Spatial Aggregation: Language and Applications*

Christopher Bailey-Kellogg and Feng Zhao

Computer and Information Science
The Ohio State University
2015 Neil Ave.

Columbus, OH 43210 U.S.A.
{kellogg,fz}@cis.ohio-state.edu

Abstract

This paper describes the spatial aggregation language
and its applications. Spatial aggregation comprises a
framework and a mechanism for organizing computa-
tions around image-like, analogue representations of
physical processes in data interpretation and control
tasks: it transforms a numerical input field to succes-
sively higher-level descriptions by applying a small,
identical set of operators to each layer given a metric,
neighborhood relation and equivalence relation.

The spatial aggregation language provides two ab-
stract data types (ADTs) — neighborhood graph and
field — and a set of interface operators for construct-
ing the transformations of the field. The language
consists of a library of component implementations
from which a user can mix-and-match and specialize
for a particular application. The modular design of
the ADTs supports language extensions and user con-
trol over tradeoffs such as efficiency vs. generality.

We illustrate the use of the language with examples
ranging from region growing in image analysis to tra-
jectory grouping in dynamics interpretation. Pro-
grams for these different task domains can be written
in a modular, concise fashion in the spatial aggrega-
tion language. The language allows users to isolate
and express important computational ideas while hid-
ing low-level details.

Content Areas: Qualitative Reasoning, geomet-
ric/spatial reasoning, programming language, ontolo-
gies, applications.

Introduction

Effective reasoning about a physical system requires
an appropriate mapping from the system character-
istics to abstractions that match the requirements of

® FZ is supported by an NSF National Young Investi-
gator Award CCR-9457802, an Alfred P. Sloan Foundation
Research Fellowship, a grant from Xerox Palo Alto Re-
search Center, and an NSF grant CCR-9308639. CBK is
supported by FZ's NSF NYI grant CCR-9457802. KY is
supported by an NSF National Young Investigator Award
ECS-935777.

Kenneth Yip
MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139 U.S.A.
yip@martigny.ai.mit.edu

the task at hand. Spatial aggregation organizes com-
putations around image-like, analogue representations
of physical processes in data interpretation and control
tasks (Yip & Zhao 1996). In Qualitative Physics, three
ontological abstractions are widely used: device, pro-
cess, and constraint. Spatial aggregation introduces
a new ontological abstraction, the field ontology, to
unify many reasoning tasks involving the image-like
analogue representations such as the velocity field for
fluid motion, phase space for dynamical systems, and
configuration space for mechanism analysis.

The input to spatial aggregation is a data massive,
numerical field. ' The desired output is a high-level,
parsimonious description of the structure and behav-
ior of the physical process that the field represents.
To bridge the semantic gap between the analogue in-
put field and the final symbolic description, spatial ag-
gregation introduces layers of intermediate structures
called spatial aggregates to capture spatial adjacencies
among objects of the field at multiple spatial and tem-
poral scales. A spatial aggregate is constructed from a
metric, a neighborhood relation and an equivalence re-
lation supplied by a user according to the objective of
computation. Spatial aggregation transforms the input
field to successively higher-level descriptions by apply-
ing a small, identical set of operators to each layer of
the spatial aggregates.

The spatial aggregation framework grows out
of a class of problem solvers, KAM (Yip 1991),
MAPS (Zhao 1994) and HIPAIR (Joskowicz & Sacks
1991), that derive their power primarily from percep-
tual operators on analogue representations, and only
secondarily from search and analytical methods. These
programs have exhibited expert performance on dif-
ficult problems in hydrodynamics, nonlinear control,
and engineering mechanism analysis. Spatial aggre-
gation abstracts the common computational structure

'A field maps one continuum to another. Examples in-

clude velocity field (R* — R?), temperature field (R —
R'), image field (R* — R'), and vector field (R" — R™).

Bailey-Kellogg 3

and a set of generic operators from these problem
solvers. It can also apply to a wide variety of other
task domains such as image analysis and geographic
information databases applications. The generic op-
erators of spatial aggregation can be viewed as a
particular instantiation of Ullman’s “visual routines”
for visual information processing tasks (Ullman 1984;
Mahoney 1995).

Other researchers have developed related frame-
works and systems for reasoning about spatial, ana-
logue representations of physical world. For example,
Forbus et al. developed the Metric Diagram/Place Vo-
cabulary (MD/PV) framework for qualitative spatial
reasoning (Forbus, Nielsen, & Faltings 1991). Chan-
drasekaran and Narayanan proposed a direct ana-
logue simulation of elementary mechanics problem us-
ing a diagrammatic representation (Chandrasekaran &
Narayanan 1990). In comparison, the spatial aggre-
gation framework comprises multi-layer spatial aggre-
gates with identical computational structure at each
layer and focuses on the problem of recovering struc-
tures from numerical fields.

This paper describes the spatial aggregation lan-
guage and its implementation, and the development of
applications in the style of spatial aggregation. The
spatial aggregation language allows users to isolate
the important computational ideas in different prob-
lem domains and provides primitives and means of ab-
straction to express these ideas concisely while hid-
ing low-level details. More specifically, the language
provides two abstract data types (ADTs) — neighbor-
hood graph and field — and a set of interface opera-
tors for constructing the transformations of the field.
The language includes a library of component imple-
mentations from which a user can mix-and-match and
specialize for a particular application. The modular
design of the ADTs supports language extensions and
user control over tradeoffs such as efficiency vs. gen-
erality. The language can be extended by providing
additional operators or new implementations for the
ADTs. We illustrate the use of the language with ex-
amples ranging from region growing in image analysis
to trajectory grouping in dynamics interpretation. We
show that programs for these different task domains
can be written in a modular, concise fashion in the
spatial aggregation language.

Overview

Given an input field, spatial aggregation constructs
a neighborhood graph (N-graph) from primitive ob-
jects of the field, explicates their spatial adjacencies,
and forms equivalence classes of these objects using
an equivalence relation determined by the objective

4 QR-96

High-Level Description
L]

L]
™ Higher-Level Objects

sp-un Aggreg:u: Clmify
oblm
Map, F:iler
"k]-.-DC e - % 5

geamelric ops

Redesc: nlu,c

Input Field

Figure 1: Spatial aggregation: the lower-level objects
from the numerical input field are transformed into
higher-level objects through a sequence of operations
available in the language. The higher-level objects then
become the input to another level of spatial aggrega-
tion where the identical set of operators apply.

of the task. An equivalence class can be redescribed
as a primitive object at a higher level if necessary,
and the identical steps of aggregation to form a new
N-graph and classification to form equivalence classes
apply with a new metric, neighborhood relation, and
equivalence relation. This iteration terminates when
the desired behavioral and structural description can
be readily derived from the N-graph. The N-graph
and field serve as computational glue for the opera-
tions that search, transform, and filter the spatial ob-
jects. Figure 1 illustrates the data flow in the main
operations of the language at each level of spatial ag-
gregation.

Spatial aggregation represents primitive objects of
a physical process or system with spatial objects. For
instance, a spatial object might describe a state of a
dynamical system — a point and its direction of move-
ment in an n-dimensional phase space spanned by the
state variables. A spatial object comprises a geomet-
ric description and a feature description. The geo-
metric description is specified in a metric space defin-
ing distances between geometric primitives. The fea-
ture description belongs to one or more feature spaces.
For example, in image analysis, a pixel spatial ob-
Jject uses the pixel location as the geometric descrip-
tion and the associated brightness value as the fea-
ture description. Likewise, a region spatial object de-
fines a geometric region in an image and an average

* * * *
a * * *
b * * *,
* * *y
* ** *
E 3
P
& *
e
x®
P i®
*
L3
“
‘*‘ * *
** * *
* * %* *
* *
* * *
* * ¥ *

Figure 2: Trajectory bundling operation in phase space
dynamics interpretation: the input field consists of
states as points in phase space.

or minimum/maximum brightness value of the con-
stituent pixels. In a meteorology application, each
spatial object specifies a location in space and a tem-
perature, barometric pressure, and air flow velocity in
feature space. The distance between values in a fea-
ture space represents how different the corresponding
spatial objects are. Spatial aggregation forms neigh-
borhood graphs for spatial objects using the geometric
description and groups the spatial objects using simi-
larity or proximity measures in feature space. For ex-
ample, spatial aggregation could group text with the
same font, using a feature space defined by font char-
acteristics. In a mechanism analysis system, it could
group configurations in a configuration space.

As an example of how spatial aggregation provides
organizational principles and building blocks to facili-
tate the development of programs for engineering prob-
lems, consider an interpretation task in dynamical sys-
tem analysis. The input is a field of sampled states as
points in phase space shown in Figure 2. The objec-
tive is to group the states into trajectories and then
trajectories into trajectory bundles that share similar
limit behaviors, as shown in Figure 6 and Figure 9 re-
spectively.

The first step, aggregation, forms a neighborhood
graph using a neighborhood relation to explicitly in-
dicate pairs of adjacent spatial objects. Different ap-
plications require different neighborhood relations. In
the trajectory interpretation application, a minimal
spanning tree (MST) is appropriate; other applications
use Delaunay triangulations, nearness criteria, and so
forth. The spatial aggregation code shown in Figure 3
uses the operator aggregate to compute the neigh-
borhood graph (the argument points-ngraph-fac —

(define points-ngraph
(aggregate input-field points-ngraph-fac))

Figure 3: Aggregation of trajectory points

Figure 4: A neighborhood graph (MST) for the points.

constructed from language library components — spec-
ifies how to build an MST). Figure 4 shows the result.
The operator aggregate allows the user to focus on
choosing a good neighborhood relation while hiding
implementation details.

The next main step, classification, forms equiva-
lence classes of neighboring spatial objects according
to their similarity in the feature space. In the tra-
jectory interpretation example, a point can be consid-
ered similar to a neighbor if their separation is not sig-
nificantly longer than the distances separating other
nearby neighbors. In the code of Figure 5, classify
forms equivalence classes of points from the MST,
points-ngraph, by deleting edges that are too long ac-
cording to the threshold *point-distance-tolx; the
result is shown in Figure 6. Other classification mech-
anisms, discussed later in the paper, use consistency
predicates to test the classes. The operator classify
allows the user to select an appropriate equivalence re-
lation and a classification mechanism.

The third main step of spatial aggregation, re-
describing, maps equivalence classes of objects at one
level to single higher-level objects at the next level.
In the trajectory interpretation example, each equiv-
alence class of points becomes a single trajectory ob-
ject; Figure 7 shows the spatial aggregation code. The
redescribe operator shifts the level of abstraction so
that the aggregation process can repeat at a higher
level. The inverse of redescribing is localizing, which
maps each higher-level object to the equivalence class
of constituent objects at the lower level.

Bailey-Kellogg 5

(define point-classes
(classify
points-ngraph points *point-distance-tol#))

Figure 5: Classification of trajectory points

b e C a
e € fff thc
e if Ceee
ff
f
f
f qdddd
h
ph "
pb .
h i
h i
g
1 k

Figure 6: Points grouped into trajectories labeled by a
through | respectively.

To group trajectories into trajectory bundles, the
same process repeats, using the operators aggregate,
classify, and redescribe. The only differences are
in the metric, neighborhood relation, and equivalence
relation: trajectories are aggregated into a neighbor-
hood graph where the neighborhood is defined by a
sphere of some fixed radius, and neighboring trajecto-
ries are bundled using an equivalence relation compar-
ing corresponding vectors along trajectories. Figure 8

shows the spatial aggregation code, and Figure 9 shows

the result. The aggregation process can repeat at a
even higher level if necessary. ?

As the example demonstrates, programs written in
the spatial aggregation language are modular, using a
common data structure (neighborhood graph) and an
identical set of generic operators (see Figure 10). They
are concise and make explicit the important compu-
tational characteristics of the problem: neighborhood
and equivalence relations.

Additional operators are available for manipulating

*In control applications, the trajectory bundles are fur-
ther aggregated to form reachability graphs; see (Zhao
1094).

(define trajs
(redescribe point-classes traj/create))

Figure 7: Redescription of point classes as trajectories

6 QR-96

ii; Aggregate the trajectories.
(define traj-ngraph
(aggregate trajs traj-ngraph-fac))

;i3 Form equivalence classes.
(define traj-bundles
(classify
traj-ngraph trajs *vector-similarity-tols))

Figure 8: Aggregation and classification of trajectories

2NN
N7

Figure 9: Trajectories grouped into bundles labeled a
through d respectively.

States

(rr=ry

Points N-graph

CINII‘— Separation threshold

Point sets

RedescEI

Trajectories

Aggr@‘— Spherical neighborhood

Trajectory N-graph

Classify Similarity threshold

el g 1z ¢l

Trajectory bundles

Figure 10: The flow chart of the phase space interpre-
tation example.

Spatial Aggregation Language Features

e Data types:
Ngraph and its constructors, accessors, modifiers.
Examples of ngraph: 4-adjacency, MST, and
Voronoi diagram.
Field and its constructors, accessors, modifiers.
Examples of field: array, grid, and k-d tree.

¢ Interface operators:

aggregate, classify, redescribe, localize,
search

A user must specify the neighborhood relation, field
metric, and equivalence relation for these operators
explicitly, or provide procedures that compute the
ngraph and equivalence classes.

Table 1: Features of the spatial aggregation language.

the objects in the neighborhood graph. For exam-
ple, search starts at any of a list of objects in the
graph and moves from neighbor to neighbor, following
some desired control strategy (e.g. depth-first search or
breadth-first search) and finding paths satisfying some
criteria. Interfaces to standard geometric and numeri-
cal libraries could further extend the capabilities of the
language. Table 1 summarizes the main features of the
spatial aggregation language.

Spatial Aggregation Language

We describe the spatial aggregation language and its
prototype implementation in Scheme. The language
consists of operators and abstract data types that a
user can choose and instantiate for each spatial aggre-
gate layer. A library available in the language contains
basic implementations for each abstract data type and
operator. Other component implementations can be
built according to the defined specifications and added
to the library if necessary.

We use a region-growing example from image analy-
sis to illustrate the basic features of the language and
how a simple program can be written for the task. A
region is an area in an image whose pixels share a com-
mon property (Zucker 1976). The program takes as
input a field — an image mapping pixel coordinates
to brightness values — and produces a list of disjoint
regions of pixels with similar brightness values. For
example, given the input shown in Figure 11, the pro-
gram could produce the regions shown in Figure 12.
The pixel spatial objects encapsulate points and corre-
sponding gray-scale values. The points belong to a sub-

aE W E e RN NN

O I

L I I Y S I R Y R T
MWW e

L R B B I
N N N A N R
I R T R E T R
R L N I R T

R S I T R
s s e sssEsRe=E
CHC BT I T I B A
O RS N I S
I T I)
L I I I T N TR R)
UL R R AR NN e

Figure 11: Input Image: A 14x 14 array of pixels. Each
pixel has a coordinate and a brightness value.

asasassabbceseasse
------ beeceeee
assssalbbcoccene
----- afbblce ccece
asananahbbcesssee
------ hMceocseee
BLhbbbbbbbbbbbbhbb
Ebbbbbbebbbbbb
dtddddbblesesss
ddddddbblesssass
ddddddbblesssss
dddadddbblesssass
ddddddbble sssss
dddadadbhblesssss

Figure 12: Output Image: five regions — a through e
— consisting of pixels of similar brightness.

space of an Euclidean plane R?, and the feature space
comprises gray-scale values from the set {0,1,...,255}
— a subspace of R!. Pixels are neighbors by the stan-
dard 4-adjacency relation.

The field and N-graph abstract data types

Two abstract data types, the field and the ngraph,
form the core of the spatial aggregation language. The
operations of an abstract data type are separated into
primary operations defining the basic capabilities of the
data type in terms of its representation, and secondary
operations (also called capabilities) providing extended
functionality layered over the primary operations. The
choice of primary and secondary operations is deter-
mined by the requirement of basic functionality and
future language extension (Weide, Ogden, & Zweben
1991).

The abstract data types are highly parameterized.
Each different implementation of an abstract data type
provides an instantiate procedure that takes the pa-
rameters and returns a facility defining the primary
operations. Parameters include functions specifying
how to manipulate generic objects, and facilities for
other data types used in the implementation. A facility
is a function that, given a primary operation’s name,
returns the appropriate function. Each different imple-
mentation of a secondary operation also provides an n-

Bailey-Kellogg 7

(define image-field-fac
(field-array/instantiate ’(256 256)
pixel/point))

Figure 13: Field instantiation for region growing

stantiate procedure that returns the secondary opera-
tion. While the basic abstract data types are highly pa-
rameterized, the library also provides data types whose
parameters are partially instantiated with commonly-
used values. The library allows users to choose among
implementations trading efficiency with generality.

Field The first major component making up the spa-
tial aggregation language is the field abstract data
type. A field defines a metric space for the geometric
descriptions of spatial objects, and can answer spatial
queries. The interface provided by a field facility pro-
vides a function create to collect objects into a field,
a function domain to return the objects defined in the
field, and a function near to return objects within a
given distance of a specified object. The syntax of
these operators is omitted here due to the space limita-
tion; interested readers are referred to (Bailey-Kellogg,
Zhao, & Yip 1996) for details.

Many different spatial indices can serve as implemen-
tations for field. The current component library con-
tains array and grid implementations, a k-d tree imple-
mentation, and a simple list implementation that com-
pares objects pairwise. These components are generic,
with instantiation parameters indicating how to ex-
tract geometric descriptions, how to measure distances,
and so forth. Fields can also be defined intensionally or
interpolated from sample data points; library compo-
nents allow user-specified intensional and interpolation
functions.

A 256 by 256 array field suffices for storing pixel
values in the region-growing application, as shown in
Figure 13.

N-graph The second main component of the spatial
aggregation language is the ngraph abstract data type.
An ngraph defines a neighborhood relation for a set
of spatial objects, and can return the neighbors of any
given object defined in the ngraph. The interface of an
ngraph facility provides a function create to aggregate
the objects of a field, and a function neighbors to
return the neighbors of a specified object.

A wide variety of ngraph implementations support
different neighborhood relations; each implementation
uses a field facility indexing the objects to Le ag-
gregated. One implementation considers an object’s
neighbors to be all other objects within some distance

8 QR-96

(define image-ngraph-fac
(ngraph-near/instantiate image-field-fac 1))

Figure 14: Ngraph instantiation for region growing

(define image-ngraph
(aggregate pixels image-ngraph-fac))

Figure 15: Aggregation of region-growing input

in the field. Another implementation builds a min-
imal spanning tree of all objects and returns neigh-
bors according to the minimal spanning tree. A third
implementation builds a Delaunay triangulation with
objects as vertices. Finally, a very generic imple-
mentation allows the user to specify a neighborhood-
generating function. For example, a simple way to pro-
gram an 4-adjacency neighborhood relation would be
to provide a function that generates the four surround-
ing points and returns those defined in the field.

The code for the region-growing example, shown in
Figure 14, defines a 4-adjacency neighborhood relation
in terms of the nearness ngraph: return as a pixel’s
neighbors all pixels within a distance of one pixel.

Interface Operations

The spatial aggregation language provides the opera-
tions of Table 1 to manipulate primitive objects and
neighborhood graphs.

Aggregate Aggregation groups objects of a field into
a neighborhood graph. The function takes a field,
along with an ngraph facility, and returns an ngraph:

aggregate: objects * ngraph-fac —+ ngraph

This is simply syntactic sugar for the ngraph ADT’s
create primary operation.

Figure 15 shows the code to form a neighborhood
graph for the region-growing application, with the ob-
jects from the image in Figure 11. The pixels list
includes all pixels in the image.

Classify Classification is performed by an ngraph
secondary operation. Given an ngraph, a list of ob-
jects to classify, and a threshold for feature similarity,
this operation returns a list of equivalence classes (lists
of objects):

classify: ngraph = objects * threshold — classes

The objects argument specifies the portion of an
ngraph to classify, since the ngraph can be very large

FP— e

in space. There are several possible ways to deter-
mine what threshold to use for object similarity, each
of which is supported by an implementation in the lan-
guage library:

1. Standard: The easiest approach is to rely on a user-
specified threshold. Objects are considered similar
if they are neighbors in an ngraph and their differ-
ence according to the specified difference function
does not exceed the threshold. An instantiation pa-
rameter specifies how object differences should be
measured. Equivalence classes are found by taking
the transitive closure of this similarity relation across
neighboring nodes.?

2. Splitting: A more advanced method of determining
a threshold is called splitting classification. To find a
threshold by splitting, the system first classifies with
a loose threshold. It then applies a user-supplied
consistency check to each of the resulting equivalence
classes. Classes that pass the consistency check are
added to the results. Classes that fail the consis-
tency check are reclassified with a tighter threshold.
If the threshold bottoms out, failure is reported.

3. Merging: The third method for determining a
threshold is called merging classification. To find
a threshold by merging, the system starts classifica-
tion using a tight threshold. It then examines the
resulting classes and merges those that are similar.
To determine which classes are similar, it views the
classes as higher-level objects and aggregates them
as another invocation of spatial aggregation.

4. Stabilizing: The final classifying method currently
in the library is called stabilizing classification. Sta-
bilizing classification compares the classifications
yielded by a particular difference measure over a
range of thresholds. It returns the classification that
persists over the largest subrange of thresholds.

The code in Figure 16 takes the ngraph yielded by
the code in Figure 15 and produces the classification
of Figure 12, The instantiation uses a difference mea-
sure that compares pixel values and considers them
equivalent if their difference doesn’t exceed the spec-
ified threshold. Different instantiations could replace
this classification method with one of the more power-
ful approaches.

*More precisely, two objects Og and O, are considered
equivalent if there exists a sequence of objects Qo, O, ...,
.On such that O; and Oj44, for i from 0 to n—1, are adjacent
In ngraph and similar according to the similarity measure.
The equivalence relation thus defined is a subset of the
transitive closure of the neighborhood relation.

(define classify
(classify-standard/instantiate
image-ngraph-fac
(lambda (nl1 n2)
(abs (- (pixel/value nl)
(pixel/value n2))))))

(define classes
(classify image-ngraph pixels *threshs*))

Figure 16: Simple classification of region-growing in-
put

(define regions
(redescribe classes region/create))

Figure 17: Redescribing equivalence classes as regions

Redescribe Redescribing maps equivalence classes
to higher-level objects. The function takes a list
of equivalence classes and a function to construct a
higher-level object from a list of lower-level objects,
and it returns a list of higher-level objects:

redescribe: classes * redescribe-function — ob-
jects

Given a function region/create to create a region
object from a list of pixels, the code in Figure 17 per-
forms the redescribing for the region-growing example.

Localize Localize inverts the work of redescribe. It
takes a list of higher-level objects and a function to
convert a higher-level object to its constituent lower-
level objects, and returns a list of lists of lower-level
objects:

localize: objects * localize-function — objects

Given a function region/pixels to return a list of
points in a region, the code in Figure 18 generates the
points forming the regions computed by the redescribe
above.

Other operations N-graph secondary operations
provide extended functionality. For example, a search
operation returns paths through a neighborhood graph
starting from any of a list of objects and satisfying
specified goal predicate:

search: ngraph * objects * goal-predicate —
paths

Different implementations of this operation would pro-
vide depth-first control, breadth-first control, and so
forth.

Bailey-Kellogg 9

(define classes
(localize regions region/pixels))

Figure 18: Localizing a region into its equivalence class

Finally, a variety of other operations, such as the
standard Lisp operations map and filter, along with
various geometric operations, manipulate primitive ob-
jects.

Application Domains of the Language

This section describes several application domains for
the spatial aggregation language. In addition to image
analysis and dynamical system analysis tasks, the spa-
tial aggregation language is applicable to a wide range
of other problem domains. Preliminary prototypical
implementations have been developed for a number of
these applications; others are under development.

Dynamical system analysis

Spatial aggregation generalizes KAM (Yip 1991),
MAPS (Zhao 1994), and a number of other pro-
grams (Bradley 1992; Nishida & others 1991; Sacks
1991) for analyzing nonlinear dynamical systems. Ac-
cording to modern dynamical systems theory, the qual-
itative behaviors of a nonlinear dynamical system can
be described by the geometric features in phase space.
Once the appropriate metrics and equivalence relations
are defined, the spatial aggregation language can nat-
urally express the operations in analyzing dynamics in
phase space, as the trajectory interpretation example
has already illustrated.

Fluid flow motion analysis is another domain where
spatial aggregation can be used to aggregate flow lines
into coherent bundles (Yip 1995).

Mechanical mechanism analysis

A mechanical mechanism analysis determines the fea-
sibility of a mechanism. HIPAIR is a program for this
task (Joskowicz & Sacks 1991). A mechanism is often
described in a configuration space where each dimen-
sion represents an independent degree of freedom. The
configuration space consists of blocked space (impossi-
ble configurations) and free space (possible configura-
tions). Spatial aggregation can be used determine the
feasibility of a mechanism by clustering configurations
into sign-invariant regions (free space or blocked space
regions) with a Hausdorff distance measure between
sets of points and then analyzing the connectedness of
the free-space regions.

10 QR-96

Image analysis

We have shown how the region growing operation can
be coded in the spatial aggregation language. Other
image analysis operations such as boundary tracing
and segmentation can be likewise programmed. Ma-
honey (Mahoney 1995) developed a library of elemen-
tary image analysis operations in the style of Ullman’s
visual routines. An interesting open problem is to re-
implement the Ullman’s set of visual routines in the
spatial aggregation language.

Other applications

Auditory scene analysis attempts to differentiate con-
current acoustic signals generated by distinct sources.
An auditory scene is an image in which signals are
separated by features such as tones, onset times and
offset times. Spatial aggregation can partition an audi-
tory scene into groups based on feature similarity and
hence separate acoustic signals from distinct sources.

Data mining is another potential application do-
main. Data mining extracts regularities from a massive
amount of data using correlation and generalization.
The space of possible relationships among data items
is very large and prohibits a brute-force search. By
defining appropriate metric and equivalence relations
for the data items, spatial aggregation might be able to
exploit the spatial adjacencies among data and hence
reduce the need to search.

Geographic information databases are another area
in which the neighborhood of data items is already
defined in a geographic space.

Language Experience

We have developed several small-scale application pro-
grams written in this language. Based on our experi-
ence, programming in the spatial aggregation language
has several advantages:

1. The language allows a user to isolate what is impor-
tant and express the important computational ideas
in terms of the formation of equivalence classes and
the transformation of neighborhood graphs, while
hiding low-level implementation details. For exam-
ple, the classify operator provides means for a user
to specify and search for appropriate classification
thresholds. The resulting programs are modular and
concise.

2. The language provides field and N-graph data types
for naturally representing physical objects in contin-
uous domains. Field is a commonly used abstrac-
tion in science and engineering and hence facilitates
the scientific and engineering applications of the lan-
guage. N-graph serves as a common interface for

developing programs. The interface operators are
identical for different layers of spatial aggregation.

3. For a given task, a user can craft a program by mix-
ing and matching and specializing components from
the library provided by the language. A user has
fine control over efficiency and generality in the lan-
guage implementation and can extend the language
capability by adding additional component imple-
mentations. Specializing data types through par-
tial instantiation can improve performance; so can a
more efficient implementation of a component. For
example, a k-d tree field facility that replaces a grid
can improve the object indexing performance in ma-
nipulating non-uniformly distributed points.

The current implementation of the language is lim-
ited in a number of ways. We plan to incorporate ad-
ditional types of components, provide additional com-
ponent implementations, and improve computational
efficiency of the implementation. Other goals include
the implementation of lazy evaluation and incremental
analysis and update for N-graphs. To apply the lan-
guage to large-scale problems, we need to build inter-
faces to existing numerical and computational geome-
try libraries so that the language can tap the power of
the existing software base.

Conclusion

We have described an implemented language that sup-
ports programming in the style of spatial aggregation
for a number of small-scale applications ranging from
dynamics interpretation to image analysis. The spa-
tial aggregation language provides primitives — field,
N-graph, and a small set of operators — and means
of abstraction for building problem solvers that derive
concise symbolic descriptions from analogue represen-
tations of physical phenomena. Our experience pro-
vides evidence that the language supports the devel-
opment of modular programs at an appropriate level
of abstraction.

A central problem in artificial intelligence is to un-
derstand and construct the mappings from analogue
signals to symbols and back. Spatial aggregation
achieves a descriptive economy for an analogue in-
put field by successively forming equivalence classes of
lower-level objects and transforming a multi-layer of
spatial aggregates, and is a possible realization of the
signal-to-symbol mapping. Many important research
questions remain open: What class of scientific prob-
lems can be formulated and solved in the style of spa-
tial aggregation? Is there biological evidence that the
brain might be performing spatial aggregation? What

are other styles of reasoning that might bridge the ana-
logue signals with the symbols?

References
Bailey-Kellogg, C.; Zhao, F.; and Yip, K. 1996. Spa-
tial aggregation: language and applications. Techni-
cal Report OSU-CISRC-1/96-TR04, Department of
Computer and Information Science, The Ohio State
University.

Bradley, E. 1992. Taming chaotic circuits. Technical
Report AI-TR-1388, MIT Artificial Intelligence Lab.

Chandrasekaran, B., and Narayanan, N. 1990. To-
wards a theory of commonsense visual reasoning. In
Nori, K., and Madhavan, C., eds., Foundations of
Software Technology and Theoretical Computer Sci-
ence. Springer.

Forbus, K.; Nielsen, P.; and Faltings, B. 1991. Qual-
itative spatial reasoning: the CLOCK project. Arti-
ficial Intelligence 51.

Joskowicz, L., and Sacks, E. 1991. Computational
kinematics. Artificial Intelligence 51:381-416.

Mahoney, J. 1995. Signal-based figure/ground sepa-
ration. Preprint.

Nishida, T., et al. 1991. Automated phase portrait
analysis by integrating qualitative and quantitative
analysis. In Proceedings of AAAL

Sacks, E. 1991. Automatic analysis of one-parameter
planar ordinary differential equations by intelligent
numerical simulation. Artificial Intelligence 51:27-56.

Ullman, S. 1984. Visual routines. Cognition 18.

Weide, B.; Ogden, W.; and Zweben, S. 1991
Reusable software components. Advances in Com-
puters 33:1-65.

Yip, K. M., and Zhao, F. 1996. Spatial aggregation:
Theory and applications. J. Artificial Intelligence Re-
search. To appear.

Yip, K. M. 1991. KAM: A system for intelligently
quiding numerical experimentation by computer. MIT
Press.

Yip, K. M. 1995. Reasoning about fluid motion: Find-
ing structures. In Proceedings of IJCAL

Zhao, F. 1994. Extracting and representing quali-
tative behaviors of complex systems in phase spaces.
Artificial Intelligence 69(1-2):51-92.

Zucker, S. 1976. Region growing: childhood and ado-
lescence. Comput. Graphics Image Process. 5.

Bailey-Kellogg 11

