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Abstract : Models of complex physical systems
often cannot be defined precisely, either because
of lack of knowledge or because the system
parameters change over time according to
unknown phenomena . Such systems can be
represented by semi-quantitative models that
combine both qualitative and quantitative
knowledge. This paper presents Numerical
Interval Simulation, a method that can simulate
systems involving any continuous,
nonmonotonic functions . We present a
successful application of NIS to predict the
behavior of a complex process at a Brazilian-
Japanese steel company. We claim that such
capability of simulating nonmonotonic functions
is fundamental in order to handle real-world
complex industrial processes .

Mathematical models of complex physical
systems cannot be precisely defined in many
cases, either due to lack of knowledge or
because parameters and functions change over
time according to unknown phenomena .
Nevertheless, it is often possible to provide
reasonable bounds for the parameters and
functions . Bounds on parameters are interval
ranges . Bounds on incompletely known
functions take the form of a pair of functions,
one to provide an upper bound and another to
provide a lower bound. Such models that can
integrate qualitative and quantitative knowledge
are called semi-quantitative models .
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They can represent important classes of complex
systems such as chemical, electro-mechanical,
nuclear, thermal, steel and other industrial
processes [1] .

Many qualitative simulation methods are based
on constraint propagation . They generate all
possible states and use filtering techniques to
eliminate impossible ones . Semi-quantitative
methods such as Q2 [2] and Fu-Sim [3] add
numerical information and take advantage of it in
the filtering process . The basic algorithm
remains the same. Such semi-quantitative
methods do not fully exploit the quantitative
knowledge and produce only weak predictions
across time intervals . This is primarily due to
the limitations of interval propagation across
derivative constraints . The mean value theorem
is used to constrain the ranges of a variable at
two adjacent time points to and to+1, where to
and to+I are the temporal boundaries of a
qualitative state . Those methods do not reason
about the behavior of the system within a
qualitative state.

This paper presents Numerical Interval
Simulation (NIS), a method that produces more
precise simulations of semi-quantitative models.
NIS performs numerical simulations using
maximal and minimal values for the derivatives
of the state variables . In order to calculate such
maximal and minimal values, NIS uses interval
arithmetic to calculate intervals containing the
possible values of the derivatives and takes their
maximum or minimum respectively . NIS is
complete in the sense that its solutions bound all
the solutions of the semi-quantitative model.
The method replaces the use of the mean value
theorem with explicit integration .

NIS was originally presented at the 1992
Qualitative Reasoning workshop [4] . At that



same workshop, Kay and Kuipers also
presented their work on dynamic envelopes [5] .
Both techniques share the same fundamental
insights . Subsequent development has lead in
different directions, although it should be
possible to unify the two lines of work. NIS has
been extended to handle non-monotonic
functions and forcing functions, whereas the
dynamic envelope method is more closely
integrated with the QSIM [6] formalism . The
dynamic envelope method of Kay and Kuipers
[7] derives and numerically simulates "extremal
systems" composed of "extremal equations" that
are bounds on the derivatives of the state
variables . Such "extremal systems" have been
automatically generated only for systems of
monotonic functions .

NIS is an extension of the fuzzy simulation
methods for linear systems proposed in [8] and
for piece-wise linear systems proposed in [9] .
We claim that the extension presented in this
paper to handle nonmonotonic functions and
forcing functions is fundamental to simulate real-
world nonlinear complex systems . We
demonstrate the usefulness of NIS by presenting
its successful application to simulate a complex
sintering process at Companhia Siderurgica de
Tubarao, a Brazilian-Japanese steel company
located in Brazil .

This paper is organized as follows : We first
describe the Numerical Interval Simulation
method . Second, we show two examples of
numerical interval simulation of systems of
ordinary differential equations composed of
nonlinear nonmonotonic functions . The first
system represents an electrical system with
power supplied by an AC generator, and the
second represents an inverted pendulum attached
to an electric motor. We then discuss the
mathematical properties of the method . We
finally present the application of NIS to a
complex industrial process . We close with a
discussion of related work and conclusions .

2 Numerical Interval Simulation

The Numerical Interval Simulation method takes
as input a semi-quantitative model and generates
upper and lower bounds on the trajectories of
each of the state variables in the model .
The semi-quantitative model is composed of a set
of equations, interval bounds on the constant
parameters used in the equations, and interval
bounds on the initial values of the state variables .

The equations are (non-) linear first-order
ordinary differential equations (ODES) of the
form

The functions fk can contain the standard
arithmetic operators such as addition,
subtraction, multiplication, division,
exponential, logarithm, sines, cosines, and
constant parameters . In addition, fk can also
contain intervals in place of constant parameters
and interval functions that bound the values of
the actual parameters and functions . Interval
functions are functions that take intervals as
arguments and return an interval . In other
words, fk can contain, instead of a real-valued
function g(t, x1, . . . xn), an interval function h(t,
il, . . . in ) such that g(t, x1, . . . xn) E h(t, il, . . .
in ) where ij ^s are intervals and xj E ij forj = 1 to
n .

NIS performs numerical simulation, using
extremal values for the derivatives of the state
variables . Such extremal values for the
derivatives are calculated in the following
manner:

x'k= fk(t, xi, x2, . . . xn) for k = 1 . . n

First, NIS uses interval arithmetic to
calculate the interval of possible values for
the derivatives of the state variables [10] .
Since the functions fk can contain intervals
(as parameters) and interval functions, the
arithmetic operators in fk are actually their
corresponding interval arithmetic operators,
and fk are interval functions as well . NIS
uses fk to calculate the intervals for the
values of the derivatives .

Second, NIS takes the maximum or
minimum of the resulting interval, depending
on whether the maximal or minimal
derivative is required .

Later in the paper, we show that NIS is complete
in the sense that its result is guaranteed to bound
all the possible solutions of the semi-quantitative
model . The only restriction for the functions fk
used in the proof of completeness is that such
functions must be continuous over the intervals
considered in the simulation . It means that
functions fk can be composed not only of
monotonic functions but also of nonmonotonic
ones . NIS allows nonmonotonic functions over
the reals such as multiplication, sine, cosine,



exponential and logarithm, and the arbitrary
interval functions can also bound a set of
nonmonotonic arbitrary real functions .

The NIS method calculates maximal and minimal
values for the derivatives at a given instant tn .
Such extremal values are used by a numerical
simulator to determine the value of the state
variables at the next instant to+1- Several
different methods could be used to perform the
numerical simulation . We present below NIS
using both the Euler's method and the Runge-
Kutta method.

2.1 Euler's Method NIS

Let xk(t) = [xkrnin(t), xkmax(t)] be the interval
such that its lower and upper bounds correspond
to the minimum value xkm i n (t) and the
maximum value xkmax(t) of state variable xk at
time t .respectively . In the remainder of this
paper, we will use the notation [b] for the point
interval [b, b] for brevity . The Euler's method
NIS for each simulation step can be described
as :

1) Calculate the maximum 8max(tn)i and the
minimum &nin(tn)i values for the derivatives of
state variables xi at instant tm in the following
manner :

&nax(tm)i = max(fi(tm, xl, x2 . . .[ximax]- . .,
xn))

&min(tm)i = max(f(tm, xl, x2. . . [ximin], . . .,
xnA

where xj (j = 1 . . .n except i) are the interval
[xjmin, xjmaxl-

Notice that, the functions fi are calculated taking
as arguments the real maximal value ximax(tm)
and the real minimal value ximin(tm) of state
variables xi at instant tm respectively, instead of
using the interval [ximin(tm), ximax(tm)1- This
is fundamental to provide accurate simulations
and will be discussed in more detail later in the
paper .

2) Calculate the maximum bound ximax(tm+1)
and minimum bound ximin(tm+1) at instant
tm+1 with the given step size of &:

where

ximax(tm+l) = ximax(tm) + St &nax(tm)i

ximin(tm+1) = ximin(tm) + St &nin(t n)i

2.2 Runge-Kutta NIS

We presented the Euler's method in two steps by
first calculating the extremal values for the
derivatives and second by calculating the values
of the state variables for aims of clarity . With
the Runge-Kutta NIS, the extremal values for
derivatives are calculated several times inside
each iteration of the method. We present below
the four-stage Runge-Kutta NIS method.We use
the symbols ® and ® to represent the interval
arithmetic relations addition and multiplication
respectively . The equations are given for the
upper bound, ximax. The equations for the
lower bound are identical with min substituted
for max throughout .

ximax(tm+l) = ximax(tm) + Wkilmax +
2ki2max + 2ki3max + ki4max)

kil max = St max(fi(tm, xl, x2 . . ., [ximax]. . .
xn)),

ki2max = St max(fi(tm + 28t, xl ® [21
1

[kllmin, kllmax], .--, [ximax + 2kilmaxl,

	

,
1

xn ® [21 ®[knlmin, knlmax]))

ki3max = St max(fi(tm + ZS0, xl ® [2]
[kl2min, kl2max], .--, [ximax + Zki'maxl,

1
xn e [21 ® [kn2min, kn2maxl))

ki4max = St max(fi(tm + St, xl ®[kl3min,
kl3max], ---, [ximax + ki3max], - .-,
xn®[kn3min, kn3max])) .



2.3 Two Examples

In this section, we show NIS simulations of two
elecrro-mechanical systems . Each physical
system is represented by ODES that include
nonlinear nonmonotonic functions .

2.3 .1 Coupled two-stage electrical
system

The first'-system is the coupled two-stage
electrical system shown in Figure 1 . The first
stage is an RL series circuit with input DC
voltage Vin provided by a battery . The second
stage is an RC parallel circuit with input current
Iin provided by an AC generator. The current
Iin is a sinusoidal signal with amplitude and
frequency directly dependent on the first stage
circuit output current Il .

The following second-order system represents
an instance of a such device:

V~ R
Il' =

	

1 -11 11, where Vin = [4.028, 4.03]

for t _<20 and Vin = Ofor t > 20.

V '

	

Iin

	

Vc c, where 1

	

k

	

I sin k I tc = C -~

	

in= A l

	

(f l )

Figure 1 : The coupled two-stage electrical
system .

Figure 2 shows a NIS simulation of such
system, given the following parameter and initial
values :

RI = [408, 410] mfz,
l=2H,
Rc= [400, 5001 xa
c=10MF,
kA = [16, 18110-8 , kf = [123, 1251 10-3,
11(0) = 0 A, and
VC(O) = 0 V.

Figure 2: NIS simulation of variable Vc of the
coupled electrical system .

2.3.2 Inverted pendulum

The second example is a well known problem in
nonlinear mechanics, known as the inverted
pendulum. The pendulum is a stiff bar of length
L which is supported at one end by a frictionless
pin . The support pin is given a rapid up-and-
down motion s by means of an electric motor, s
= A sin ax . Application of Newton's second law
of motion yields the equation L9"=(g - co2A sin
we) sin e, where 8 is the angular position of the
bar (e = 0 when the bar is directly above the
pin), and g is the acceleration due to gravity .

Following is the second-order system
representing the inverted pendulum:

e' = 3e

Se' = L (g - w2 A sin mot) sin e

Figure 3 shows a NIS simulation of such
system, given the following parameter and initial
variables values :

g = 386.09 inlsec2,

L=10in,

A = [0.5, 0.55] in,
C) = [5.3, 5.4] radlsec,

e (0) = 3tad, and
30 (0) = 0 radlsec .
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Figure 3 : NIS simulation of variable 0 of the
inverted pendulum.

2.4 Properties of NIS

We have analyzed some computational properties
of NIS, namely completeness and soundness .
NIS can be shown to be complete, but not
sound .

2.4.1 About Completeness

NIS is complete in the sense that its result is
guaranteed to bound all the possible solutions of
the semi-quantitative model . The proof of
completeness follows the steps below :

" Consider the semi-quantitative model x'k =
fk(t, xl, x2, . . . xn), where xk(t0) E IOk for k =
1, . . .n .

" The function fmax = max(fk(t, xl, . . . [xk], . . .
xn)) calculated by NIS is such that
b't, xk E R,
Vx1, x2, . . . xn E I,
b'x'k e R /x°k E fk(t, xl, . . . [xk], . . . xn) ,
x'k :5 fmax(t, x1, . . . [xk], . . . xn) .

This is straightforward to prove since NIS uses
interval arithmetic operations that calculate the set
of all possible values for the functions fk and
only then takes its maximum.

" For xmax such that x'max =fmax(t, x1, x2,
. . . xn), we can prove that b't xk(t) _< xmax(t) .

The proof is based on the fact that, since the
functions fk are continuous and xk(tO) _<
xmax(tO), xk has to be equal to xmax first in
order to become greater than xmax . Since at
any crossing point the derivative of xmax is
greater than the derivative of xk (proved in the
step above), xk will be only smaller or equal to
xmax at an arbitrarily small time after the
crossing point and xk does not become greater
than xmax.

" In a similar manner, considering another
function fmin, we prove that b' t, xmin(t) _<
xk(t) .

2.4.2 About Soundness

Soundness is the property of predicting
behaviors that are solution of at least one
instance on the semi-quantitative model .
Although NIS is not sound in general, the
method is very precise in most cases . In this
section we first discuss why NIS is usually
precise by comparing the method to our first
approach for interval simulation [8] . We then
discuss and show a particular case in which the
method diverges after a couple of interactions .

In order to point out why spurious behaviors are
produced, we will recall our first approach for
interval simulation [8] . The idea with the former
method was to extend a numerical method by
substituting its operators by the interval
arithmetic correspondents . The extended method
is complete but produces too much spurious
values . The main reason is that the arithmetic
interval operations are applied without taking
into account the interaction among variables .
Consider the first order system x' = -kx, there is
a strong relation between x and x', and both
variables are operands in the extended Euler's
method:

x(tn+1) =x(tn) ® (h ® x'(tn))

x(tn+1)= x(tn) ® (h ®(e (k ® x(tn)))

The possible values for x(tn+l) are only those
calculated considering unique values for x(m) in
eq.2 . The extended method, however, combines
all the possible values for x(tn) and x'(tn) .
Imagine x1, x2 such that x1, x2 E x(tn), the
method considers the combination x(tn) =x1,



and x'(tn ) calculated for x(tn) = x2, which
would probably produce a spurious value for
x(tn+ l ) . Interactivity is partially overcome by
NIS, since the functions fi take only the
maximum ximax(tn) or minimum ximin(tn) of
state variable xi, instead of the full interval
lximin(tn), ximax(tn)] . For example, the NIS
Euler's method of the first order system x'=-ks,
with k= lkmin, kmaxl, is

xmax(tn+1)=xmax(tn) +h(max (0 (k
lxmaxl)))

xmin(tn+1)=xmn(tn)+h(min (O (k ®1xminl)))-

We can easily prove that the interval 1xmin
(tn+l ), xmax (tn+l )l produced by NIS is
always a sub-interval of x (tn+l) produced by
the extended method . Figure 4 illustrates this .
The value xspurious(t2), calculated by the
extended method, would surely be a spurious
value greater than xmax(t2), calculated by NIS.

t0

xmax(tl)=x(t0) +h(-kmin x(t0))

xmin(tl) =x(t0)+ h (-kmax x(t0))

xspurious(t2) = xmax(tl) + h(-kmin xmin(tl))

xmax(t2) = xmax(tl) + h(-kmin xmax(tl ))

Figure 4 : xspurious(t2) and xmax(t2) calculated by
the extended method and NIS respectively

The interval simulation showed in Figure 2 is a
very precise simulation . The interval shrinks
towards the end of the prediction of an
oscillatory behavior, what would rarely be the
case with other semi-quantitative methods.

However, other cases of interactivity between
the state variable and their derivatives can occur.
For example, with systems of the form

x'k = fk(xk+1),
x'k+l =fk+l(xk+2),

x'k+n = fk+n(xk),

the interactivity is among xi and other variables
appearing in the equation of x'i . NIS
simulations of such systems tend to become
unstable after several iterations . The inverted
pendulum and other oscillatory systems are of
this type . Figure 3 illustrates such an instability .

3 . The Complex Sintering Process

In this section, we present the successful
application of NIS to predict behavior of a
complex sintering process at CST Companhia
Siderurgica de Tubarao, a Brazilian-Japanese
steel company located in Brazil . The sintering
process continuously produces sinter ore with
various kinds of fine iron ore as the raw material
and lime stone as the binder. The process has
two major goals : One is the stabilization of
operation to produce strong sinter ore of uniform
size as the ferrous burden of the blast furnace .
Another is optimization of the process to
minimize the production cost under various
conditions and processing throughout the whole
iron works . Figure 5 illustrates the sintering
plant . The granulated raw material in the surge
hopper is fed across the sinter bed width and is
ignited by the furnace. The material burns from
the surface toward the bottom by the downward
air flow through the wind boxes . The material is
shifted by the sinter bed towards the cooler.

Raw Material

C
Wind Boxes

Surge Hoper

Sinter Bed

ignition Furnace

Figure 5: The Sintering Plant

Cooler

The goal of the process operator is to control the
sinter bed speed in order to maximize



productivity while maintaining safety . Too low
a speed causes low sinter production and quality ;
high speed causes burning material to fall into
the cooler, damaging the equipment and possibly
causing a fire . An observable variable called the
burn through point, Btp, is the primary variable
to control . The Btp is supposed to be maintained
between 65 and 78%. Btp below the lower
boundary corresponds to low sinter quality
condition and lost productivity, while Btp above
the higher boundary corresponds to a dangerous
operation condition . The ideal is to keep the Btp
in between 70 and 75%.

A precise model of the sintering process is not
available due to the complexity and experimental
nature of the process . Indeed, the relations
among variables change during the operation,
influenced by unknown phenomena. For
example, the coefficients significantly change
whenever there is a significant change in the
quality of the raw material ; this is very difficult
to monitor . However, it is possible to define
boundaries for the relations and parameters .
Included in the semi-quantitative model of the
sintering process used by NIS is the first order
relation (the NIS simulated model actually
contains a dozen of these first-order relations),

Btp'= P106(t - Z) - g(Btp),

where z is the constant delay between Btp and
pressure P106, and g is a piece-wise linear
function . Figure 6 shows the given boundaries
for g(Btp) . For more details, see [1] .

g(Btp)

0.7 0.75 Btp

Figure 6 : Part of the semi-quantitative model of
the sintering process .

Actual productivity, safety and reliability
requirements demand optimum operation . In the
case of the sintering process, Btp is to be kept
as close as possible to 75% . Small deviations
can have significant effects on the process . A

Btp increase of around 3% when its value is at
75% correspond to a very dangerous operation
region that can cause fire and damage to the
coolers . Predictions that are too wide, either due
to lack of knowledge, or weaknesses in the
simulation method, are simply useless . Many
hours of operation during different periods of the
year were simulated, and the results obtained by
NIS were very successful . With rare
exceptions, the actual behavior of the process
was always bounded by NIS simulations (the
rare exceptions ocurred because of modeling
errors as opposed to NIS errors) . Furthermore,
the predictions were considered tight enough to
be useful .

Figure 7 shows an example of a NIS predicted
behavior (the two outer thin lines) and the
observed behavior (the thick line) of the Btp .
The NIS simulation failed in the interval [380,
430] minutes, indicating that the boundaries
were not well chosen in this operating region .
This is not of great concern since the system is
not supposed to operate in this region (Btp
smaller than 65%). This undesirable behavior
occurred in reality because of an operator
mistake. Notice that the NIS simulation
predicted that the Btp would penetrate the region
below 65% at time 370 minutes . An on-line
monitoring system would have thus advised the
operator about such possibility, and it could have
been avoided .

75
70
65

BTP(%)

Min

Figure 7: NIS predicted boundaries and the
measured value of variable Btp.

Further work is in progress to run NIS on-line
as an adviser for the sintering process operators .
The semi-quantitative model is based on the last
6 months of operation . Since the quality of the
raw material can significantly influence
coefficient values, more work is to be performed
in order to increase the reliability of the
simulations .
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4. Related Work

Research in different areas such as qualitative
physics [2, 3, 15, 7], sensitivity analysis (12],
tolerance banding [13] and interval analysis [10,
14], address the problem of combining
qualitative and quantitative knowledge. We will
first discuss the methods outside qualitative
physics.

Sensitivity analysis [12] is used to predict the
effect of small-scale perturbations to a system .
Tolerance banding [13] is used to predict large-
scale uncertainties . Both methods are normally
restricted to linear models and allow uncertainties
of parameters and initial values only . According
to Kay and Kuipers [7], bounding methods that
do not rely on linearity assumptions have been
developed for VLSI simulation [18], but they
rely on domain-specific assumptions . Interval
Analysis [10, 14] simulates semi-quantitative
differential equations by recasting numerical
simulators to work with interval arithmetic. Both
NIS and the dynamic envelope method
numerically simulate extremal systems . An
advantage of both approaches is that model
imprecision is separated from the error
introduced by the simulator . Another advantage
is that such methods can switch to more
powerful numerical simulators as they are
developed .

Inside the scope of qualitative physics, the first
semi-quantitative methods such as Q2 [2] and
Fu-Situ [3] do not fully exploit the quantitative
knowledge available in the semi-quantitative
model and produce only weak predictions across
time intervals . As model precision increases,
NIS produces more precise simulations than Q2
or Fu-Sim. The method replaces the use of the
mean value theorem with explicit integration over
time .

To establish the temporal correspondence
between the observed values and the predictions,
the sintering application uses synchronized
sampling as most industrial process monitoring
systems do. Tracking the process is thus
significantly facilitated . The imprecision of the
semi-quantitative model only affects variable
values estimates . That provides a firmer ground
for comparing the results of the simulation with
real observations, which is crucial in real time
monitoring systems . In semi-quantitative
methods like Q2 or Fu-Sim, temporal durations
are calculated with the first order Taylor-

Lagrange formulae using quantity space values
in the form of numeric or fuzzy intervals . It was
shown in [15] that the first order Taylor-
Lagrange formulae is scarcely sufficient to
provide significant information . This is true,
independent of the weakness directly related to a
weak quantity space, at the neighborhood of
critical points for which the derivative reaches
zero . Indeed, zero derivative leads to one
infinite boundary for the duration estimate . As a
result, time durations calculated for adjacent
states are often widely overlapped . It may
happen that a given time instant belongs to
several consecutive states, implying that variable
values at this instant are very weakly
constrained.

SIMGEN by Forbus and Falkehainer [16] also
uses qualitative and quantitative knowledge .
SIMGEN generates a precise model from a
library of predefined functions and performs a
numerical simulation. The method does not use
a semi-quantitative model or simulation .

Most closely related to NIS is the dynamic
envelope method [7] . Both methods numerically
simulate extremal systems . NIS uses interval
arithmmetic to calculate the extremal values for
derivatives at each simulation step, whereas the
dynamic envelope method generates the exremal
systems a priori . The dynamic envelope method
inherits certain limitations from the QSIM
formalism upon which it is built . First, it does
not allow forcing functions such as A sin on in
the example in Section 2.3 .2 . Forcing functions
cannot be reasonably specified in a purely
qualitative framework, because the events
generated by the forcing function must be
exhaustively interleaved with the normal
qualitative events . This results in a combinatoric
explosion . Second, the QSIM formalism does
not allow for non-monotonic function in
equations other than multiplication . The
dynamic envelope method also benefits from the
qualitative representation . QSIM is able to split
divergent behaviors, which allows the dynamic
envelope method to provide separate, tighter,
bounds on each qualitative behavior, rather than
a single, broad, bound that covers all of the
behaviors .

NIS can simulate systems involving
nonmonotonic functions and allows use of
forcing functions . NIS is an extension of fuzzy
simulation methods for linear systems proposed
in [8] and in [4], and for piece-wise linear



systems proposed in [9] . Since a large class of
complex industrial processes are modeled by
nonmonotonic functions and include force
functions, the capability of handling such
functions constitutes an important contribution to
the field of qualitative physics .

NIS simulations of certain oscillatory systems
can be unstable . The same limitation occurs with
the dynamic envelope method . An alternative,
which consists in intersecting the results of the
dynamic envelope method and of Q2, was
proposed in [7] in order to improve the results of
the simulation in such cases . We are considering
the integration of NIS with the methods under
development at the University of Texas .

5 . Summary

The Numerical Interval Simulation method
produces high precision simulations of semi-
quantitative models. The method is complete in
the sense that its solutions bound all the
solutions of the semi-quantitative model . As the
precision of the semi-quantitative model
increases, the method produces more precise
simulations than former semi-quantitative
methods like Q2 or Fu-Sim . Although NIS
produces the same results as the dynamic
envelope method when simulating systems
involving only monotonic functions, the method
also simulates systems containing arbitrary
continuous, nonmonotonic functions. NIS also
allows use of forcing functions . We claim that
such level of generality is fundamental to
simulate real-world nonlinear complex systems .

We demonstrated the usefulness of NIS by
presenting its successful application to simulate a
complex sintering process at Companhia
Siderurgica de Tubarao, a Brazilian-Japanese
steel company located in Brazil . The result
shows that NIS is adequate to represent the
available information and produces simulations
with the required level of precision . The
prototype has been tested and we are working to
run NIS on-line as an adviser to the sintering
process operators .
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