (i .e . (24)
holds), then eqn. (35) gives a set of qualitative trajec-
tories Z(V, W) which is a superset of the desired one
[X(V W)] :

S(V W)

	

2

	

[X(V, W)] .

	

(38)

Thus, eqn . (35) can recursively be applied to construct
a superset of all qualitative trajectories the system can
go through .
In summary, the following algorithm describes the

solution to the qualitative observation problem:

Qualitative observation algorithm:
Given:
Qualitative input sequence V = [U],
Qualitative output sequence W = [Y],
Qualitative model N(NZ ,Nt�N.� L, zo) .

Start: k = 0
z(0) = zo = (1, . . ., 1)'

Iterate: (k = 0, 1, . . ., T)
z(k + 1) = L(w(k)Jv(k)) o z(k)

Result :
Set of qualitative trajectories S(V W)
represented by (z(0), z(1), . . ., z(T+ 1))

Example
For the simple example given in Section 5 we can see
that the knowledge ofthe outputs really effects the set
of successor states . Assume that the automaton (23)
is a qualitative model of a given system (1)-(3) . With
the given sequences of qualitative inputs and outputs

W

	

=

	

(1, 2, 2)

the observation algorithm yields the following se-
quence of sets of possible states

S(V W) = ({1, 2, 3}, {2, 3}, {3}, {2}) .

The observation algorithm starts by assuming that
the system (1)-(3) has an arbitrary qualitative ini-
tial state : z(0) E {1, 2, 3} . After two time steps the
qualitative state of the system is uniquely determined
(z(2) = 3, z(3) = 2) by the observation algorithm . 0

Extension of the observation algorithm
Due to the existence of spurious solutions the set
of reconstructed qualitative states is a superset of
[X(V W)] given in eqn. (33) . An estimate of the prob-
ability that a reconstructed state can be really a quali-
tative state of the system (1)-(3) can be determined if
a stochastic automaton S is used as qualitative model
of (1)-(3) rather than the nondeterministic automa-
ton N.
The automaton graph of the stochastic automaton

S(N=,Nv,A ., L, (z', wI z, v),po) ,

	

(39)

has the same structure (edges) as that of N but ad-
ditional weights for each edge [13] . The weights are
given by the conditional probability

L, (z', wIz, v)

	

=

Prob

	

[x(k + 1)] = z'

	

[x(k)] = z
[y(k)] = w

	

I [u(k)] = v ) (40)

The matrix representation of the behaviour relation
only changes slightly : the matrices are no longer
Boolean, but their elements take values from the unit
interval : L,(wlv) E [0,1]NxN .
With the stochastic automaton, a discrete proba-

bility distribution p(k) over the regions of the qual-
itative states is given at each instant k . Thus, the
initial condition po of the stochastic automaton is the
probability distribution of xo . If no information about
the qualitative initial state is available, the automaton
may take a uniform distribution over all qualitative
states as initial state po. The Boolean multiplication
in the observation algorithm (35) can be replaced by
the usual matrix-vector multiplication :

p(k + 1)

	

=

	

L,(w(k)Jv(k)) p(k) ,

	

(41)
p(0)

	

=

	

po = (11N, . . ., 1/N)' .

	

(42)

With this extension of the qualitative model the ob-
servation algorithm remains, in principle, the same as
given above. However, as additional information with
every qualitative state a measure of the probability is
determined with which the system (1)-(3) will really
assume the qualitative state .
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Process supervision of a tank system

Figure 6 shows an interconnected tank system to
which the qualitative observation algorithm is applied
[11] . The input u to the system is the inflow into
Tank 1. The only output y is the outflow of Tank 3.
The states xl, x2 and x3 of the system are the levels
of the liquid in the tanks. We want to focus our at-
tention to the qualitative observation of the level x2
of Tank 2.
A quantitative model (1)-(3) of the tank system has

been derived from a continuous-time model with the



Figure 6: Experimental setup of the connected tank
system

sampling time of 0.5 seconds . It has the parameter
matrices :

The inputs can only assume one of two discrete val-
ues:

I [u]

	

=

	

off lu

	

= 0
[u]

	

on u

	

1

For the tank levels, quantisation into 3 qualitative
values for each tank is done .

[x ;] = low x; E [0,0.21
[x;] = med x; E (0 .2,0.4]
x;] = high x; E (0 .4,0.6]

Hence, the qualitative model has 33 = 27 states . For
the state space model (1)-(3), (43), (44), (45), (46)
and the given partitions a stochastic automaton was
generated with a modified cell mappingalgorithm [4] .
As the automaton has 372 edges, the behaviour rela-
tion is not given here .
The qualitative observation problem is to determine

the qualitative level of Tank 2 from qualitative mea-
surements of the inflow and the outflow. The num-
ber of possible combinations of qualitative inputs and

outputs is 2 * 5 = 10 . At each time step, one of these
combinations is measured and the qualitative observer
(41) is applied. An example of sequences [U], [Y] is
shown in Figure 7.
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Figure 7: Qualitative input and output measurements

Note that there is a set X(V, W) of qualitative tra-
jectories that will lead to the measured sequences [U]
and [Y] which is represented in the lower part of Fig-
ure 8. For example, at time k = 13, 18 or 33 two
different qualitative states are really possible . The
qualitative observer yields the result shown in the up-
per part of Figure 8. Here the probabilities generated
by the qualitative observer are drawn in grayscale: the
darker the bar, the more likely is the qualitative state .

0.s

10

iuiumim~uu~i

umim

u~imu~

0 5 10 15 20 25 30 36 44

Figure 8: Reconstructed and real qualitative state tra-
jectories for Tank 2

We can see that this estimation for the probability of
each qualitative state given by the qualitative observer
is useful for an operator . In our example, during the
time steps k = 3-20, Tank 2 is surely not empty and
it is unlikely that its level increases to an overflow .

0.6737 0 .2582 0.0608
A =

(
0.2582 0 .4763 0.2217

)
(43)

0.0608 0 .2217 0.5042
0.0813

B =
(
0.0161

)
(44)

0.0024
c = ( 0.000 0.000 1.6666 ) (45)
D = 0 .000 . (46)

The qualitative measurement of the outflow can give
one of 5 qualitative values from "tiny" to "huge", 0.s

which represent a partition of the output space 0.4

tiny y E [0,0.2]
small y E ( 0.2 , 0.4 ] 02

[y] _ normal y E (0.4,0.6]
[y] _ large E ( 0.6 , 0.8 ] 0

huge y E ( 0 .8 , 1 .0 ]



During the time steps k = 21-30, the probability for
an empty tank is growing, which causes the operator
to open the valve at time k = 30 (cf. top of Figure
7) . The result of his action is visible in an increas-
ing probability for the "med"-level of Tank 2, which
is qualitatively the correct dynamic behaviour of the
system . Due to the simplicity of the observation algo-
rithm, the observation problem can be solved in real
time .
This numerical example shows that spurious solu-

tions do not influence the solution of the observation
problem as seriously as qualitative simulation . The
reason for this is given by the fact that the additional
qualitative output information is exploited .

Conclusions
The paper shows that qualitative models of dynam-
ical systems can be used to reconstruct information
about the internal states of the system from qualita-
tive input/output sequences . The proofof the relation
(38), which represents the basis of the observation al-
gorithm, is given in [7] .
The formulation of the approach here was restricted

to linear systems and to precise qualitative measure-
ments without noise. However, stochastic automata
as qualitative models can also be used for nonlinear
systems and noisy data . Nonlinearities only influence
the behaviour relation of the automaton while noisy
measurements can be handled by generating discrete
probability distributions for the qualitative inputs and
outputs.
For technical applicability, methods for the genera-

tion of qualitative models have to be found, that do
notpresuppose the knowledge of a precise quantitative
model (1)-(3) or a set S of such models. An approach
to this qualitative identification problem, which only
refers to qualitative measurement data, has been pro-
posed in [6].
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