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Abstract A decomposition of a complex problem
into independent subproblems is a standard method
to tackle large AI problems . This paper studies a
notion of diagnosis independence related to model-
based diagnosis and proposes a concept of P-
decomposition of a diagnosis problem into
independent diagnosis subproblems (IDS). We show
that a system P-decomposition depends critically on
the system structure and the measurements
performed in the system. Taking into account both
these factors we introduce a notion of a conflict
graph and show that a system decomposition into
IDS may be reduced to the system conflict graph
decomposition.

This paper develops a formal algorithm for
localization of multiple faults based on P-
decomposition . We show that a strategy of
measurement selection for P-decomposition may be
efficiently guided by pure "the first principle
information" such as current observation and the
system topology. In many cases the algorithm runs
in logarithmical time complexity compared to
general diagnosis time.

Model-based diagnosis (MBD) is a very dynamic
and a wide field of research based on standard AI
technique such as predicate logic, heuristic search
and qualitative simulation. Current research in this
area concerns a wide class of systems including
physical and medical systems, student models, etc .
Several practical applications, such as electronic
circuits, energy transport networks etc., have shown
the industrial potential of the approach .

In the recent years many new important results have
been developed in the field of MBD. Among these
are: multiple behavioral modes [de Kleer and
Williams, 1989], focusing on probable diagnoses
[de Kleer, 1991], physical negation [Struss and
Dressler, 1989] and physical impossibility
[Friedrich et al ., 1990], focusing on independent
diagnosis problems [Freitag and Friedrich, 1992]
and hierarchy design [Hamscher, 1990] .
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However, the difficulties for building large
diagnostic systems remains . One of the main
obstacles for building large diagnostic systems is the
great number of possible diagnoses needed to be
considered . Many real world applications deal with
the system composed of thousands of components .
As examples let us consider energy transport
network and telecommunication network. As these
systems are very large, diagnosis in such systems is
a complex time consuming task and may cause high
breakdown costs . Practically such systems cannot
wait until whole system will be diagnosed .

A standard approach to tackle a large AI problem is
to decompose it into subproblems. Actually, the
cardinality of the diagnosis set grows exponentially
in the number of system components (system
dimension) . Reducing the system dimension we
exponentially reduce the search space for diagnosis .
Let us assume that suspected components are
located within a certain subsystem . Is it possible to
perform diagnosis only for suspected subsystem
instead of performing the whole system diagnosis?
The lack of logically sound methods, except
hierarchy design, which allow to reduce diagnosis
of the overall system to the diagnosis of its
subsystems is a major constraint on a wider
applicability of such an approach .

This paper studies a concept of diagnosis
independence and proposes a method of
decomposition of a diagnosis problem into the
independent diagnosis subproblems (IDS). We show
that there is a certain set of measurements that,
when performed, reduces the diagnosis of the
overall system to the diagnosis of its subsystems .
We prove that the total diagnosis set is decomposed
into the Cartesian product of correspondent local
diagnosis sets. Proposed method does not rely on a
hierarchy structure of a system to be diagnosed . In
contrast to hierarchy decomposition [Genesereth,
1984], [Hamscher, 1990] this method is called
P(product)-decomposition.

In this paper we study the measurements that enable
P-decomposition . Traditional GDE [de Kleer,



Williams 1987] approach applies probabilistic
analysis to decide what measurement to take next.
This paper proposes a strategy of measurement
selection which is efficiently guided by the system
description and current observation . To develop this
strategy we introduce a notion of a conflict graph. It
has been shown that P-decomposition of a system
may be reduced to the system conflict graph
decomposition. A new interesting strategy for next
measurement selection based on a conflict graph
decomposition has been developed .

2 Motivation

This section presents two examples illustrating the
crucial points of our research. As the first example
we use n=2k cascaded inverters.

Example 1. Suppose that the device input is 1 and
the output is 0 violating the prediction and telling
us that at least one of the components is faulted. So
additional measurements are necessary to locate the
faults . If all gates fail with equal likelihood a
human diagnostics should choose the inverter Ik
output as the best next measurement . Why
measuring Ik output is chosen as the best diagnostic
action instead of measuring another device point?
What technique is the base for such an intuitions?

Figure 1 . n=2k cascaded inverters .

Measuring the component Ij, (j=l,n-1) output, no
matter what the value has been obtained as the
result of this measurement, divides the given system
into two subsystems . Actually, component Ij output
is the output of the subsystem composed of the
components 11, . . .,Ij, and is the input of the
subsystem composed of the components Ij+1, . . .,In.
As all inputs and outputs of both subsystems are
known the diagnosis of each subsystem is
independent of the overall system diagnosis. In our
example measuring Ik provides the best (into equal
parts) decomposition of the given diagnosis problem
into independent diagnosis subproblems .

At the first example we use the measurements to
decompose a system into independent diagnosis
subproblems . The second example illustrates
another approach to determining the IDS . It shows
that there is a situation when the IDS may be found
without probing, solely on the base of current
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observation and the knowledge of component
behavior .

Example 2 . Consider the binary circuit depicted on
Figure 2 . If the input in](AND) is 0 then the
component AND behavior is independent of its
second input in2(AND) . Moreover, in this case the
diagnosis of the subsystem composed of the
componentAND and the Device 2 is independent of
the Device 1 diagnosis.

in1=0
ll

ANDI--~'
in2 =(l

F
Figure 2 . AND is and gate, and Device], Device2

are arbitrary circuits

What is nature of the IDS for arbitrary system? Are
there common criterion for the IDS in above
examples? Are there efficient strategy for building
the II)S and how it may be applied to tackle
complex diagnosis problems? The answer to these
questions is the topic of the paper.

3 Preliminaries

This section follows the formal framework for
model-based diagnosis [Reiter, 1987] and [de Kleer
et al ., 1992] .

Definition 1 . A system is a triple (Sd,Comps Obs)
where : Comps, the system components, is a finite
set of constants ; Sd, the system description, is a set
of first order sentences, defining the system
component behavior and their connection ; Obs, a
set of observations, is a set of first order sentences .

We adopt the Reiter's convention that AB(c) is a
literal which holds when component c e Comps is
abnormal . We use the modeling stance that a
component is abnormal if something is wrong
physically with it that may cause the incorrect
output emergency. A model-based diagnosis for a
system is a conjecture that states: a certain set of
system components are abnormal, the other
components are normal . This conjecture must
satisfy the system description and explain the
symptoms .

Definition 2 . Given two sets of components Cp and
Cn define D(Cp,C,d to be a conjunction :

[nAB(c) : c E CpJ n [n --AB(c) : c E Cn] .



A diagnosis for (Sd, Comps, Obs) is a formula D(A

,Comps-0) such that : Sdu Obs u D(A, Comps-A) is

satisfiable . A diagnosis D(0, Comps-0) is a
minimal diagnosis iff for no proper subset Ol of A
is D(Al, Comps-Al) a diagnosis . We shall write A
instead of D(A,

	

Comps-0), since subset
determines the diagnosis.

Definition 3. An AB-literal is AB(c) or -,AB(c) for
some c e Comps. An AB-clause is a clause
consisting of AB-literals . A conflict of (Sd, Comps,
Obs) is anAB-clause entailed by Sd u Obs . Conflict
C is minimal if no proper subclause of C is a
conflict for (Sd, Comps, Obs).

4 Diagnosis independence

So far an intuitive concept of diagnosis
independence has been considered . In this section
we formalizes such an intuition . Let us consider a
formal statement that the diagnosis of a subsystem
is independent of the rest of a system. In this case
the diagnosis of 'the rest of a system' is also
independent of the subsystem, in other words the
concept of diagnosis independence is symmetric.
So, we have to consider a decomposition into
independent diagnosis subproblems . What do we
mean saying that "a diagnosis problem is
decomposed into independent subproblems A and
B"? It means that for each local diagnoses for the
subsystem A its conjunction with a local diagnosis
for the subsystem B is a diagnosis for the system,
and vice versa for each system diagnosis its
projections on the subsystems A or B are local
diagnoses for the subsystems

4.1 Subsystems and local diagnoses

To introduce the formal definition of diagnosis
independence let as consider the notions of a
subsystem and local diagnosis .

Definition 4. Let (Sd, Comps, Obs) be a system . A
subsystem is a triple (Sdl, Comps], Obsl), where
Comps] is a subset of Comps. The subsystem
description Sdl contains the axioms related to the
components from Comps], and the observation
Obsl contains the observation results related to the
components from Comps] . We shall write
Sub(Cl__Ck) to indicate a subsystem composed of
components C1, ._Ck . Each diagnosis for a (Sdl,
Comps], Obsl) is called a local diagnosis for
subsystem .

Lemma 1 . Let (Sd, Comps, Obs) is a system, and A
is a diagnosis . A projection on a subsystem is a
local diagnosis for subsystem.

Proof. Let A1 be A projection on a subsystem (Sdl,
Comps], Obs1) . If A is a diagnosis, then Sd u Obs
u A is satisfiable . Hence Sdl u Obsl u A1 is also
satisfiable, where Sd] c Sd, Obsl c Obs, O1 is a
subconjunct of A containing AB-literals from A

related to the components mentioned in Compsl .

However, the contrary to lemma 1 proves to be
wrong . The following example shows that there are
local diagnosis such that their combination is not a
diagnosis for the system .

Example 3. The familiar circuit (Figure 1) consists
of three multipliers MI,M2,M3 and two adders
A1,A2.

Figure 3 . Familiar Circuit

The system description is given by:

ADDER(x) =:> {-AB(x) => Out(x)Inl(x)+In2(x))
MULTIPLIER(x) =:>{ --. AB(x) =>
Out(x)=1n1(x) *1n2(x) ) ;

Out(MI)=1n1(A1), Out(M2)=1n2(AI),
Out(M2)=1n1(A2), Out(M3)=1n2(A2)-

The subsystem Subs(M2,M3) description contains
multiplier constraint, topology axioms : Out(M2)=Y,
Out(M3)=Z, and a set of observation : In2(M2)=
In](M3)=2, Inl (M2)=1n2(M3)=3 . Because the
values of ports Y, Z are not known [0] is a
diagnosis for Subs(M2,M3); [0] is also a diagnosis
for the subsystem Sub(Al,A2,Ml). However,
conjunction [-,AB(M2) n -,AB(M3)] n [-%4B(MI) n
--,4B(Al) n

	

4B(A2) ] is not a diagnosis for the
overall system .



4.2 Definition and criterion for diagnosis
independence

Definition 5. A diagnosis problem (Sd, Comps,
Obs) is decomposed into independent diagnosis
subproblems (P-decomposed) iff total diagnosis set
for (Sd, Comps, Obs) is the Cartesian product of
correspondent subproblem diagnosis sets .

The notion of a conflict is a basic notion for model-
based diagnosis. The conflicts represent the
discrepancies between the predicted behavior and
the observed behavior, and form the basis for the
derivation of the diagnoses . The following theorem
gives a criterion of P-decomposition in terms of
conflicts .

Theorem 1. (Criterion of P-decomposition) A
diagnosis problem (Sd, Comps, Obs) is decomposed
into independent diagnosis subproblems
Sub(Compsl) and Sub(Comps-Compsl) iff each
conflict for (Sd, Comps, Obs) is located within one
of the following subsystems Sub(Compsl),
Sub(Comps-Compsl) .

Proof. (=:>) Suppose Sub(Compsl) and Sub(Comps-
Compsl) are independent diagnosis problems. The
proof is by contradiction. Let us assume that there is
the minimal conflict C=LII v. . v Llk v L21 v. . v
L2j, where L11--LIk are AB-literals for
components from Compsl, and L21, . ..,L2j are AB-
literals for components from Comps-Comps] . In
this case there is a local diagnosis O1 for
Sub(Comps]) such that AI contains LI]A . . .A Llk as
subconjunct . Assuming to the contrary we obtain
that the clause LI1v. . vLlk is a conflict which is a
proper subclause of the minimal conflict C. In the
similar way we obtain that there is the local
diagnosis A2 for Sub(Comps-Compsl) containing
L21n. . .A L2j as subconjunct. However, the
conjunction Al n 02, contains all AB-literals from
the conflict C , and hence, is not a diagnosis for
(Sd, Comps, Obs)

(G) In accordance with [de Kleer et al ., 1992] the
conjunct D(A,Comps-0) is a diagnosis for
(Sd,Comps,Obs) if and only if it contains a kernel
diagnosis as subconjunct . Hence, it is sufficient to
prove the theorem for the set of kernel diagnoses . A
simple algorithm of computing kernel diagnosis set
from minimal conflict set has been proposed in [de
Kleer et al ., 1992] . Following this algorithm we
obtain that a kernel diagnosis set for
(Sd, Comps,Obs) is the Cartesian product of sets of
kernel diagnoses for subsystems Sub(Compsl),
Subs(Comps-Compsl) .

Example 4 (Example 3 continued) . Additional
measurements are necessary for a decomposition
into independent diagnosis subproblems. Measuring
point Y provides P-decomposition of the given
problem into three independent diagnosis
subproblems Sub(MI,A1), Sub(M2) and
Sub(M3,A2) . Actually, when the value of point Y
has been measured the correspondent I/O values for
all above subsystems are known. So, the diagnosis
of each subsystem maybe performed independently.

5 Strategy of P-decomposition

There are two polar strategies for determining the
IDS . As it has been shown the IDS may be either
inferred on the base of the knowledge of component
behavior and current observations (Example 2) or
determined by performing additional measurements
(Example 1) . Does a general strategy for a
decomposition into independent diagnosis
subproblems exists? This section gives positive
answers to these questions .

5.1 Conflict graph

In accordance with theorem 1 set of conflicts
located within correspondent subsystems is
necessary to decompose the given diagnosis
problem into independent diagnosis subproblems .
Let us assume that a component behavior is
described by a set of constraints. Sets of constraints
representing the different components are connected
by shared variables. The actual observation is
modeled as the value assignment to related variable .

Conflicts located within a certain subsystem are
necessary for P-decomposition. A conflict geometry
depends critically on the following parameters : 1) a
system topology ; 2) current observations . To
develop a method of generating required conflicts
which takes into account 1) and 2) we apply
graphical representation of a system structure .
Consider a graph with two types of nodes: the set of
main nodes Comps represents the set of system
components, the set of auxiliary nodes Var
represents the set ofshared variables, and the set Sd
of graph edges represents component-variable
connections. We shall call the graph G a structural
graph for the given system. A conflict graph for (Sd,
Comps, Obs) is a minimal subgraph G(Obs) of G
containing those paths from G along which minimal
conflicts for (Sd, Comps, Obs) have been derived.
We assume that a conflict path begins at a main
node and ends at a main node . Because the minimal
conflict set depend on observations performed in a
system, the conflict graph G(Obs) represents the
current state of system observations .



5.2 Graphical criterion of P-
decomposition

Let Compsl is a subset of components, define
Suspect(Compsl) is a subset of Comps] consisting
of those components which are mentioned in
minimal conflicts for (Sd, Comps, Obs) . The
following theorem is a graphical analog of
theoreml .

Theorem 2. (Graphical criterion of P-
decomposition) . A diagnosis problem (Sd, Comps,
Obs) is decomposed into independent diagnosis
subproblems Sub(Compsl) and Sub(Comps-
Comps]) iff the sets of nodes Suspect(Compsl) and
Suspect(Comps-Comps]) belong to different
components (maximal connected subgraphs) of the
conflict graph G(Obs) .

Proof. The proof follows from theorem 1 .

5.3 Conflict graph and observations

As we have seen in example 3 additional
measurements are necessary to perform P-
decomposition . The measurements affect current set
of minimal conflicts of a system being diagnosed.
Consider a malfunctioning system composed of
many components. The initial observation usually
provides a few minimal conflicts covering almost all
of the system components . Minimal conflicts
provided by new measurements as a rule are proper
subclauses of the early conflicts . Additional
measurements progressively reduce the size of
minimal conflicts, until faulty components have
been located.

This section investigates how the measurements
performed in a system affect the structure of the
system conflict graph .

Example 5. Consider a circuit from example l . The
initial observation provides single minimal conflict
including all system components Cl, .-Ch .
Correspondent conflict graph depicted on Figure 4
is a line graph composed of 2n nodes . Measuring
the component Ck output provides new minimal
conflict which is located within either
Sub(C], . . .,Ck) or Sub(Ck+I, . . .,Cn) . So, the resulting
conflict graph may be reduced considerably .

In general, we cannot predict the structure of
resulting conflict graph until a measurement
outcome is not known . However, there is a conflict
graph invariant which does not depend on a
measurement outcome . The following theorems

characterize this important property of a conflict
graph .

Figure 4 . Conflict graph for cascaded inverters .

Theorem 3 . Let G(Obs) is a conflict graph for (Sd,
Comps, Obs), and the auxiliary node x represents
the variable x. Suppose that the value of the variable
x is known. Then the conflict graph G(Obs) does
not contain any edge connected to the node x .

Proof. The proof is by contradiction . Assuming to
the contrary we obtain the minimal conflict C for
(Sd, Comps, Obs) and at least the two components ci,
cj mentioned in C which share the variable x. A
conflict may be derived in the following way :
starting from the known values the inference
procedure propagates the known values through the
system component constraints until the
inconsistency has been detected . A minimal conflict
is a minimal supporting environment for the
inconsistency detected in the system [de Kleer,
Williams 87) .

To prove the theorem we have to build the minimal
conflict C1 such that Cl subsumes C and
correspondent path for the conflict C1 derivation
does not contain the variable x . To identify the
required conflict we begin our search at the empty
environment El, adding to it the components in the
same way that the conflict C was derived until the
variable x has been met . Because the value of the
variable x has been measured we can check the
consistency of El. If the observed value for x differs
from the predicted value then the inconsistent
environment El represents the required conflict .
Otherwise, we can refine the environment El from
those assumptions (components) that support the
value assigned to the variable x. In this case at least
one of the components ci, cj must be deleted from
El, contradicting to the fact that the conflict graph
contains a path between ci, cj.

Theorem 4 . Let G(Obs) is a conflict graph for (Sd,
Comps, Obs), and the auxiliary node x represents
the variable x . Suppose that the component c
behavior does not depend on the value assigned to
the variable x . Then the conflict graph G(Obs) does
not contain the edge joining the node c with the
auxiliary node x.



The proof of theorem 4 is similar to the proof of
theorem 3 .

5.4 Selecting measurements for P-
decomposition

To develop the strategy of measurement selection
for P-decomposition we incorporate the
measurements in a 'conflict graph formalism' :
measuring the variable x within a system entails
removing all edges joining the variable x with the
other conflict graph nodes from structural graph,
and vice versa removing the edges connected to the
variable x points out that the variable x must be
measured.

Suppose we have to decompose the given problem
(Sd, Comps, Obs) into two IDS Sub(Compsl) and
Sub(Comps-Compsl) . To determine the
measurements that enable P-decomposition we use
the following Algorithm 1 .

Algorithm 1 .

Define G is a system structural graph, BorderVar is
a set of border variables for Sub(Compsl) and
Sub(Comps-Compsl) .

1 . Loop until BorderVar is not empty :

2 . For each x e BorderVar DO:
if the component c behavior does not depend on the
value assigned to the variable x remove the edges
joining the variable x with this component; generate
new BorderVar .

3 . IfBorderVar is not empty DO:
select one variable x E BorderVar and measure x;
delete all edges connected to the variable x; generate
new BorderVar; go to 2 .
END.

5.5 Algorithm of P-decomposition for
localization of multiple faults

The results obtained in the previous section provide
a formal background for a method for faulty
component localization . The method is sequential
decomposition of suspected parts of a system into
IDS and looks as follows :

Algorithm 2 (Informal algorithm ofsequential P-
decomposition) .

Define SysList is a list of subsystems .

1 . SysList =(Sd, Comps, Obs) .
2 . Loop until SysList is not empty .

3 . For every subsystem Sfrom SysList DO:

4 . Applying Algorithm 1 decompose the subsystem
S into MS. Ifany discriminatory information is not
available the best P-decomposition is provided by a
half split.

5 . For every new subsystem SI DO:
if the subsystem S1 consists of only one node
correspondent faulty component is isolated,
otherwise add this subsystem to the SysList.
END

Remark 1. If for each system component the
variable connected to its input may be measured
Algorithm 2 gives single solution .

Remark 2. Each step of the algorithm prunes
exponentially the diagnosis set . However, actual
conflicts as well as actual diagnoses [Tsybenko, 94]
are not lost .

Example 6 . Consider the conflict graph for the
system depicted on Figure 4 . Because removing a
variable node from this graph leads to the graph
decomposition, each measurement provides P-
decomposition of the given system . The best
measurement is xk, because this measurement
divides the given system into equal parts . Let us
assume that measuring the component Ck output
provides new minimal conflict which is located
within the subsystem Sub(CI, . . .,Ck) . In this case the
subsystem Sub(Ck+I_.,Cn) does not display the
misbehavior so, it may be ignored . To locate the
actual fault we have to repeat P-decomposition into
equal parts for the resulting conflict graph until one
element conflict has been located . A half split
strategy requires logarithmic time complexity of
general diagnosis time for single fault localization .

5.6 Single measurement P-decomposition

Practical diagnosis requires the discovery of faulty
components in a minimum number of
measurements. An important problem is to describe
the case when single measurement provides P-
decomposition . The following theorems 5, 6 proven
in [Tsybenko, in prep.] present a solution of this
problem .

If any discriminatory information is not available a
half split strategy (illustrated in example 1) may be
used in algorithm 1 for the next measurement



selection . Theorem 5 generalizes the technique
demonstrated in Example 1 .
Theorem 5. Let (Sd Comps Obs) is a system, and G
is the system structural graph . Suppose that the
graph G is acyclic . Then each single measurement
provides P-decomposition of the given system. Half
split strategy of measurement selection requires
logarithmical time complexity for localization of
multiple faults.

Even if the structure of a conflict graph is very
complex the single measurement P-decomposition
exists. However, in this case algorithm 1 may run in
non-logarithmic time . The following result holds in
the case of arbitrary conflict graph.

Theorem 6. Let (Sd Comps, Obs) is a system .
Suppose that the variables connected to each
component output can be measured . Then there is a
sequential P-decomposition locating the set offaulty
components such that each step of the P-
decomposition requires only one measurement.

5.7 Incorporating a preference criterion
in the algorithm of P-decomposition .

Diagnosis of complex devices composed of many
components is difficult in part because the number
of possible diagnoses grows exponentially in the
number of system components. It is unacceptable to
consider the set of all diagnoses . So, many diagnosis
approaches apply a preference criterion to restrict
the set of diagnoses needed to be considered . The
preference criterion may be the number of suspects
in a diagnosis [Freitag and Friedrich, 1992] or the
probability of a diagnosis [de Kleer, 1991] . A
preference criterion allows to focus the diagnosis
process on certain parts of a system.

The effectiveness of Algorithm 2 improves
considerably if a preference criterion is taken into
account . In this case each step of the algorithm
consists oftwo stages . At the first stage a preference
criterion is applied to identify the suspected parts of
a system . At the second stage P-decomposition is
applied to separate these parts from the overall
system . If the other parts of the system do not
display the misbehavior, they may be ignored . To
illustrate combined approach let us consider the
following example taken from [de Kleer, 1991] .
Probability of a diagnosis is used as a preference
criterion .

Example 7 . Consider n-bit adder (bI, ._bn) depicted
on Figure 5 . Suppose that all inputs are 0 and
output of the n-th bit On is 1 . Suppose that all gates
fail with equal probability. Focused GDE locates

probable diagnoses within the subsystem
Subs(bn, bn-1), there are only five probable
diagnoses (called leading diagnoses) : [Sl(bn.X])],
[S1(bn.X2)], [Sl(bn-]A])], [Sl(bn-101)], [S1(bn-
IA2)], where [SI(X)] indicates the candidate in
which component X output is in mode output-stuck-
at-1 .

Figure 5 . n-bit adder. XlX2 denote exclusive-or gates
A1,A2 are and gates, and 01 is an or gate .

Removing the edge connected to the point Cn-2 lead
to the system structural graph decomposition into
disconnected subgraphs . Hence, measuring point
Cn-2 decomposes the system into two subsystems
Sub(bl, ._bn-2) and Sub(bn-1,bn) . Suppose that Cn-
2=out(bn-2.01) is 0. So, the subsystem
Sub(b1, . . .,bn-2) does not display the misbehavior.
Hence, it may be excluded from the diagnosis.
Consider the structural graph for Sub(bn-I,bn)
depicted on Figure 6 . Because one of the and-gate
bn-1.A2 inputs is 0 the component bn-1 .A2
behavior does not depend on the value assigned to
the variable bn-1 .x1 . So. correspondent edge is
removed from structural the graph Sub (bn-1,bn) .

Figure 6 . Structural graph for Sub(bn-I,bn)

The best next measurement is Cn-1 because it
divides the set of suspected components into equal
parts . Suppose out(bn-1.01) is 0 . In this case the
component bn-A2 behavior does not depend on the
value assigned to its output connected to the
variable bn.X1 . So, resulting conflict graph is
decomposed into three disconnected subgraphs
G1=(bn-1_A1, bn-LA2, bn-1.01), G2=(bn.Xl,
bn.X2), G2=(bn.Al, bnA2, bn.01) . The subsystems
Sub(bn-1-Al, bn-I.A2, bn-1.01) and Sub(bn.Al,
bn.A2, bn.01) do not display the misbehavior. So,
they are ruled out from the diagnosis . Only the
subsystem

	

Sub(bn.Xl , bn.X2)

	

needs

	

to

	

be



decomposed . After measuring the component bn.Xl
output the diagnosis process stops .

6 Related works

Many work has been done to deal with the
complexity of model-based diagnosis . Focused GDE
approach [de Kleer, 1991] applies component
failure probabilities and focuses on the probable
diagnoses . Struss and Dressler [Struss and Dressler,
1989] use "physical negation" to rule out physically
impossible diagnoses . Hierarchy approach
[Genesereth, 1984], [Hamscher, 1990], [Mozetic,
1991] applies a multilevel hierarchical design that
allows to restrict the number of components to be
considered at each level .

An idea of diagnosis independence has been
proposed in [Freitag and Friedrich, 1992] . They
focus on independent diagnosis problems (EDP) and
propose an algorithm for generating IDP . However,
their concept of IDP ignores the symmetry of
diagnosis independence, and their method does not
apply the measurements for the IDP generating . A
formal analisys shows that a system P-
decomposition entails a system decomposition into
IDP in meaning [Freitag and Friedrich, 1992]

7 Conclusions

The aim of this paper has been to reduce the
diagnosis of a large system to the independent
diagnosis of its subsystems . A formal definition for
P-decomposition of a diagnosis problem into
independent diagnosis subproblems has been
proposed. However, we have not focused in
developing purely theoretical results - instead we
have demonstrated how these results may be applied
in practical diagnosis. We have studied the
measurements that enable P-decomposition . It has
been shown that a strategy of measurement selection
may be efficiently guided by "the first principle
information" such as the system topology and
current observations . Hence it may be an alternative
to the traditional GDE approach . A formal
algorithm for localization of multiple faults based
on P-decomposition has been developed . In many
cases the algorithm runs in logarithmic time
compared to general diagnosis time .
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