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Abstract: Constructing a qualitative model of some
device usually proceeds as a cycle of model formulation
and model debugging. The latter is driven by discrep-
ancies between the behaviour predicted by the model
and the actual device behaviour. This paper describes
how the eltmination of one type of discrepancy, incor-
rectly predicted derivatives, can be supported. It pro-
vides an analysis of the knowledge that is required for
succesfully adapiing the model. Then an implemented
procedure is described for supporting the elimination
of tncorrect derivatives. Heuristics are employed to
generate plausible hypotheses, and in interaction with
the modeler one model adapiation is selected.

1 Introduction

A qualitative model is hardly ever constructed in one
go. Usually the modeling process proceeds incremen-
tally. It consists of cycles of model simulation and
model debugging. Figure 1 depicts the cyclic nature
of model construction. An initial model is formulated
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Figure 1: The incremental nature of qualitative model
construction

and the qualitative simulator generates a behaviour
Prediction. Usually the behaviour predicted by the
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model is not completely in line with the real device
behaviour. For example, the model predicts that a
certain temperature increases, whereas in the real de-
vice it decreases. The modeler is faced with the task of
finding out which modeling error(s) caused this incor-
rect prediction, and to change the model in order to
resolve the discrepancy. We call the process of elimi-
nating discrepancies between predicted behaviour and
expected behaviour, model adaptation. Our aim is to
support a modeler in this process. The paper focuses
on one specific type of discrepancy: incorrect deriva-
tives of quantities. We assume that a modeler identi-
fies one or more derivatives that are incorrect. Then
we describe how the support system finds, in interac-
tion with the modeler, the model modifications that
eliminate the incorrect derivatives. The contributions
of the paper are threefold:

o It describes the modeling knowledge that is re-
quired for eliminating incorrect derivatives

e It gives an analysis of the reasoning process in
eliminating incorrect derivatives

e It demonstrates how this process can be supported

First, section 2 briefly explains the knowledge rep-
resentation that is employed in the qualitative rea-
soner that we use. Then, section 3 gives an example
of the model adaptation problem and discusses the
model adaptation task in a general way. Section 4 dis-
cusses the specific case of adapting a model in order to
eliminate a discrepant derivative. Section 5 explains
how the occurrence of multiple discrepant derivatives
is treated. Finally, section 6 discusses some open-ends
and relates model adaptation to model-based diagno-
sis.

2 Knowledge Representation

The process of constructing a qualitative model for
some device is, among others, determined by the par-
ticular qualitative reasoning formalism. The model



primitives of the formalism dictate what can be ex-
pressed and how. The formalism we use, GARP (see
[1]), employs model fragments to represent pieces of
generic domain knowledge, and a case model for rep-
resenting the particular device. Model fragments are
expressed as a set of conditions and consequences.
Both the case model and the model fragments are
made up of the following set of model primitives: en-
tities represent physical objects (e.g. a container);
attributes represent properties of objects (e.g. con-
nected_to); quantities represent variable properties of
objects (e.g. temperature) that have a qualitative
value and a derivative; dependencies represent how
different quantities are qualitatively related (e.g. an
inequality).

In order to predict the behaviour of some device, its
structure and initial conditions have to be modeled in
a case model. The qualitative simulator searches the
library of model fragments and instantiates the ones
whose conditions match the case model. This results
in a set of instantiated dependencies that are used to
compute the values and derivatives of all quantities,
yielding a description of the device behaviour during a
period of time: a qualitative state. Changes from one
state to another are derived by applying transforma-
tion rules. A sequence of states represents the device
behaviour over time.

3 Model Adaptation

First, we will discuss the model adaptation task in a
general sense in order to illustrate which notions are
important. The next section describes in detail how
model adaptation proceeds in the case of incorrectly
predicted derivatives. As an example of the model
adaptation task, consider figure 2. The drawing rep-
resents the condensor part of a refrigerator. A com-
pressor pumps substance into the condensor, and the
substance flows out through the throttle-valve. Due to
the increased amount of substance in the condensor,
the pressure rises, and as a consequence, the tempera-
ture of the substance rises too. Now suppose that the
modeler has constructed an incorrect model for which
the behaviour is predicted. The table in figure 2 gives
the expected and the predicted derivatives of Pressure
and Temperature for a state in which the compressor
starts working. Pressure is predicted to be decreasing,
and Temperature is predicted to be steady, whereas
they both should be increasing. The modeler’s task is
to identify what is wrong with the model, and how it
has to be modified. The first step is to find out which
elements in the model affect the derivatives of Pressure
and Temperature. These determinants are depicted in
the left side of figure 3. Next, the modeler has to de-
termine how the set of determinants is incorrect and
which modifications to the model might resolve the
incorrect prediction. For example, the derivative of
the Amount could be incorrect. If it were decreasing,
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Derivatives: || Derivatives:
Pressure decreasing increasing
Temperature steady increasing

Figure 2: The condensor with predicted and expected
derivatives

the derivative of Pressure would be correctly predicted
to increase as well. Likewise, adding a positive influ-
ence of CompressionRate on the Temperature would
resolve the incorrectly predicted derivative of the lat-
ter. This shows that a selection has to be made from
the various ways of modifying the model. The right
side of figure 3 shows the model that should be at-
tained. From all possible candidate model adaptations
the modeler has to select the one that realizes three
things: it must change the negative proportionality
between the Amount and the Pressure into a positive
one, it must add a positive proportionality from Pres-
sure to Temperature, and it must remove the influence
of the EzpansionRate on Pressure.

This example illustrates four notions that are impor-
tant for model adaptation in general:

Discrepancies. In general, discrepancies are charac-
terized by the model primitive they concern, and
by their type. Three types of discrepancies can be
distinguished: i) inappropriate: a model primitive
is instantiated in the model where it should not
have been (e.g. the influence of EzpansionRate on
Pressure); 1i) incorrect: the primitive should in-
deed be instantiated but have another value (e.g.
Pressure being negative proportional to Amount
should be positive proportional); iii) missing, it
is not instantiated where it should have been (e.g.
the proportionality between Pressure and Temper-
ature).

Current model state. The predicted behaviour
provides the instantiated current model state. It
allows the modeler to identify which elements in
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Figure 3: Current Model State and Desired Model State

the model were responsible for predicting a partic-
ular primitive instance. In the condensor example
the determinants of the derivative of Pressure are:
the influence of EzpansionRate, and the propor-
tionality with Amount.

Modeling knowledge. Modeling knowledge can be
thought of as a meta-view on the reasoning mech-
anism of the qualitative reasoner. For example, it
comprises knowledge about the effect of adding a
certain primitive to the model, knowledge of the
reasons that might explain why a certain expected
primitive is not in the model, and so on. The rele-
vant modeling knowledge differs for each combina-
tion of primitive type and discrepancy type. The
next section provides an account of the modeling
knowledge that is used for eliminating incorrect
derivatives.

Model modifications. A model modification is a
set of one or more alterations in the model (in-
cluding additions), that together eliminate the dis-
crepancy. A model modification is the result of the
model adaptation process.

The process of model adaptation consists of four
main reasoning steps: discrepancy detection, determa-
nant collection, hypothesis generation, and hypothesis
selection. In the discrepancy detection step the differ-
ences between predicted and expected behaviour are
identified. Determinant collection is the process of
identifying which elements in the model are responsi-
ble for determining the discrepant primitive. It takes
the discrepancy and the current model state as in-
put and generates the relevant determinants as out-
put. Hypothesis generation is the process of finding
the candidate model modifications (hypothesis) that
might be applied in order to resolve the discrepancy.
The set of determinants and the modeling knowledge
are used to come up with such candidate model mod-
ffications. Finally, one model modification has to be
selected from the alternatives that were generated.

Note that modeling errors may propagate. For ex-
ample, an incorrect derivative might be caused by an
incorrect value of another quantity, which might be
caused by a missing causal dependency, which finally
can be traced to an omission in a model fragment.
This illustrates that the cause of some discrepancy
might be a discrepancy itself, possibly in another type
of primitive. As a consequence, another discrepancy is
discovered that requires model adaptation. This can
go further until finally a discrepancy can be related
to a change in a model fragment or the case model.
Since the modeling knowledge used in model adap-
tation differs for each type of primitive, the model
adaptation task can be decomposed naturally along
the lines of the primitives involved in the discrepan-
cies. Each combination of primitive type and discrep-
ancy type can be dealt with as an independent part
of the model adaptation task. The rest of the paper
discusses one such combination: incorrect derivatives.

4 Eliminating Incorrect Derivatives
After discussing the model adaptation task in a more
general way, we can now turn to the specific task of
adapting the model in order to eliminate incorrect
derivatives.

4.1 Detecting incorrect derivatives

It is assumed that the modeler is capable of assessing
the appropriateness of the model’s behaviour predic-
tion. Hence, the modeler identifies the discrepancies
between predicted and expected behaviour.! Discrep-
ancies are stated in terms of the derivative value that
is incorrect, and the derivative value that is expected.
A predicted derivative value is one of: +,0, or —. An
expected derivative value is also one of 4,0 or —, but
three ranges may be specified as well: [—, 0], [0,+], or
[-,0,4]. If a range is indicated it means that the
modeler expects different states in which the only dif-
ference is the derivative value of the particular quan-

1This step could be largely automated if an accurate descrip-
tion of expected device behaviour were available.



tity. In the condensor example the two discrepan-
cies can be expressed as: discrepancy(incorrect, deriva-
tive(Pressure), +) and discrepancy(incorrect, deriva-
tive(Temperature), +), expressing that the type of dis-
crepancy is incorrect, the model primitive involved is
the derivative of Pressure and Temperature respec-
tively, and the expected derivative is in both cases +.
In this example two discrepancies are identified. There
is a possibility that both discrepancies are caused by
the same modeling error. Therefore, a distinction has
to be made between situations in which only one dis-
crepant derivative is identified, and situations where
several are identified. This section discusses the case
of a single discrepant derivative and the next section
adresses the case of multiple discrepant derivatives.

4.2 Collecting determinants of derivatives

When the discrepant derivatives have been identified,
the next step is to collect those elements in the model
that have contributed in determining its value. These
elements can be collected from the current model
state, the set of instantiated model primitives in the
state that exhibits the incorrect derivative. The model
elements that have an effect on a quantity’s derivative
are the dependencies that hold for that quantity. How-
ever, not all types dependencies have an effect on the
derivative of a quantity. Only three types of depen-
dencies are used to compute derivatives:

Causal dependencies. The common way in which
derivatives are determined is by one or more causal
dependencies with other quantities. The causal
dependencies occurring in the formalism we use,
are influences, I+, I-, and proportionalities, Q+,
Q- ( see also [4]).

Constraints. If various causal dependencies inter-
act then the relative effects cannot be determined
from the dependencies themselves. Sometimes
there is knowledge available about such relative
effects. Constraints are the vehicle for modeling
knowledge about relative effects. In addition, they
can be used for pruning behaviours that are not of
interest to the modeler. We use five types of con-
straints: >, >, =, <, <, each of them defined with
respect to two quantities.

Assignments. If only certain behaviours of a device
are of interest, c.q. only behaviours where some
quantity has a fixed derivative, an assignment can
be used. Also if it is exogenously determined that
a quantity has one particular derivative through-
out the device behaviour then it is assigned this
value. Quantities can be assigned one particular
derivative, +,0, or —, or they can be assigned a
range: [0,+], [0, —], resulting in the prediction of
different states with different derivatives for the
particular quantity. Assignments are defined as
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inequalities of derivatives with respect to zero:
>) 2) =I S! <'

The effect of a particular type of dependency is not
only determined by the type of that dependency but
also by the value or derivative of the quantity that ex-
erts an effect through that dependency. Therefore, all
determinants (causal dependencies, constraints, and
assignments) that are present in the current model
state, are annotated with the effect they have on the
particular quantity’s derivative. This is possible since
the values and derivatives of the quantities involved in
a dependency, are also available in the current model
state.

Annotating a determinant with its effect differs for
each type of determinant. For an assignment it is de-
termined which derivatives it allows and consequently
which are excluded. For example, if quantity A is
assigned derivative +, then — and 0 are excluded.
Constraints are annotated in a similar way: the type
of constraint and the derivative of the constraining
quantity determine which derivatives are allowed and
which are excluded. For example, suppose there holds
an equality between the derivatives of A and B and
the derivative of B is +. This means that for the
derivative of A only + is allowed and hence — and 0
are excluded. Causal dependencies are annotated in
a slightly different way because their effects are qual-
itatively added. They are annoted according to the
direction of influence (Doi) they have. The direction
of influence is determined on the basis of the type of
causal dependency and the value or derivative of the
determining quantity. For example, if A is positively
proportional to B and B has derivative +, the Doi of
the dependency is +. Table 1 shows how the direction
of influence for each causal dependency is determined.
In the condensor example the determinants of Pres-
sure are:

o Q—(Pressure, Amount) with Doi = — because
6 Amount = +
o [—(Pressure, EzpansionRate) with Doi = 0 be-

cause EzpansionRate =0

4.3 Generating candidate model modifica-
tions

Having collected all determinants and their effects, the
next step is to generate candidate model modifications
that resolve the discrepancy. The idea is that each of
the identified determinants may involve a modeling er-
ror, or propagates the effect of another modeling error
(the determinant may also be correct, of course). Be-
sides the possibility of errors in the model, it may also
be incomplete: determinants may be missing. Which
determinants may be missing and how each individual
determinant may be modified, constitutes one type of
the modeling knowledge mentioned in section 3.



| Dependency Type: | I- | I+ || Q- [ Q+
value V of derivative D of |
determining quantity || Doi | Do: || determining quantity || Doi | Doi
V<O + | = D=- + | -
V=10 0 0 D=0 0 0
V>0 - - D=+ — +

Table 1: Determining the Direction of Influence (Doi)

There is a limited number of ways in which a de-
terminant can involve a modeling error, or in which
it propagates one. As a consequence, the number of
ways in which each determinant can be modified, is
limited as well. This makes it possible to enumerate
in advance all different modifications for each type of
determinant. In addition, each modification can be
annotated with the effect that it has on the quantity
involved, similar to how determinants are annotated.

Modifications are expressed implicitly as the inverse
of a discrepancy of another model primitive. For ex-
ample, if a modification entails that a positive in-
fluence is replaced by a negative influence, this is
expressed as: discrepancy(incorrect(l + (A, B)),I —
(A, B)). The reason for expressing a modification in
this way, is that, as already explained in section 3,
modeling errors propagate. Therefore, one discrep-
ancy may be explained by another discrepancy until
one can be explained by an error in the case model
or in the model fragments. For example, replacing a
positive by a negative influence may resolve an incor-
rectly predicted derivative but introduces the prob-
lem of why the positive influence was present in the
model: some model fragment may have been defined
incorrectly, or it should not have been included in the
model whereas another (specifying a negative influ-
ence) should have been included, and so on. For our
purposes, we assume that the new problem is adressed
by another part of the model adaptation task.

As an example of a set of determinant modifications,
take the determinant Q—(Pressure, Amount) from the
condensor system. This determinant may be incor-
rect or inappropriate. The incorrectness may concern
the derivative of the Amount or the dependency itself.
Suppose the annotation of the determinant, its Doi,
is + in the current model state. Then the possible
modifications are:

® incorrect § Amount, should be — (new Doi = —)
® incorrect § Amount, should be 0 (new Doi = 0)

® incorrect Q—(Amount, Pressure), should be Q+
(new Doi = +)

® incorrect Q—(Amount, Pressure), should be I+
(new Doi depends on value of Amount)

* incorrect Q—(Amount, Pressure), should be I—
(new Doi depends on value of Amount)

e inappropriate Q—(Amount, Pressure), (giving no
Doi)

e correct Q—(Amount, Pressure), (Doi remains —)

As another example, suppose that one of the deter-
minants of a quantity A is the constraint that the
derivatives of A and B are equal, and also suppose
that the derivative of B is 0. In this case the errors
are:

e incorrect é B, should be —, realizes —
incorrect é B, should be +, realizes +
incorrect A = 6B, should be >, realizes [0, +]

L]
*

incorrect § A = 6B, should be >, realizes +

¢ incorrect §A = 6B, should be <, realizes —

L

incorrect 6 A = éB, should be <, realizes [—, 0]

e inappropriate §4 = § B, realizes no derivative

e correct A = 6B, realizes (

In this fashion it is possible to enumerate all differ-
ent ways in which each determinant may be modified,
annotated with the effect that the modification has.
Recall that annotations are for causal dependencies in
terms of the direction of influence, for constraints and
assignments they are in terms of the derivative they
realize. For constraints and assignments the sets of
possible modifications can now be pruned: some mod-
ifications can be discarded already, since they are not
compatible with the expected derivative.? Because
the modifications are annotated it can be checked
whether the annotation excludes the expected deriva-
tive. If it does, that particular alternative is no longer
considered. An example may clarify this. Suppose
an assignment is present in the current model state,
realizing derivative 4. Possible modifications are: in-
correct assignment (annotation [0,+]); incorrect as-
signment (0); incorrect assignment ([—, 0]); incorrect
assignment (—); correct assignment (+). Suppose that
the expected derivative is —. Now the first two mod-
ifications and the last one are not compatible with

2The reason why this can only be done for constraints and
assignments, is that they determine a derivative in an absclute
way, unlike causal dependencies whose effects are qualitatively
added.



the expected derivative: they need not be considered
in modifying the model because they can impossibly
lead to a model realizing the expected derivative.

Having for each determinant a set of possible modi-
fications, hypotheses are generated by picking for each
determinant one of its possible modifications. Such a
set of alternatives forms a potential hypothesis. Since
all modifications for each determinant are enumerated
in advance, eventually a combination is formed that is
the desired model adaptation. Here it becomes clear
why correctness of a determinant is included as one
of the possible ”modifications” of that determinant.
Explicitly including correctness of some determinant
makes it possible to generate hypotheses where, for
example, only one determinant is modified.

Besides picking one alternative for each determinant,
it is also possible to extend hypotheses by including
one or more missing determinants in the hypothesis.
Thirteen types of annotated determinants might be
missing: a causal dependency with a Doi of either
—,0, or 4+; a constraint or an assignment realizing
+,[0,+],—,[—, 0], or —. Based on the same argument
as above, the alternatives for missing constraints or
assignments that exclude the expected derivative, are
not considered.

A set of modifications of determinants, possibly ex-
tended with errors of missing determinants, is only a
hypothesis if the conjunction of modifications leads to
a model that correctly predicts the expected deriva-
tive. How can this be checked? First, recall that each
modification has been annotated with its effect on the
quantity involved. Thus the set of modifications (and
additions) gives a complete picture of the situation
where a model including these modifications would
be simulated. Second, an additional type of modeling
knowledge can be employed. This knowledge captures
the fact that a certain derivative is only predicted if
particular combinations of determinants are present in
a model. These combinations can be represented as
so-called ideal model states. An ideal model state spec-
ifies which annotated determinants have to be present,
and which must not be present in the model so that
the model predicts a certain derivative. For example,
one way to realize an expected derivative of +, is to
have two causal dependencies, one with Doi = —, and
one with Doi = 4, and an assignment realizing +: the
effects of the causal dependencies are ambiguous but
the assignment excludes derivatives — and 0. This
type of knowledge is based on the semantics of the de-
pendencies and on the manner in which the simulator
uses them to compute derivatives.

It is possible to enumerate all ideal model states that
realize each particular derivative or range of deriva-
tives. Table 2 gives all ideal model states for some
expected derivatives.3 The upper row designates the

3For purposes of conciseness, the ideal model states for ex-
pected derivative — and [—,0] are left out of the figure. They

168

expected derivative. The first two columns specify the
types of determinants that may occur in the model
and their effects. The following columns of the table
represent each an ideal model state for some expected
derivative. The entries of a column specify which
annotated determinants must be present, marked 3,
which must not be present, marked @, and which may
or may not be present in that particular ideal model
state, not marked. For example, take in table 2 the
second column for expected derivative 0 (see 1). Now
start reading from above: derivative 0 is realized by a
model that has no causal dependencies with Doi = +,
that has a caisal dependency with Doi = 0, that has
no causal dependencies with Doi = —, that has no
constraints and no asignments realizing + or —.

Now the set of modifications with their effects can
be checked against the ideal model states. A set of
modifications is a hypothesis only if it matches one of
the ideal model states for the expected derivative. If
not, it can be rejected as a hypothesis. In the conden-
sor example, a hypothesis for the incorrect derivative
of Pressure is that the derivative of the Amount is in-
correct (should be 0), and that a causal dependency
with Dol = + is missing. Another hypothesis is that
the proportionality with Amount is incorrect (should
be positive). Note that both hypotheses contain a
discrepancy concerning the same determinant, that
is, Q—(Pressure, Amount). However, the former con-
cerns the determining derivative, § Amount, the latter
concerns the dependency.

Selecting a model modification

Obviously, this way of generating hypotheses leads to
large numbers of hypotheses, many of which are im-
plausible. The number of hypotheses can be reduced
by asking the modeler to verify whether some modifi-
cation of a determinant is accepted or not. If the mod-
eler accepts it, then for that determinant the proper
modification has been found, ruling out many combi-
nations that include the other, invalid modifications.
If the modeler does not accept that modification, it is
marked as an invalid modification, which still rules out
many candidate hypotheses. But for effective support
the interaction with the modeler should be minimized.
In order to do so, the plausible hypotheses should be
generated first. This calls for the formulation of a set
of heuristics that operationalize plausibility of an er-
ror. The effect of applying a heuristic is that some
of the ways in which each determinant may be mod-
ified, are initially not considered. Only if no solu-
tion is found, then the heuristic is discarded and the
previously skipped modifications are considered. By
building several of these filters on top of each other,
the most plausible hypotheses are generated before
hypotheses that are less plausible.

correspond to the mirrored situations of expected derivative +
and [0, +] respectively.
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Ideal Model States for Ezpected Derivative |

+ 0 [0,4] || [-,0,+]
Determinant | Annotation
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1

Table 2: Ideal Model States

The first heuristic is based on the observation that
modeling errors may propagate: a quantity earlier in
the causal structure may have an incorrect value or
derivative. Therefore, many hypotheses are excluded
if a determiner can be rendered incorrect. This gives
rise to the following heuristic:

¢ Prefer modifications of determining values
and derivatives over others.

A major presupposition that can serve as a basis for
some heuristics, is that the modeler is not constructing
a model in a randomly fashion. This means that it
is safe to assume that the larger part of the model
is correct. As a consequence, hypotheses involving
few modifications are more plausible than hypotheses
involving many modifications. These considerations
are captured in the heuristic:

® Prefer simpler hypotheses over more com-
plex hypotheses.

The same presupposition allows us to order the hy-
pothesis types according to the probability of their
occurrence. Recall that hypotheses may specify that
something is missing, inappropriate, or incorrect. It
is unlikely that some determinant is first specified and
later on appears to be inappropriate. Similarly, it is
more probable that some specified determinant ap-
pears to be incorrect than that the determinant is
completely forgotten. Then again, forgetting some-
thing is more likely than specifying it inappropriately.
With respect to modifications of type incorrect a fur-
ther refinement can be made. The most common way
of specifying some dependency incorrect is the so-
called sign fault, e.g. specifying a positive proportion-
ality instead of a negative one. Therefore, within the
category of incorrect modifications, sign faults should

1A0

be preferred over more radical errors. This gives the
following heuristics:

e Prefer modifications of type incorrect over
modifications of type missing and inappro-
priate.

¢ Prefer modifications concerning incorrect
sign over modifications of other incorrect-
ness.

e Prefer modifications of type missing over
modifications of type inappropriate.

As a second guideline in formulating heuristics, the
different types of determinants can be ranked accord-
ing to the probability that they are involved in mod-
eling errors. This ranking is based on the differ-
ent aspects that are represented by the dependencies.
Causal dependencies, for instance, represent general
features of the domain knowledge. Constraints, how-
ever, usually represent features of a device, or of a
number of physical objects in a particular configu-
ration. Assignments are used to exclude behaviours
that are not of interest. It can now be argued that
a modeler is less prone to make errors in the domain
knowledge than in device-specific knowledge. Also it
is more likely that mistakes were made in trying to ex-
clude some specific behaviour than that device-specific
aspects were incorrectly modeled. Hence, the follow-
ing heuristics are used:

¢ Prefer modifications involving assignments
over modifications involving causal depen-
dencies or constraints.

* Prefer modifications involving constraints
over modifications involving causal depen-
dencies.



In the condensor example, the model adaptation
process proceeds as follows. First, hypotheses are gen-
erated where only one change is involved (prefer sim-
pler hypotheses). In addition, the set of heuristics
determines that only errors of type incorrect and con-
cerning determining values and derivatives are con-
sidered. This gives: {incorrect §Amount, Doi = +}
as the only hypothesis. The modeler is asked to ver-
ify whether 6 Amount is incorrect. Since that is not
the case, the set of modifications for the determi-
nant Q—(Amount, Pressure) reduced: this modifica-
tion of the derivative of Amount is ruled out. New
hypotheses have to be generated after relaxing the set
of heuristics: now incorrect assignments are consid-
ered too. No hypothesis can be found so again the
heuristics are relaxed so that now also incorrect con-
straints are considered. This still gives no hypoth-
esis. Further relaxation makes that incorrect causal
dependencies are considered, and even more specific
only sign-faults. This gives the hypothesis: {incorrect
Q-(Amount, Pressure), should be Q+(Amount, Pres-
sure), Doi = +}. Asking the modeler reveals that this
is the right model adaptation. In a similar fashion it
is discovered that for the Temperature a causal depen-
dency with effect sf plus is missing.

This procedure does not discover (yet) that the other
causal dependency, from EzpansionRate to Pressure is
inappropriate. The reason is that in this state of the
predicted behaviour, the influence is not harmful. In
other behaviour states, however, the harmful effects
of this dependency may become apparent, and as a
consequence its inappropriateness is only discovered
later.

5 Eliminating multiple discrepant

derivatives
If we assume that one modeling error causes multiple
discrepancies, then the error must have been propa-
gated through a branching path. Therefore, identi-
fying such an error if multiple discrepancies are ob-
served, has to proceed the other way around. Because
an error can only be propagated along the paths of
causally related quantities*, the network of causal de-
pendencies can be used to identify candidates that
might explain different discrepancies. More specific,
we use the notion of causal units (see also [2]) to find
such candidates. Causal units are based on the idea
that the set of quantities can be divided into clus-
ters that influence each other, but are independent of
other quantities. A causal unit starts with one or more
quantities that influence a quantity (/+ or I-), and is
further comprised of proportionally related quantities.

4 Although the knowledge representation formalism that we
use, allows enforcing derivatives in a model without using causal
dependencies (namely by constraints) doing so is considered
improper modeling since it violates the causal view on how dy-
namic behaviour comes about.
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It ends with a quantity that has no causal effect on
any other quantity by means of a proportionality. A
causal unit is essentially a graph that may have recur-
sive loops, more than one starting point and more than
one terminal node (note that a causal unit can consist
of one or more causal paths). Causal units can be gen-
erated from the predicted behaviour. In the condensor
example only one causal unit exists: [EzpansionRate,
CompressionRate] — Amount — Pressure.

One modeling error may only propagate to errors in
the derivative of several quantities, if they occur in
the same causal unit. Therefore, the first step is to
find a causal unit in which all discrepant quantities
occur. If such a causal unit is found then it is checked
whether there is one discrepant quantity that precedes
all other discrepant quantities. If there is one, then
it will probably have caused the discrepancies of the
other quantities. This is depicted in figure 4 in case 1:
quantity C may have caused quantities G and K to be
discrepant. Therefore it is selected and a model adap-
tation is sought in the fashion as described in section
4. Even if no single discrepant quantity precedes all
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Figure 4: Causal unit with multiple incorrect deriva-
tives

others, there might still be a single modeling error. If
so, it must concern the quantities in the causal unit
that precede all discrepant quantities (recall that the
modeler might not have indicated all discrepancies).
This stuation is depicted in the right part of figure 4
as case 2. The error might concern quantities A, B, C
and D. The modeler is asked to verify the correctness
of the derivative of the first quantity(ies) preceding
all discrepant quantities (D). If the derivative is in-
correct, it becomes input for model adaptation. If it
is correct, however, then multiple errors must exist
and as a consequence, incorrect derivative elimination
must be repeatedly performed. Assuming now that
two errors exist, the same process is repeated with
the set of discrepant quantities divided in two inde-
pendent groups. Because quantity L is the only one



in the first group, it is input for the first model adap-
tation procedure. In the other group are quantities H
and K that both might be explained by an error in F.
If the derivative of F is incorrect, it is input for the
second model adaptation procedure. If it is correct,
the process is repeated and there appear to be three
modeling errors.

So far the case in which one causal unit is found
in which all discrepant quantities appear. If no such
causal unit can be found, then different causal units
are sought that cover as many discrepant quantities as
possible. The same process as above is repeated for
each causal unit.

In the condensor example there is only one causal
unit and it only contains Pressure. Therefore, model
adaptations for Pressure and Temperature are selected
consecutively.

6 Discussion and Conclusions

In this paper we have shown how to support the pro-
cess of eliminating incorrectly predicted derivatives
by adapting the model on which the prediction was
based. It is assumed that the modeler indicates one or
more incorrect derivatives, and the derivative(s) that
are expected. The elements in the model that affect
a derivative are identified and annotated with their
effect. Hypotheses, sets of modifications and addi-
tions of determinants, are generated that eliminate the
incorrect derivative and realize the expected deriva-
tive. They are based on explicit knowledge of how
each determinant may be wrong, and on knowledge of
which combinations of determinants realize a partic-
ular derivative. Hypotheses are generated in order of
plausibility by using a set of heuristics. These candi-
dates for model adaptation are presented to the mod-
eler who decides whether the hypothesis is accepted
or not. In this interaction eventually one model adap-
tation is selected.

The support system has been implemented and
tested on a number of deliberately corrupted models.
In all cases it came up with model adaptations that
would realize the expected derivative. These model
modifications were not always the inverse of the orig-
inal model corruption. Sometimes a particular de-
terminant was not modified or added. The reason is
that, as we also saw in the condensor example, some
adaptations are not necessary for realizing a particu-
lar derivative in a particular state. Their effects may
become harmful in other states where another depen-
dency structure may hold. From our tests it appeared
that the procedure tends to become slow when six or
more determinants are involved. In the models we are
working with, however, the number of determinants
seldomly exceeds four.

At first glance, model adaptation seems to consist of
a diagnosis task that determines how the discrepan-
cies have arisen, and a repair task, that resolves the
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underlying modeling error. Since diagnosis has been
studied extensively in AI ([5]), the obvious approach
would be to apply existing diagnosis techniques to
model adaptation. However, closer examination im-
mediately reveals that this is not feasible. The reason
is that in device diagnosis the assumption is made that
device structure is available and modeled correctly.
The task amounts to identifying one or more compo-
nents that function incorrectly. In model adaptation
the correct model structure is not known, in fact the
goal of model adaptation is to contribute to the for-
*nulation of a correct model. That means that often,
a missing “component”, or an inappropriate “compo-
nent” explains the symptom. An undesirable effect is
that many more hypotheses can be generated. This
difference in starting points also blurs the distinction
between a diagnosis and a repair. In device diagnosis
one or more components are identified as faulty and
a repair is simply its replacement. This implies that
the fault has to be identified in one of the components
that are present. Having identified the component(s)
the repair is immediately known: replace that compo-
nent. In contrast with this, in model adaptation the
fault may lie in the fact that some component (e.g. a
causal dependency), many times several components,
are missing or are erroneous. Therefore, it is often
not possible to mark one or several determinants as
the cause of the discrepancy. However, viewed from
the perspective of model construction, this is not a
problem. Apparently the subtasks of diagnosis and
repair are interwoven and executed in parallel. A di-
agnosis is determined by considering modifications for
existing determinants and considering inappropriate
and missing “components”. Qur paper demonstrates
that model adaptation can effectively be supported.
Although potentially the number of possible model
adaptations can become very large, especially when
there are many determinants of a derivative, we have
shown how to deal with this. A set of heuristics is used
for generating hypotheses in a step-wise fashion: the
most plausible hypotheses are generated before less
plausible hypotheses.

Other related work lies in the area of qualitative
modeling. The prevailing research in this area is
based on compositional modeling [3]. An important
assumption in this approach is that all relevant do-
main knowledge has been represented in model frag-
ments. Different viewpoints on the same phenomenon
are represented in different model fragments. Here the
modeling problem is to select the right set of model
fragments. This is solved by incorporating the as-
sumptions that underlie the different viewpoints in the
model fragments and use these as handles in the se-
lection process. Qur starting points are complemen-
tary to compositional modeling: our focus is on the
situation where the domain knowledge has not been
modeled completely, i.e. where the modeler still has



to define a set of model fragments. Later, when a par-
ticular domain has been modeled substantially, the
techniques for selecting model fragments become ap-
plicable. Our aim is to provide a modeler with a set
of tools for defining the domain knowledge in terms
of model fragments. If a modeler has such a set of
tools at his disposal then the whole domain model-
ing trajectory is supported. Some of our work in this
area can be found in [2]. It describes a technique for
eliminating incorrect derivatives as well, but applies if
additional assumptions on the state of the model, are
valid. In [6] we describe how the specification of the
domain and device knowledge in terms of our qualita-
tive reasoning formalism, is supported.
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