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Abstract:

This paper presents a qualitative common-sense
model of gradient flow processes caused by concentra-
tion differences in a distributed parameter. A physical
system is modelled by the spatial distributions of its
parameters. Space is discretized into a pattern of re-
gions according to the landmark values in the quantity
space of each parameter. Gradient flow processes oc-
cur between adjacent regions with different values and
create new regions of intermediate value that grow at
the expense of the source and sink regions. The spa-
tial and temporal evolution of the system depends on
the relative sizes of the regions and the speeds of the
flow processes. Ambiguities arise because shape in-
formation is not required. However, a plausible least
complex evolution can be generated based on shape-
invariant inferences and assumptions. An example of
a qualitative simulation of heat flow processes is given.

1 Introduction

Models of physical systems, both quantitative and
qualitative, often leave out the spatial aspects in or-
der to keep the complexity down. These so-called
lumped-parameter models describe the temporal evo-
lution of parameters and are usually built on ordi-
nary differential equations. In order to also describe
the spatial evolution of the parameters, more complex
distributed-parameter models, built on partial differ-
ential equations, are used.

In this paper, we present a qualitative distributed-
parameter model of gradient diffusion, i.e. flow pro-
cesses caused by concentration differences in a param-
eter, e.g. temperature differences. Gradient flow can
be used to model many different natural phenomena,
e.g. conductive heat flow, transportation of pollen
and dust, water diffusion in soils, etc, as described in
[Oke, 1987).

The model captures general qualitative knowledge
about gradient flow processes and is suitable for sit-
uations where numerical methods cannot be used —
typically in pure common-sense reasoning or when in-
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formation on the spatial distribution of the parameter
is sparse or unreliable. This is e.g. the case in weather
forecasting when there are not enough observations to
carry out a numerical simulation. The meteorologist
then has to rely on common-sense reasoning and expe-
rience to produce a plausible forecast. Another exam-
ple is reasoning about heat flow processes in every-day
situations, like e.g. baking food in an oven or packing
a grocery bag with items of different temperature.
Related work is e.g. [Collins and Forbus, 1993],
where a qualitative model of thermodynamics is pre-
sented. They use a common technique in qualitative
physics and model the physical system as a set of inter-
acting objects described by parameters. The objects
become the basic spatial units of the model and the
variation of a parameter within an object is not de-
scribed, e.g. that surrounding air will cool a hot object
from the outside while the core remains hot. In our
model, we take a different approach and focus on the
spatial distributions of the parameters. This makes it
possible to reason about the inner spatial structure of
a physical object with respect to the parameter and
also to disregard object boundaries when appropriate.
The model works with a qualitative view of the pa-
rameter as a pattern of discrete regions represented
by the parameter’s landmark values. Flow processes
are triggered by features in the pattern and cause a
temporal sequence of spatial modifications to the pat-
tern. New regions and landmark values are dynami-
cally added to the model during the simulation.
This qualitative representation of space corresponds
to our assumption that information about the situa-
tion is sparse. In particular, the model does not re-
quire any knowledge about the shapes of the regions,
since it is unrealistic to assume that reliable shape
information could be inferred from sparse data or be
present in all informal situations requiring common-
sense reasoning. The exact evolution of a gradient
flow process cannot be determined without shape in-
formation, as will be discussed later, but we will show
how to generate a plausible least complex evolution



based on shape-invariant inferences and assumptions.

In the following sections, we first describe qualita-
tive models of spatially distributed parameters and
the gradient flow processes acting on them. We then
discuss the influence of gradient flow on the spatial
structure of a parameter and how to handle ambigu-
ous situations. Finally, we give an example of a qual-
itative simulation of heat flow processes.

2 Spatial Model

In numerical models, space, time and parameter val-
ues are continuous variables, which often leads to
equations that are difficult to solve. Qualitative mod-
els attempt to overcome this problem by focusing on
landmark values, i.e. parameter values that corre-
spond to interesting events in the modelled system.
The value domain of the parameter is modelled quali-
tatively as a set of landmark values, called the quantity
space. E.g., the quantity space {(°C 10(° C} is of-
ten used to model temperature when reasoning about
state changes of water (see e.g. [Forbus, 1984] and
[Kuipers, 1994]). A quantity space can also consist of
symbolic values, e.g. {cold cool hot}.

In this work, the quantity space of a parameter is
used to discretize the continuous distribution of val-
ues in space into a patchwork-like pattern of adjacent
regions. The initial landmark values are chosen so
that all points in the space described by the parame-
ter can be assigned such a value, either by observation,
approximation or assumption. The landmark values
can be either symbolic or numerical, e.g. averages of
observations, as long as they provide a satisfying de-
scription of the situation as the modeller sees it. The
next step is to group neighbouring points with equal
landmark values into larger spatial units, i.e. regions.
The resulting pattern is used as the qualitative spatial
model.

This discrete view of space is commonly used
e.g. in systems for scientific visualization (dis-
cussed in [Hagen et al., 1993]) and for certain
data layers in geographic information systems (see
[Laurini and Thompson, 1992]). Analyses of meteo-
rological observations into structured weather maps
(e.g. as described in [Wickham, 1970]) is another ex-
ample of a discretization of space with respect to the
parameters describing it.

In the spatial model, the boundary of each region
in the pattern is in its turn decomposed into qualita-
tive segments indicating its adjacency to other regions.
Although the shape of a region is not assumed to be
known, it is often possible to infer a relative approx-
imation of the size of a region with respect to other
regions. A quantity space for size is chosen with either
symbolic or numerical landmark values.

The quantity spaces are assumed to be totally or-
dered and the relative magnitudes of the landmark
values are supposed to be known. In case symbolic
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landmark values are used, a mapping to real numbers
is carried out. The quantity space {small medium
eztra-large} can e.g. be mapped to {1 § 8} or any
other sequence of magnitudes that corresponds to the
modeller’s view of the situation. This mapping makes
it straightforward to use arithmetic operations to cal-
culate differences and averages of landmark values
and to unambiguously add new values to the quan-
tity space.

The spatial model can be visualized as a graph where
the nodes represent the regions and the edges repre-
sent the adjacencies. Figure 1 shows the temperature
distribution in a field that has been unevenly heated
by the sun, e.g. due to shadowing trees or partial
cloudiness. The initial quantity spaces for tempera-
ture and size are shown, along with a possible mapping
for size, since its quantity space contains symbolic val-
ues. The values and relative sizes of the regions are
indicated by the shadowing and the sizes of the nodes
respectively. In section 5, we will show a qualitative
simulation of how an initial temperature distribution
can be modified by heat flow processes.

Quantity spaces:
Size: [small mediom large }
1 2 3 25
Temperature: {10 15 20 25}
Small
15
Figure 1: Temperature distribution in an unevenly

heated field.

3 Gradient Flow Process Model

A mathematical model of gradient flow processes
caused by concentration differences in a distributed
parameter is the following equation (as defined in
[Oke, 1987)):

_ Concentration Difference
Flux Rate = 1stance to Flow

The purpose of the flow process is to remove the
concentration difference by redistributing the values
of the parameter. A large concentration difference
will cause a fast flow. The flow is slowed down by
a large resistance parameter. The region of higher
concentration is called the source as opposed to the



sink. The flow will gradually move matter, e.g. heat
or pollen, from the source to the sink until the con-
centration is homogeneous. The resulting value of the
concentration depends on the sizes of the regions, i.e.
how much matter they contain. A flow between two
equally-sized regions will lead to an averaged concen-
tration in both regions, i.e. one single concentration
region. A flow between a small and a large region will
initially only affect a part of the large region corre-
sponding to the size of the small region. The flow will
continue to move into the large region and the final
result will still be one single region of homogeneous
concentration, but its value will be closer to that of
the large region than the small one.

The above description shows that gradient flow pro-
cesses have several qualitative features. We model
them with five components as follows:

Existence: A gradient flow process is triggered by
the existence of two adjacent parameter regions, i.e.
two connected nodes in the graph.

Effect: The gradient flow process replaces the
boundary between the two regions by a growing in-
termediate region, called the growth region, that will
gradually extend into both the source and the sink
region, thus making them shrink. The growth will
continue until at least one of the regions is completely
covered, i.e. of zero size. This models the notion that
volumes must match volumes, as described above. A
threshold value can be defined in order to avoid infi-
nite decomposition.

Size: The size of the growth region is initially zero
and will increase at the expense of the source and the
sink region.

Value: The value of the growth region is the average
of the source and sink values.

Speed: A relative measure of the speed of the flow
process (the flux rate) is given by the concentration
difference, i.e. the value difference between the source
and the sink region. We simplify the examples in this
paper by assuming constant resistance. The effects of
varying resistance can be modelled by intersecting the
spatial distributions of the resistance and the flowing
parameter, as described in [Lundell, 1994], and work-
ing with regions representing combinations of the two
parameters.

Figure 2 shows the initial heat flow processes (bold
f:la.shed lines) and growth regions (tiny white circles)
In the unevenly heated field in figure 1.
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Temp: 20
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Figure 2: Heat flow processes in an unevenly heated

field.

4 Adjacency Relations

When a gradient flow occurs, the adjacency relation
between the source and the sink region is broken
and replaced by a growth region adjacent to both,
as shown in figure 2. As the growth region becomes
larger at the expense of the source and the sink re-
gion, it will gradually take over their adjacency rela-
tions. When the source and/or sink region eventually
shrinks to zero size, the growth region will have in-
herited all its adjacency relations. However, the exact
order in which this happens can only be determined if
the shapes of the regions are known. Figure 3 shows
two situations that differ in the shape of the sink re-
gion but not in its adjacencies. The behaviour of the
gradient flow is different as regards the adjacencies
of the growth region and the connectivity of the sink
region.

More complicated examples are easily constructed.
We conclude that, without shape information, it is not
possible to unambiguously determine the adjacency
relations of the growth regions, nor the number of dis-
tinct regions. Assuming that the regions are convex
or regular does not solve these ambiguities, nor is it a
realistic assumption.

Shape is thus important to the evolution of gradi-
ent flow processes. However, since shape cannot be
reliably inferred from sparse data and is not always
known in informal situations, it is necessary to de-
velop plausible shape-independent models of spatial
processes. In this work, the evolution of the param-
eter regions is generated from shape-invariant infer-
ences and assumptions are used to keep the complex-
ity down. In this context, we define the complezity
of a qualitative spatial situation to be the number of
adjacency relations it contains, i.e. the number of
potential flow processes. The least complez evolution
is generated by updating each situation with as few
new adjacency relations as possible. This technique
is similar to other common simplifications in qualita-



Figure 3: In figure a, the growth region will inherit the
adjacencies of region A in the following order: C/H,
D, F, E. Region A remains connected during the flow.
In figure b, the growth region will inherit the adjacen-
cies in the following order: C/H, D, E, F. The flow
divides region A into two disconnected parts.

tive physics, where incompletely specified or difficult
details are left out in the search for an approximate
evolution that embodies the principal characteristics
of the real evolution.

A common method of handling ambiguities in quali-
tative physics is to branch into an envisionment of all
possible evolutions. In our case, this would lead to an
infinite number of states, since a flow can decompose
a region into an unknown number of separate pieces,
as shown in figure 3. However, not all ambiguities
are shape-dependent, and branching can be used when
there is a finite number of choices, as will be described
in the next two sections. We first discuss the shape-
invariant inferences, followed by the assumptions used
to generate the least complex evolution.

4.1 Shape-Invariant Inferences

The following inferences can be made regardless of
shape properties:

Connectivity: The growth region is a topologically
connected region, i.e. in one piece. Initially, it is also
a simply-connected region, i.e. without holes, but this
may change during the course of the flow. If the flow
continues until the source/sink region is reduced to
zero size, then that part of the growth region is again
guaranteed to be a simply-connected region.
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Initial adjacencies: If the source/sink region has
more than one adjacency, then the growth region wil
inherit those that are closest to the adjacency that
it is replacing. If these adjacencies also participate
in flow processes, then the respective growth regions
will be adjacent instead. Both cases are illustrated in
figure 4.

Figure 4: Initial adjacency relations.

Removal of regions: When the source/sink region
is reduced to zero size, the growth regions that caused
it to shrink will have inherited all its adjacencies. Fig-
ure 5 shows a situation where a region has six adja-
cencies, but only two of them participate in flow pro-
cesses. It is not possible to infer with certainty which
growth region will inherit which of the non-flowing ad-
jacencies, but it is certain that the growth regions are
the only candidates.

4.2 Complexity-Reducing Assumptions

The following assumptions are used to generate the
least complex evolution:

Simply-connected regions: All regions are as-
sumed to be simply-connected, i.e. without holes and
in one piece, throughout the simulation. This means
that no region is ever decomposed into separate parts
by a flow. Without this assumption, an infinite num-
ber of states would be generated.

Growth regions meet in a point: When a
source/sink region has been reduced to zero size, its



Figure 5: Growth regions are the only candidates for
remaining adjacencies.

growth regions are assumed to meet in a point, as in-
dicated in figure 6. This feasible evolution will not
create any additional adjacencies between the growth
regions, if all of the removed region’s original adja-
cencies participated in flow processes. The alterna-
tive would be to generate all possible combinations of
adjacency relations between the growth regions.

Figure 6: Growth regions meeting in a point.

Closest growth regions inherit remaining ad-
jacencies: If some adjacencies remain when a
source/sink region is about to be removed, as in fig-
ure 5, they are inherited by the closest growth regions.
This often means that two growth regions come to
share an adjacency and thus become adjacent them-
selves, as shown in figure 7. The alternative to this
assumption would be to generate all possible combi-
nations of growth regions and remaining adjacencies.
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Figure 7: Closest growth regions inherit remaining ad-

jacencies.
figure 5.

Graphs corresponding to the situation in

5 Qualitative Simulation

A qualitative simulation generates a sequence of states
describing both the temporal and spatial evolution of
the physical system. Each state is a graph describ-
ing a spatial situation constructed from the preceding
state. The temporal evolution is described by the se-
quence of states. A new state is generated each time a
region shrinks to zero size and is removed. This corre-
sponds to a crucial qualitative step in the flow process
model, when regions and adjacencies are created and
removed. The simulation will continue as long as there
are active flow processes.

The temporal order of disappearance is established
by sorting the regions according to their disappearance
coefficient. This coefficient is the ratio of the size of
a region to the sum of the speeds of the influencing
flow processes. The region with the smallest coeffi-
cient will be the first to disappear. Note that this is
not necessarily the smallest region. The disappear-
ance coefficient is a measure of the smallest spatial
alteration, with respect to the speeds of the flow pro-
cesses, that is necessary to bring about a qualitative
change to the graph, i.e. terminate a flow process and
cause a region to disappear.

We will explain the different steps of the algorithm
with the example in figure 8. It shows a grocery bag
with three adjacent items: a large packet of cold ice-
cream, a medium-sized packet of refrigerated milk and
a medium-sized loaf of bread at room temperature.
Initially, the items correspond to distinct temperature
regions. The quantity space for temperature is {cold
cool room}, which is mapped to {1 2 §}, and for size
{medium large}, mapped to {1 £}. These magnitudes
reflect a suitable interpretation of the symbols in this
particular example. In order to get a finite evolution,
it is necessary to specify a threshold value that weeds
out insignificant flow processes. In this example, we
define a temperature difference greater than 0.5 in the
mapped quantity space as significant. The regions cre-
ated during the simulation will be assigned alphabetic
symbols for easy reference.

The simulation algorithm proceeds in the following
steps:



Bread Installinitial adjacencies: Once the new flow pro-

Milk
Region A Region B cesses have been installed, initial adjacencies are in-
Size: 1 Size: 1 . .
Temp: 2 Temp: 3 Stalled for each new growth region, as shown in fig-
ure 9b.
Quantity space mappings: Find smallest disappearance coefficient: The
Size: [medium large) disappearance coefficients of the source and sink re-
‘l‘ ! m gions are calculated, as indicated in figure 9b. Region
. hockid cof ol %:;PZ ! B is found to have the smallest coefficient: 1/3.
‘{ *2 ‘g _Update sizes: The speed of each flow process is
“multiplied by the smallest disappearance coefficient
Figure 8: Initial situation. and subtracted from the sizes of the source and the
sink region. It is added twice to the size of the growth
region, which thus grows at the expense of the source
Detect and install flow processes: Flow pro- and sink regions. The result is shown in figure 10.
cesses will occur between adjacent regions with a tem- .
perature difference greater than the chosen threshold &‘;’“ﬁ

value, i.e. between all regions in figure 8. In figure 9a,
the flow processes have been installed and the adja-
cencies have been replaced by growth regions. Their
size is initially zero and the temperature is set to the
average of the source and the sink region. The speed
of the flow processes is the value difference between
the source and the sink region.

Region E
Size: 0
Region A Spoe 1 Region B
%:’;]z T —— %313 Figure 10: First iteration: Updated sizes and removed
regions.
. -
a S;::;l » g smz Terminate flow processes: The size of region B
Region C is now zero, which means the termination of the flow
%‘:;'pz 1 processes using it. The space that was originally occu-
pied by region B, i.e. the loaf of bread, is now shared
between growth regions E and F. This means that
the bread now has a non-uniform temperature distri-
‘ bution and that its temperature as a whole has de-
creased. The two adjacencies of region B have been
o inherited by regions E and F, which are themselves ad-
] Temp: 2.5 jacent. Region B and its adjacencies could be removed
g‘ui”? A Spoel g;i’“f B from the graph, but for easy comparison of subsequent

Tﬂ graphs in this example, we only indicate its removal
B by replacing the adjacencies by dashed lines, as seen

T
Coct 12

%nz::o . %'hmm:o": in figure 10.

1 emp:

b s;ﬁ r > 7 Speed: 2 The graph in figure 10 is the final result of the first
Region C iteration. Five regions and one active flow process
.?.iw 21 remain. A second iteration is thus necessary.
Coctt: 23 The graph is reexamined and two new flow pro-

cesses are detected. Figure 11a shows the new pro-
cesses and the corresponding growth regions, adjacen-
cies and disappearance coefficients. In this example,
flow processes are only started between regions with
a sufficiently large temperature difference, in this case

Figure 9: First iteration: Installation of initial flow
processes, adjacencies and disappearance coefficients.
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regions D/E and C/F. Region D is also the growth re-
gion of the still active flow process between regions A
and C. It is thus possible for a region to be involved in
several processes. The simulation will determine the
net influence of the processes, i.e. whether the region
is growing or shrinking.

Region A

Size: 13

Temp: 2 Region B
Coelf: 153 Size: 0

Region E

g_i.u: ms
Region A emp: 2. Region B
s;ﬂ 0 Coetf: 13 Size: 0

Speed: 1

P
Size: 13

C
emp: 1
Coeff: 13

-3

Figure 11: Second and third iteration.

This time, region A will be removed, since it has
the smallest disappearance coefficient. The resulting
graph is shown in figure 11b. Two flow processes are
still active, but no new processes can be started. The
minimal disappearance coefficient is found at regions
C and E and both are removed from the graph, as
shown in figure 12a. Four regions remain (D, F, G and
H) that can be reduced to two by merging adjacent
regions with equal values, as indicated in figure 12b.

The simplified graph in figure 12b is the final re-
sult of the qualitative simulation. The sum of the
sizes in the final graph is the same as in the initial
graph. The temperature difference between the re-
maining regions corresponds to the specified thresh-
old value, indicating that the temperature is homoge-
neous in the system, as could be expected. The result-
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Figure 12: Final graph and simplification: no more
active flow processes.

ing temperature lies in the interval [1.5, 2], which can
be mapped back to the original quantity space, giv-
ing a final qualitative temperature closer to cool than
cold. The sequence of graphs produced by the simu-
lation algorithm explains the physical background of
this value.

6 Conclusion

We have presented a common-sense model and an al-
gorithm for qualitative reasoning about gradient flow
processes due to concentration differences in a dis-
tributed parameter. Since the method focuses on
the spatial properties of individual parameter regions
rather than objects, it is well adapted to reasoning
about processes in free space and especially applica-
tions with insufficient spatial data, where the shapes
of the parameter regions cannot be determined with
accuracy. One example is meteorology, where the dis-
tributions of atmospheric parameters are inferred from
a limited number of observation points. The shapes
of the regions can in general only be roughly approx-
imated, if at all, but it is still possible to use first
principles and common-sense reasoning to draw gen-
eral conclusions about the evolution of the parameter
distributions.

The utility of qualitative models of spatially dis-




tributed processes is manifold. Such models would
provide a user-friendly reasoning component for ge-
ographic information systems and programs for sci-
entific visualization. They would serve as a means
of communication between professionals by making it
easier to share common-sense analyses of spatial situ-
ations. They would also be of great utility for peda-
gogical purposes.

The research presented in this paper is part of a
larger project where general methods for reasoning
with systems of spatially distributed parameters are
being developed, see [Lundell, 1994]. The project was
inspired by a study of the working methods of practis-
ing weather forecasters. We are currently developing
models of basic atmospheric processes, such as radia-
tion, conduction, convection and advection, that will
be integrated in a qualitative model of a fairly complex
atmospheric process: the life-cycle of a sea breeze. We
are also investigating applications in agriculture and
natural resource management.
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