A Qualitative Version of Backpropagation Learning

Bernardo Morcego Seix

Automatic Control and Computer
Engineering Deptartment
Univ. Politécnica de Catalunya
¢/ Pau Gargallo, 5
Barcelona, Spain
fax +343 401 70 40
bernardo@esaii.upc.es

Abstract

Neural networks are suitable models for qualitative
techniques to be applied. We explore how
qualitative reasoning could deal with the well known
backpropagation learning algorithm. Qualitative
models are based on the discretization of their
parameters and the use of closed operators on the
sets induced by the discretization. Henceforth, a
qualitative version of backpropagation is an
algorithm in which the variables involved in it
belong to one among the finite classes defined. It
can be very useful either to realize a physical
implementation of the algorithm or as a starting
point to develop new reinforcement learning
algorithms for neural networks.

Introduction

This work is concerned with the establishment of a
relation between the fields of qualitative reasoning
and neural networks. It is quite difficult to do so at
first glance because the treatment data receives in
most neural networks, from beginning to end, is
purely numerical: weights interconnecting neurons
are real numbers, activation functions are (usually)
bounded real numbers, and in general all the
variables involved in the process of learning and test
are real numbers.

Artificial neural networks were first conceived as a
very simple model of the processing carried out by

Andreu Catala Mallofré

Automatic Control and Computer
Engineering Deptartment
Univ. Politécnica de Catalunya
¢/ Pau Gargallo, 5
Barcelona, Spain
fax +343 401 70 40

andreu@esaii.upc.es

264

Niiria Piera Carreté

Applied Mathematics II
Univ. Politécnica de Catalunya
¢/ Pau Gargallo, 5
Barcelona, Spain
fax +343 401 70 40
nuria@ma2.upc.es

natural ones. The first artificial neurons were binary
and their interconnecting links had +1 or -1 values
[1]. Further models included real valued weights [2]
and subsequent ones inherited this level of
complexity and even increased it adding non-binary
activation functions, recurrent links [3], pulse
activated neurons [4], etc. And it was not done in
vain; the first models were only capable of mapping
separable boolean functions and current ones are
able, for example, to recognize people faces [5] or
control a complex non-linear process [6].

In spite of this, there have been three remarkable
neural network approaches using qualitative
reasoning techniques. The first one is concerning the
use of qualitative data as input or output of neural
networks, the second one is the developement of
reinforcement learning algorithms [7], and the third
one is the use discretized weights [8].

Neural networks have proven successful on mapping
qualitative input data to real valued output data, or
vice versa. A well-known application of this kind is
the recognition of speech sounds using as input
articulatory features of letters, which is done in [9].

A more complicated use of qualitative data is
reinforcement learning. This is a supervised method
in which there is no teacher but a critic. The error
signal is therefore a reward or a penalty rather than a
real valued quantity. For instance, Barto, Sutton, and
Anderson [10] had been working with a
reinforcement learning unit that learned associations
from the states of a dynamic system to control

actions. The dynamic system involved a pole hinged
to a cart, and the leamned control actions were forces
upon the cart. The learning system consistently
learned to maintain the pole's balance. The goal of
this task was expressed solely through a
reinforcement value of -1 whenever the pole fell
past a designated angle from vertical or the cart hit
the end of its track, with zero-valued reinforcement
all other times. As we can see, in that case we are
working with a qualitative description of the
available information on the possible variations of
angle’s values.

There have been different attempts to discretize
weights for digital implementations, allowing binary
and ternary values {+1, -1, 0} for the weights, [11].
At the same time many efforts have been put in
developing learning algorithms for discrete weights
[12].

On the other hand, it seems feasible and justifiable
to study the learning algorithms used to configure
neural networks from a qualitative point of view. It
seems feasible because some attemps have already
been taken (as discussed previously) and justifiable
because it might lead to faster or easier to implement
schemes. Take, for instance, gradient algorithms.
They intend to follow the steepest gradient descent
to reach a global optimum. The main objective of an
algorithm of this kind is to compute the direction
(positive or negative) a weight must follow to
minimize the difference between the output and the
desired output. Some of these algorithms
(backpropagation, for example) do not even try to
find the size of the increment but they just add the
weight a quantity proportional to the gradient. One
can then say that, to some extent, backpropagation
follows a qualitative scheme and we will try to
prove it throughout this article.

After this brief introduction the outline of the article
is as follows: the next section describes
schematically the backpropagation learning
algorithm [13] for multilayer perceptron networks.
This algorithm is probably the most popular among
neural networks practitioners, and it is proved to
obtain very good results on many different
applications. After the study of backpropagation
various proposals of qualitative versions are given in
the following section. Next is an experimental
validation of the different backpropagation

265

qualitative algorithms. Finally, we conclude and
sketch our future lines of work.

The Backpropagation Algorithm

Backpropagation is a learning algorithm for
multilayer feedforward neural networks (MFNN)
and it is based on gradient descent on the
hypersurface of errors. An MFNN is a neural
network where neurons are arranged in layers of
processing elements (neurons). Two layers are
always present: the output and the input layers, and
between them there is usually at least one hidden
layer. The word feedforward means that activation
always flows from the input to the output, i.e. there
are no recurrent connections. Fig. 1 shows an
example of an MFNN and Fig. 2 describes the
notation used throughout the article for layers’
indexes in an MFNN. Following, there is a synthetic
derivation of the backpropagation algorithm.

Input layer

Hidden layers Output layer

—=

>
Fig. 1
Input layer Hidden layer Output layer
. F
*—0 0
Pl T
Fig. 2

The input to node j in the hidden layer is
si= Z0o;Wj and its output is 0j= f(s;) where f
is the activation function (usually a sigmoidal
function, but sometimes also linear or gaussian).

A gradient search of the minimum system error is
based on the minimization of the sum of squared
errors of the patterns presented to the network:

1 2
E=>2(d-0) =526
k k (1.1)

Weights are updated according to:

oE
™ ow

Aw =

(1.2)

where n is a user supplied constant: the learning
rate. The derivatives of weights have different
expressions for weights of the hidden layer and for
those of the output layer. The final update formulae
is the following:

oF
=e; fi'(5) 0, =8, 0,
ow,.
b (1.3)
for weights wy;, i.e. weights connecting neurons with
the output layer and

(o))
a‘V—T=f}'(sj). Z(Skwig)'oi =8j " 0;
Ji k (1.4)
for weights w;, i.e. weights connecting neurons with

the hidden layers.

Backpropagation, the name of the algorithm, comes
from the way derivatives of the errors are calculated:
they are first obtained for output neurons and
propagated backward through previous layers. It can
be observed how this is done in Fig. 2.

- —0———0—

’ 8k = ex fi(51)

‘—//
5,=£,(s,)- 2 (8,w,)

1
~4

Fig. 3

In the context of this article, the most remarkable
characteristic of backpropagation is that it can only
obtain the direction in which a weight must be
altered to decrease the errors made by the network
(1.1). This means that after processing the
derivatives of the errors respect to all weights, the
only true information is their sign. The amount of
weight increment results from the heuristic that
when error decreases are steep, the step size must be
big, and vice versa.

This heuristic is the main drawback of the algorithm
and many authors tried to reduce its effect adding

266

second order derivative terms. These approaches
usually lead to much faster and accurate learning at
a higher computational cost. The question of when
will second order learning algorithms globally
outperform first order ones still remains open.

The Qualitative Version of Backpropagation

Before beginning with the derivation of the
qualitative version of backpropagation two questions
need to be answered: is it feasible to derive a
qualitative version of backpropagation? and, what
do we understand by a qualitative version of
backpropagation?

The answer to the first question was partially
explained in the previous sections and is clearly yes.
The principal reason to say so is because the only
true information available after a training cycle is
the sign of Aw. Therefore, if by using the algebra of
signs we are able to obtain the sign of the error
derivative (without obtaining a [?] result) and we
modify the constant 1 to counterbalance the effect
of working with products of £1 we will have
obtained what we looked for.

A remark must be done before answering the second
question. We do not want to alter either the structure
or the operation of the network, so we can only treat
the variables involved in the learning process, which
are e, f and w. Therefore, different algorithms can
be considered as qualitative versions of back-
propagation depending on which of these variables
are transformed into qualitative, i.e. classified into

SD = {[+], [0], [-]}.

Now we can proceed with the derivation of the
qualitative version of backpropagation. The main
objective of such a derivation will be to obtain §,;
and 8, in SD by using the algebra of signs.

In expression (1.3) one can easily notice that if the
values e and f' € SD the resulting §,,; will always be
determinate, i.e. will also belong to SD. This is
because the product is a closed operation in SD.

Equation (1.4) needs to be analysed more carefully.
On the one hand, addition is not a closed operation
in SD (for example, [+] + [-] = [?]) and on the other
hand, some attention must be paid if we want to

convert w to a qualitative value because this
parameter is intrinsically real valued and making
such a conversion may be meaningless.

In order to solve the first problem and not to alter
the behaviour of backpropagation we used the
‘majority’ operator, which is a modification of the
qualitative addition. This operator carries out a sort
of voting between the addends and the result is the
winning sign, or [0] if there is no winner.

majl | maj2

1 0 -1 -1 1| 0 | [0]
1 1 1 -1 -1 1 | ™
1 1 1 1 o 4 | [+

20 -1 -1 2| 2| [

Table 1

There are two versions of the majority operator and
each can take different forms depending on the
addends. Version 1 quantifies the voting and its
result is a number (positive or negative) indicating
the difference between [+] and [-]. Version 2
normalizes this result giving only a sign. It is also
noticeable that when the addends are signs (i.e. both
8 and w are qualitative) the voting is equitable, while
when either & or w is real valued the voting is not
really fair because voters have different number of
votes. Table 1 shows examples of the use of both
operators.

The conversion of real valued weights to qualitative
terms (in order to have a fair voting) is controversial.
On one side, having w € SD would normalize the
contribution of all weights and 8 would be the most
influential learning factor. On the other side, the
error being backpropagated should somehow be
proportional to the degree with which a certain
neuron contributed to generate it: the weight.

As one can easily see, there is not only one
qualitative version of backpropagation but quite a
few. There are two operators and three variables to
convert to qualitative, which results in 14 versions
of the algorithm. A brief description of the meaning
of transforming each variable into qualitative
follows:

267

e ¢: if the error is a sign (belongs to SD) the
network only knows if it gets closer or
further to the minimum rather than how
closer or further. Approaches similar to
this one are the basis for most
reinforcement learning algorithms.

e f: this variable is used to obtain the
direction pointing to a minimum. It is,
therefore, very reasonable to choose only
the sign of the activation function
derivative. On the other hand,
transforming it to qualitative could allow
the use of different activation functions
with hard to calculate derivatives.

» w: it was explained previously.

Experimental Results

In order to validate and compare the different
versions of the obtained learning algorithm, we set a
test bed consisting of 4 problems, each one
representing a general class of problem. They are:

XOR: {0,1 }2—> {-1,1}.

This is a combinatorial

function with two inl in2 | xor
binary inputs and one
output. It is the most
frequently used non-
linear separable func-
tion to test any learning
algorithm, and its truth
table is shown.

_—= o O
_—0 = O
—

DECODE: {0,1}» —— {-1,1}. This is
a combinatorial function with » binary
inputs and » binary outputs. Each input
vector contains all zeros and a single 1, and
the network must be able to codify in the
hidden layer (of logy » neurons) the n
different inputs.

DONUTS: ®#2 —— {0,1}. This function
classifies (x,y) real pairs into two groups:
the ones inside a donut and the ones outside
it. When this task is simplified by reducing
the internal circle radius to zero, it can be

solved using a small
network of 2 inputs, 2
hidden neurons and 1
output. To solve the 05
DONUTS task one can
compose two of these
networks, obtaininga 4 ¢
layer network.

SQRT: ®3 —— M. The last function is an
analytical function: it is the square root of
the division between two different linear
combinations of the inputs. This is the
saturation factor of an image's pixel
calculated with the red, green and blue
levels of the pixel. Generally speaking,
analytical functions that map real numbers
to real numbers can be solved, but the
accuracy depends on the number of hidden
neurons. Sometimes, though, it is possible to
find non-standard configurations that work
accurate enough, like the one in Fig 4.

Fig. 4

A remark must be done before proceeding with the
results of the tests: the implementation of the
qualitative version of backpropagation induces new
parameters to be incorporated to the algorithm.
These parameters determine the intervals of
discretization of each variable (e, f, and w).
Parameter setting allowed all possible tests for XOR
and SQRT but some tests could not be done for
DECODE and DONUTS problems. The complete
statistic analysis was, therefore, only performed for
those problems which allowed it.

Each test consisted of 45 runs of a network learning
the task at hand. Tests were realized with
backpropagation and the 14 different qualitative
versions. In each run the network had to attain a
previously fixed degree of precission for the
function to be learned.

268

In figures 3a and 3b there is a graph of the means
obtained for problems XOR and SQRT respectively,
and each column plots:

col I: normal backpropagation
col 2: majority v1, qualitative e

col 3: majority v1, qualitative

col 4: majority v1, qualitative w

col 5: majority v1, qualitative e and /'
col 6: majority v1, qualitative e and w
col 7: majority v1, qualitative /" and w
col 8: majority v1, qualitative e, /" and w
col 9: majority v2, qualitative e

col 10: majority v2, qualitative /'

col 11: majority v2, qualitative w

col 12: majority v2, qualitative e and f'
col 13: majority v2, qualitative e and w
col 14: majority v2, qualitative /" and w
col 15: majority v2, qualitative e, f and w

Figures 3a and 3b show there is an evident
difference between the learning time (computed in
learning cycles) of the tested algorithms.

XOR DECODE DONUTS SQRT
Backpropagation 892+51.6 |106.68+ 7.88 | 783.5+260.8|984.2+235.5
v7:Maj.vl+e,f,w| 922+126 | 90.4+£256 747 £326 2534 + 682
v8: Maj.v2 +e 282+226 |149.89+21.79| 1688 =528 316 +86.3
vl4: Maj.v2 +e,f,w| 7.76+1.06 | 49.1£412 |6059+220.7| 300%120
Table 2

After concluding the tests, only versions 7, 8, and 14
of the qualitative algorithm were comparable with
backpropagation on each of the four problems.
Algorithms 8 and 14 use the majority operator
version 2 while algorithm 7 uses version 1 of the
operator. The qualitative variable of algorithm 8 ise
and they are e, f’ and w for algorithms 7 and 14.
Table 2 shows 99% confidence intervals for the
mean of the learning time (computed in leamning
cycles) and those shaded indicate the mean can be
considered statistically smaller than that of
backpropagation with more than 1% of probability.

Two facts can be observed when examining the
previous table: first is that version 14 of the
qualitative algorithm performed better than
backpropagation in 3 of the four problems and
second, problem DONUTS was very hard for all
qualitative versions.

It should be noticed that version 14 of the qualitative
algorithm is the "most" qualitative of all and its
performance shows that it cannot be stated that
backpropagation makes better use of the information
provided by the error than it does.

On the other hand, DONUTS is a difficult task
because it needs accuracy, in the sense that the
boundaries of the donut can be assigned either class
if the network is not accurate enough. We observed
that qualitative versions of backpropagation got very
close to a solution but failed to attain it, i.e. the
learning rate needed to be adaptive.

Conclusions

This work is a first attempt to deal with the intrinsic
qualitative aspects in the learning processes

269

employed by neural networks models. The results
obtained using qualitative operators and qualitative
parameters modifying the backpropagation
algorithm have shown better or similar performance
in the chosen examples. We selected these four tasks
because they cover a broad range of simple real
problems. They are strongly non-linear, their input
and output sets cover from { 0,1 } to R", and
DECODE problem presents compaction capabilities.

The measure of performance is training time
computed in learning cycles and not only did some
versions of the qualitative backpropagation
outperform the classical one but they also present
the additional advantage of easier implementation.
This is due to the use of qualitative variables and
operators that make real number products become
sign products and real number additions become
integer comparations. This leads to a shorter and
easier to calculate algorithm.

This work is just an initial test for the use of
qualitative techniques applied to neural networks.
Different lines seem interesting to follow: for
instance, a more sophisticated qualitative description
of parameters could be done and might lead to more
efficient algorithms, although such finer partitions of
the real line raise new problems to account for.
Another possibility is to extend the methodology
applied here to other learning algorithms, such as
counterpropagation, Hebb rule, etc. Maybe the most
urgent task to take care of is to improve the
algorithm in order to automatize the setting of
parameters, specially those parameters that are not
present in backpropagation and appear because of
classifying variables in SD.

Bibliography

[1] McCulloch, W.S. and W.H. Pitts. A logical
calculus for the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics
5:115-133, 1943.

Rossenblatt, F. The Perceptron, a probabilistic
model for information storage and organization
in the brain. Psycological Review 62, 1958.

(2]

Hopfield, J.J. Neurons with graded response
have collective computational properties like
those of two-state neurons. Proceedings of the
National Academy of Science (USA) 81:3088-
3092, 1984.

(3]

Dress, W.B. Frequency-coded artificial neural
networks: an approach to self-organizing
systems. Proceedings of the First Annual
International Conference on Neural Networks,
vol 2, 1987.

[4]

Fuchs A., Haken H. Pattern Recognition and
Associative Memory as Dynamical Processes
in Non-Linear Systems. Proceedings of the
IEEE International Conference on neural
Networks, San Diego, pp 217-224. 1988

(3]

[6] Steven C. Suddarth. A Symbolic-Neural
Method for Solving Control Problems.
Proceedings of the IEEE International
Conference on neural Networks, San Diego,

1988

Barto A.G.,, Sutton R.S.,and Brower.
Associative Search Network; A Reinforcement

Learning Associative Memory. Biological
Cybernetics, 40, pp.201-211, 1981.

[7]

Carrabina, Jordi. Xarxes Neuronals VLSI d'alta
velocitat. Doctoral disertation. Universitat
Autonoma de Barcelona,1991.

(8]

[9] Jeffrey L. Elman. Finding structure in time.

CRL Technical Report 8801, 1988.

[10] Barto A.G., Sutton R.S., Anderson C.W.
Neuronlike elements that can solve difficult
learning control problems. IEEE Trans. on
Systems, Man, and Cybernetics, 13, 835-846,
1983.

270

[11] Sivilotti M.A., Emerling M.R., Mead C.A.
VLSI Architectures for Implementation of
Neural Networks. American Institute of Physics
conference Proceedings 151, Neural Networks
Jor Computing, pp408-413, 1986.

[12] Perez Vicente C., Learning algorithm for
binary synapsis. Statistical Mechanics of
Neural Networks, Springer Verlag 1990.

[13] Rumelhart D.E., Hinton G.E., Williams R.J.
Learning internal representations by error
propagation. Parallel Distributed Processing:
Exploration in the Microstructures of
Cognition, vol.1, pp.318-362, Mit Press, 1986.

