
Qualitative Navigation by Sensor Centric Landmark
Tracking

Abstract : Sensor based navigation is a fundamental
competence for any mobile robot. The essential prob-
lem with conventional statistical approaches to the
navigation problem is the requirement for maintaining
an exact global description of environment geometry.
In practise the behaviour of real physical sensors and
the observations they make of the environment make
such central geometric representation of the environ-
ment extremely fragile.
To overcome such problems, this paper proposes the

use of qualitative models of physical sensor observa-
tions . These aim to describe the world in terms of
local sensor-centric representations of the observed en-
vironment. Each representation exploits those land-
marks most natural to the physical sensor involved.
No global description of the environment is main-
tained and no explicit geometric representation of the
world is assumed . This leads naturally to anavigation
process defined in terms of relationships between dif-
ferent sensor observables; an intrinsically more robust
mechanism than found in conventional navigation al-
gorithms .
The representation and navigation methodology

proposed is illustrated using sonar data from a real
vehicle.

1 Introduction
Often metrical information (from either sensory cues
or models) is either incomplete, inaccurate or hard
to interpret, and navigation using purely quantitative
techniques is fragile [2, 6] . Quantitative models tend
to produce either descriptions which are too accurate
for the task at hand or, in the case when information
is incomplete, no descriptions at all . For these ap-
proaches, robust navigation is possible only when the
robot is able to construct accurate geometric models
appropriate to the detail of its sensing information. A
qualitative description of the processes can be suffi-
cient to constrain the robot to perform to a certain
specification (e .g . avoid collisions and move along a
corridor) without over constraining and forcing the
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robot to follow exacting metrical descriptions . How-
ever, qualitative descriptions can be ambiguous. In
such circumstances quantitative information can be
used to constrain the models further.
The choice of landmark is dependent on the nature

of the physical sensor employed. This is because dif-
ferent modalities detect different significant features
in the environment. Furthermore, the significant fea-
tures observed by a sensor are rarely those that one
might expect from a visual analysis of the coarse ge-
ometry of an environment . It is important, therefore,
to avoid the use of a central composite geometric rep-
resentation of the environment. A more natural ap-
proach is a sensor centric representation of qualitative
sensor data where each modality maintains its own
qualitative representation of asubset of landmarks sig-
nificant to its sensory processes.
Qualitative navigation, where the emphasis is on

building, maintaining and planning with topologi-
cal descriptions of the environment, have been stud-
ied [1, 5] . These approaches generally rely on the
identification of distinctive objects (landmarks) in the
environment which are either individual features or
places . These are interconnected by procedural infor-
mation describing travel routes between them. Navi-
gation involves the determination of the robot's posi-
tion in its environment and the construction of plans
which take the robot to its goal destinations . Further,
for a robot with no knowledge of the structure of its
environment, it must construct and maintain a map.
The approach described here, that sensor behaviours

are inferred from physical properties of the sensor pro-
cesses, differs from previous approaches (for exam-
ple [5]) . We will show how a robot equipped with
range sensors can infer the qualitative behaviours of
its sensor cues, build qualitative maps for environ-
ments comprised of indistinct reflectors (i .e . features
with no significant differentiating characteristics) and
show how these maps can be used in navigation . We
illustrate our approach to navigation in the sonar sens-
ing domain . In Section 2 we introduce a qualitative
model of the sonar. In Section 3 we present a qualita-
tive model of how sonar cues are related to odometric



(translational motion) and gyrometric (rotational mo-
tion) . In Section 4 we show how these models can be
used to derive the rules of navigation using QSim and,
finally, in Section 5 we show how the robot can path
plan using its map and derived knowledge of the be-
haviour of sensor cues. Throughout we will refer to
a real robot application and illustrate the approach
using real data .
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The Sonar Model
For a typical in-air sonar there is no obvious di-
rect correspondence between the environment and the
recorded range measurements . Figure 1, for example,
shows a sonar scan of asimple environment. However,
from this scan it can be seen that the range measure-
ments for reflections perpendicular to the walls at ¢,
b, c and d in the figure, the edge at e and corners
at f, g and h are in close correspondence to distance
between the sensor at + and the reflectors . Further,
range values are equal over a range of bearings each
side of these points . This phenomenon has been noted
by [3] and [6] and the latter has coined the phrase the
region of constant depth (RCD) . An RCD is a con-
tiguous sequence of bearings with equal range values
(RCD formations in the sonar map for a room in Fig-
ure 1 and a robot at `+', are shown in bold) . They
are formed because the sonar beam is wide and dur-
ing a sweep scan a tiny part of the reflector is visible
over a finite sequence of bearings . Since the sonar
wavelength is large compared to reflector surface fluc-
tuations walls behave like specular (i .e. mirror like)
objects. Imagine walking through the room depicted
in Figure 1 . When walking towards location Y, for
example, the RCD at a would move abreast of the
observer . The edge at h would appear to move away
from the observer.

Figure 1 : Range-bearing plot with overlaid environ-
ment

As a robot moves through the environment the
RCDs move predictably. RCDs formed by reflections
from walls move tangentially with the wall and abreast
of the robot. Corner and edge RCDs rotate about the

point of reflection . This is apparent in Figure 2 which
shows the overlay of a set of RCDs taken from various
positions in the environment . What is evident here is
that the door-frame at i which is not an obviously sig-
nificant feature in a global geometric map, is the most
significant feature to a sonar. Conversely, the wall at
c is significant in geometric terms, but is very weak
to a sonar . Leonard [6] demonstrates how a robot can

Figure 2: Accumulated RCDs from 24 scan positions

navigate by tracking RCDs as the robot moves. The
essential point here is that the information obtained
by a sonar does not correspond well with the under-
lying geometry of the environment. However, the in-
formation (i .e . RCDs) are predictable and have mo-
tion patterns which are well understood consequences
of the underlying physics of the sensing process . In
Section 3 we show how RCD range and bearing infor-
mation to the same feature at different locations can
be related to the robot's translational and rotational
speed by two ordinary differential equations .
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The Qualitative Model
Leonard [6] introduces a unified description of plane,
edge and corner sonar reflectors . This is the gener-
alised cylinder in which planes are cylinders with in-
finite radius and edges and corners are cylinders with
zero radius . Equations 1 and 2 relate the radius of

Figure 3: System geometry

a cylinder r and the perpendicular distance from its
surface R to a robot moving with translational speed

aD and rotational speed dt (see Figure 3) .
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These equations form the basis for qualitative nav-
igation . From these we can use qualitative simula-
tion to construct a set of qualitative rules which can
be used to constrain the qualitative interpretation of
sensor measurements .
QSim [4] is used to generate the qualitative be-

haviours from qualitative descriptions of the contin-
uously differentiable equations governing the system .
We shall use the notation < Qv Qd > to denote a
qualitative variable with value Qv and derivative Qd.
To implement the interpretation of qualitative sensor
cues, QSim was extended to deal with persistently in-
finite variables . QSim treats infinities as point values
and, therefore, a variable cannot remain at infinity
and be decreasing simultaneously. It is not possible to
represent plane reflectors in such a system since (R+r)
in Equations 1 and 2 is infinite but not necessarily
constant . In general, we want to allow behaviours for
A(t) when A(t) = lim,,,X +B(t) and A(t) remains
infinite but B(t) < 0 or B(t) > 0 . This is achieved
by allowing the infinity landmarks to be both succes-
sors and predecessors of themselves in QSim quantity
spaces .
Each variable in Equations 1 and 2 is assigned sensor

centric landmarks . The angle type landmarks charac-
terise orientation : left, forward, right and behind. The

Figure 4 : QSim generated behaviours

Range R
Reflector bearing 0
Travel bearing ¢
Reflector type r

Travel distance D

quantity spaces are shown in table 1 . The zero angle
landmark means forward in QSim notation . The re-
flector type landmarks 0 and inf denote edges (and
corners) and planes respectively .

{ 0, inf }
{ behind*, right, 0, left, behind }
{ behind*, right, 0, left, behind }
{ 0, inf }
{ 0, inf }

Table 1 : Sensory modality quantity spaces .

Figure 4 shows the qualitative behaviours obtained
from Equations 1 and 2 for a robot moving with zero
angular velocity (i .e . 0 =< 0 std >) towards a plane
and past a cylinder and an edge . The top three graphs
in Figure 4 (betel) show the qualitative behaviour for
the case of the plane RCD. In the top left graph
betel-var-r:reflector-type, the generalised cylinder ra-
dius is infinite and steady corresponding to a plane re-
flector . Graph betel-var-R :range shows that the range
value decreases and graph behi-var-Th :bearing shows
us that the bearing 0 to the plane remains constant .
For plane reflectors the RCD moves tangentially to
the reflector and abreast of the robot and this is the
reason why 0, in this case, is constant .
The second row of graphs (beh2) describe the be-

haviour of an edge (or corner) RCD. In the middle left
graph betel-var-r:refiector-type, the generalised cylin-
der radius is zero and steady corresponding to an edge
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reflector . In beh2-var-R:range we see that the range
gradually decreases until some time point tl and then
increases indefinitely. This corresponds to a robot
moving towards apoint like object fixed in space, pass-
ing close to it and then moving away from it . In graph
beh2-var-th : bearing we can see that this RCD moves
gradually further to the left and then recedes behind .
The third row of graphs shows the RCD behaviour
beh3 for an arbitrary cylinder of finite radius .
In general, purely qualitative information is insuf-

ficient to differentiate reflector types for small odo-
metric displacements. It is impossible to determine,
for example, whether a change in bearing is due to
the motion of an edge or noisy data from a plane re-
flection . However, numerical information can be used
to distinguish these cases. Using Q2 [4] we can es-
timate numerical bounds for future bearing readings
from current values for each type of reflector and thus
disambiguate the types of observed reflectors . This is
crucial for navigation by feature tracking .
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Sensor Centric Navigation
In the previous section we demonstrated that a robot
can predict the behaviour of its sensor cues from a
qualitative model of the sensor . In this section we
emphasise that this mechanism can be used in path
planning . From the current state the robot can infer
a sensor centric behavioural description of its motion
towards a goal state . We illustrate this by showing
how a robot can plan qualitatively to pass between
two objects by predicting its sensor cue behaviours
under the constraint that collisions should be avoided
(i .e . R=0 is a QSim unreachable condition) .
Figure 5 shows a plane (P) lying initially frontal-left

and a narrow cylinder (C with r = 0) lying to the
frontal-right of the robot. The goal is to pass between
both objects without colliding with either . The goal
state is that the plane is left-rear and the cylinder is
right-rear . We build a combined two object qualita-
tive differential equation from Equations 1 and 2 in
which both range-bearing pairs are related by shared
translational and rotational speed variables. We con-
strain the envisionment further by insisting that the
speed and angular velocities remain constant, that the
robot turns to the right and that it passes between
the cylinder and the plane (i .e . by insisting that 01
remains negative).
Figure 6 shows one of the many behaviours gener-

ated by QSim. The robot would expect to observe de-
creasing range cue values to both the cylinder and the
plane initially (i .e . in graphs Rl :range and Rl:range
Ri = Rz =< (0 inf) dec >) in the time interval
(t0 tl)) . The bearing of both features would gradu-
ally increase until the robot finds itself at its closest
approach to both features simultaneously (i .e . where
the range values are steady at tl) . At this stage the
plane would be parallel to the direction of motion since

10
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Figure 5 : System geometry

02 = left . The robot would then observe Ri and RZ
begin to increase and 02 =< (behind left) inc > in-
dicating that it has turned away from the plane and
is moving away from both objects. In summary, this
is a specification of a path which allows the robot to
safely navigate between the plane and the cylinder by
keeping the cylinder to its right and the plane to its
left .
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Figure 6 : QSim generated behaviours
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In the next section we develop a global spatial rep-
resentation and we will show how the mechanism de-
scribed in this section can be utilised in conjunction
with the spatial map for path planning .
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Map Building and Navigation
The approach presented in this paper gives an insight
into how sensor centric qualitative maps can be de-
rived by a mobile robot equipped with qualitative in-
formation of how its sensory cues are inter-related.
Map building is necessary for determining position
relative to some goal location (this is the referencing
problem) . Qualitative map building and navigation
have been studied. Kuiper's [5] approach maintains



a network description of distinct places in the envi-
ronment. Distinctiveness measures are metrical and
are not invariant within the boundaries of the distinct
place. An example of a distinctiveness measure is the
range and bearing information measured from a point
from which there is an equal distance to near objects.
Inter-region travel paths are encoded as procedural
information between nodes (e .g . move along object
on left) . Dai and Lawton [1] describe an algorithm
for region acquisition and robot navigation using vi-
sual sensors. Their approach requires either the pres-
ence of distinctive landmarks in the environment or a
compass. For the case of compass-less navigation dis-
tinctive regions are separated by landmark boundary
pairs (LBP). For example, in Figure 7, the LBP `a to
b' distinguishes two regions X and Y on either side .
When a is observed to be to the left of b (written a-
b) the robot is in region X. Distinctive LBP regions
are identified by the conjunction of all LBPs between
locally observed features and the LBP signature is in-
variant within the LBP region . The robot navigates
by following LBPs .

Y

Figure 7 : LBP regions

RCDs have no clear individual distinguishing char-
acteristics and so a distinctive landmark approach is
not feasible in the ultrasonic sensing domain . How-
ever, the positional relationship between RCDs does
allow a distinctive place formalism. We define a gen-
eralised cylinder centre (GCC) region (see Section 3)
as that spatial area in which the orientational order-
ing of a set of landmarks is invariant. The distance
ratios between orientationally neighbouring RCDs are
invariant within the GCC region and this can be used
to define a referential signature for the region . The
distances between neighbouring GCCs can be deter-
mined from range sensor information using the cosine
rule .

A=,j - (R-2(R,+ri)(Rj+rj)coso=,j

where r;, rj are the hypothesised reflector generalised
cylinder radii and R=, Rj and Bj ,j are the range and
bearing information. In the example in Figure 8 a,
b, c, d, e, f are edges or cylinders 1 . In region A,
for example, the reflectors are ordered in decreasing
bearing B: a >- b >- c >- d >- e >- f. The relative

1 Since for planes the generalised cylinder radius d= oo and
since environmentscomprise alternatingplanes and comers gen-
erally, planes reduce the uniqueness of GCC signature. Planes
are therefore not included in the signature .

distances between adjacent features is Ab,c }- Af,a >-

Da,b >- Ad,, >" De,f >- A,,d-

Figure 8 : Qualitative region signatures

The referencing problem is solved by matching
equivalent GCC signatures . Two GCC regions are
equivalent if one is a cyclic permutation of the other.
Hence, arobot can determine its GCC region irrespec-
tive of its orientation or position within the region .
Further, signature matching between GCCregions au-
tomatically gives the pairwise matching of reflectors
between scans. This paves the way for the extension
of the LBP approach to the sonar range domain . We
define the LBP with respect to the centres of the re-
flector generalised cylinders. Figure 9 shows a cylin-

P

Figure 9: LBP regions. Hashed lines are LBPs.

der, edge and a plane reflector with LBPs through

Region LBP signatures
A p-c, c-e, e-p
B c-p, c-e, e-p
C c-p, e-c, e-p
D p-c, e-c, e-p
E p-c, c-e, p-e

Region Bearing order GCC Signature
A abdcef 461325
B abdcef 351624
C abdcef 356124



the centres of the generalised cylinders. These LBPs
divide the space into LBP regions A, B, C, D and E.
The spatial map is a network of range sensor cue

nodes containing information gathered at locations
within the environment . The inter-node links repre-
sent motional (translational and rotational) cues be-
tween locations. Each node describes an LBP region
and the sub-network of neighbouring nodes with sim-
ilar GCC signatures describe the GCC region . Each
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Figure 10 : Spatial map

node comprises the LBP region and GCC region signa-
tures and an ergo-view which is a qualitative descrip-
tion of the range and bearing to local reflectors for
a specific robot position and orientation. Qualitative
values are assigned to ranges according to the average
range to local reflectors . Ranges greater than the av-

erage in the ergo-view correspond to `far' objects and
those less than the average are `close' objects. This
description is invariant about a finite region around
the robots actual position . The ergo-view is a list of
quadruples . Each quadruple contains a global map
index value for the reflector, the type of reflector (or
in the case of a cylinder, a range of numeric values
binding its radius estimated from range and bearing
information using Q2) and an ergo-view. The exam-
ple spatial map in Figure 10 shows the qualitative map
constructed as the robot moves through locations A,
Band Cin the environment depicted in figure 11 . Fig-
ure 12 shows the range sensory data at each of these
locations .
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Figure 11 : Example environment

In Section 4 we demonstrated how a robot can
use qualitative simulation to predict how its sensory
cues behave while moving between locations. This,
in conjunction with the spatial map, can be used by
the robot to plan paths to goal states . The spatial
map describes how to move from one LBP region to
the next and also specifies how the range sensor cues
should behave in the process. For example, when
moving between locations B and C in Figure 11 the
robot should move according to the following criteria :

Keep turning to the right allowing the edge reflec-
tor (8) to move to the left-rear quadrant but keeping
the cylinder reflector (6) close and to the right-rear . . .

However, the robot is generally never in the config-
uration specified in the ergo-view. As demonstrated
in Section 4, QSim can be used to derive the actions
required by the robot to take it from its current sen-
sory cue specification to that of the ergo-view. Thus,
it is possible that an adequate qualitative path can
be composed from a novel set of sensory descriptors
which take the robot into a familiar LBP node fol-
lowed by a sequence of nodes which take the robot to
its goal destination. This is ongoing research .

1 inf close left-frontal
2 0 close left-frontal
3 0 far tight-rear
4 0 far right-rear
5 inf far right-frontal
6 [0,1 .05] close right-frontal
7 0 close right-frontal

I1 0 close left-frontal
7 0 close left-frontal
8 0 close left-rear

10 inf close left-rear
2 0 close right-rear
6 [0,1 .05] close right-rear
4 0 far right-frontal
5 inf far right-frontal
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Figure 12 : Example cartesian range-bearing plots.

6 Conclusion
We have shown that a robot can construct qualitative
models of its sensing cues from physical descriptions
of its sensing processes. We have shown how these
sensor centric models can be used in the map building
and navigation tasks.
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