Transition-based Qualitative Simulation

John M Gooday and Anthony G Cohn
Artificial Intelligence Division
School of Computer Studies
University of Leeds
Leeds LS2 9JT, UK
{gooday,agc}@scs.leeds.ac.uk

Abstract

In this paper we present an event-based approach to
qualitative simulation. We suggest that the behaviour
of a system with time is best measured in terms of the
landmark events that occur i.e. events that result in
interesting changes to the system being modelled. For
us, a behaviour model corresponds not to a sequence
of qualitative state descriptions but to a set of event
sequences — the things that actually happen to the
system rather than the way it happens to be at certain
times.

Although we have a simple implementation of our sys-
tem, our primary purpose in develaping it is to de-
rive a high level, event-based, nonmonotonic language
for specifying qualitative simulation systems. We not
only illustrate how a qualitative simulation program
can be directly specified (and implemented) in our
language, we also sketch how qualitative simulation
systems from the literature can be defined and recon-
structed in our calculus.

74 QR-96

Introduction

Qualitative simulation is a well-established artificial in-
telligence technique for modelling and predicting the
behaviour of physical systems. Programs such as
QSIM (Kuipers 1994) derive behaviour models from
an initial qualitative description of a system and a
set of constraints that specify how individual parame-
ter values within the system might change. By vary-
ing system parameters in accordance with the con-
straints, a sequence of time-ordered snapshots (or qual-
itative states) can be generated. The set of all pos-
sible such sequences (or histories) forms the com-
plete behaviour tree of the system being modelled.
Other Qualitative Reasoning systems (Forbus 1990;
De Kleer & Seely Brown 1984), alternatively, gener-
ate an envisionment giving all possible legal transitions
between states.

In this paper we show how an alternative approach
to qualitative simulation can be developed by using an
event-based approach. We suggest that the behaviour
of a system with time is best measured in terms of the
landmark events that occur l.e. events that result in
interesting changes to the system being modelled. For
us, a behaviour model corresponds not to a sequence
of qualitative state descriptions but to a set of event
sequences — the things that actually happen to the
system rather than the way it happens to be at certain
times. Of course, this is closely related to the more tra-
ditional view mentioned above, and indeed they might
be considered duals: in our representation events are
explicit and states implicit, while the reverse is true in
most other Qualitative Reasoning systems. Whereas
QSIM presents the user with a sequence of qualita-
tive states from which an event model needs to be ex-
tracted, our approach provides an event model from
which a corresponding sequence of qualitative states
can be easily derived should they be required.

Although we have a simple implementation of our
system, our primary purpose in developing it is to
derive a high level, event-based, non monotonic lan-

guage for specifving qualitative simulation systems.
In this paper we not only illustrate how a quali-
tative simulation program can be directly specified
(and implemented) in our language, we also sketch
how qualitative simulation systems from the litera-
ture can be defined and reconstructed in our calcu-
lus. The language was originally developed as a cal-
culus for reasoning about the classic challenges in
the nonmonotonic reasoning literature (Gooday 1994;
Gooday & Galton 1996). Although the nonmonotonic-
ity of the calculus is only exploited rather indirectly in
this paper, potentially it provides a general mechanism
for reasoning about persistence and ramification in a
qualitative simulator.

The rest of the paper is organized as follows. First
the basic elements of Transition Calculus are intro-
duced. Then we show how this can be used as the
basis of a qualitative simulator. In order to provide in-
creased expresivity, a number of extensions to the orig-
inal caleulus are introduced and explained. The use
of Transition Calculus for simulation is illustrated by
constructing a transition network for a simple bathtub
example. In the final parts of the paper we sketch the
reconstruction of two earlier qualitative simulation sys-
tems and conclude with suggestions for further work.

Transition Calculus

Transition Calculus is a formalism for reasoning about
action and change and is based on the idea that in-
teresting events can be characterised solely in terms of
the state changes associated with them. For example,
the event of opening a valve could be characterised by
a change of state in the valve i.e. from being closed im-
mediately before the event to being open immediately
afterwards.

In order to describe the world, Transition Calculus
employs a simple state language. A stale in Transi-
tion Calculus is either an atom that serves to rep-
resent some object in the world or property thereof,
or a negated atom. For example, the following are
all states: Valve(InputValve,), Open(InputValve,),
~Operating(Machiner). The first two are atoms, the
third is a negated atom. A stateset is simply a set of
states.

Often, if a particular state holds then certain other
states will be excluded from holding at the same
time. TFor example the states Open(InputValve,)
and —Open(InputValvey) could not be used to-
gether to describe any consistent world. More sub-
tly, Open(InputValve,) and Closed(InputV alve,) are
also mutually exclusive. Transition Calculus allows
constraints to be placed on which states can hold simul-
taneously via the notion of compatibility, Only state

sets that are compatible are legal in Transition Calecu-
lus. The following four conditions are used to deter-
mine whether a state set is or i1s not compatible:

1. {s} is compatible

2. {s,5} is not compatible

3. if S = {s1,...,5,} is compatible then every subset
of § must be compatible

4. if SU {3} is not compatible and S'U {s,s'} is not
compatible then S U {s'} is not compatible

where § denotes the complement of s:

F=

4

=3

-

Obviously, an empty state set or one consisting of a
single state must be compatible, just as a state set that
contains two states, one of which is the negated form of
the other, must be incompatible. A state set can only
be compatible if it contains no incompatible subsets,
hence the third condition. (Conversely, it is not neces-
sary for every subset of an incompatible state set to be
incompatible.) The final condition simply represents a
kind of cut rule (Gentzen 1955). In addition to these
four conditions we also allow particular state sets to
be flagged as incompatible. For example,

Incompatible({Open(V alve,), Closed(Valvey)})

This allows us to to recognise incompatibilities that
would otherwise be impossible to represent.

So far we have looked only at static aspects of the
world. We now turn our attention to events. An event
type is represented using a transition schema, which

we write as
(S1,52))

where S, is the state set that holds immediately before
the transition (the precondition); and S is the state
set that holds immediately after the transition (the
postcondition). Note that both S; and S; must be
compatible state sets in order for the transition schema
to be legal.

A transition schema ((Sy, S2)) is said to be a subtype
of the schema ((S], S5)), written

(51, 82)) E (S5, 52),

if 84 C Sy and S| C S;. Consequently, every schema
is a subtype of {({},{})-

Two or more transition schemas T)...T;, can be se-
quentially composed to form a transition sequence in
which the first transition occurs immediately prior to
the second, written T o ... o T,,, providing that the
following composition rule is obeyed.

Gooday 75

(Composition . Rule) A transition
sequence {(S1,1,52,1)) 0 ...0 {(Si n,S2,) may only
be formed if Sy ; U S ;41 is compatible for every i
in the range 1 <i<n-—1.

Qualitative simulation with Transition
Calculus

It is relatively easily to model a qualitative sys-
tem using Transition Calculus. The following simple
example! gives an idea of how one might go about de-
scribing such systems. Figure 1 shows a tank which
can be filled from a pipe controlled by valve 1. Valve
2 controls the emptying of the tank. The level in the
tank changes between the values empty, midway and
full depending on the value of the net flow of liquid into
the tank. If valve 1 is open and valve 2 is closed then
the net flow is positive and causes the level to rise. If
valve 1 is closed and valve 2 is open then the net flow
is negative and the level falls. No change in the level
occurs if the net flow is zero (when both valves are
closed). Finally, if both valves are open the net flow of
liquid cannot be determined and we are unable to infer
how the level will change. Three kinds of changes can

Pipe 1
Valve|]
Full
Tank Midway
Empty
Valve?2
Pipe 2

Figure 1: Simple physical system

occur in the system: changes to the state of the valves
(open or closed); changes to the net flow of liquid in to
the tank; and changes to the level of liquid. All of the
events that could potentially cause these changes can
be modelled directly using transition schemas.

We begin with the events representing changes to
the liquid level. These can be written as follows?:

"This example is provided primarily to explicate the
Transition Calculus rather than as a serious QR model
~ various simplifying assumptions have been made in the
modelling process.

*Note that we use lower case letters to denote variables.
Variables may be thought of as universally quantified and
their scope as being the entire transition schema.

76 QR-96

({NetFlow(x, Plus), Level(z, Empty)},

{Level(z, Midway)})) (1)
{({NetFlow(z, Plus), Level(z, Midway)},

{Level(x, Full)})) (2)
{{NetFlow(z, Minus), Level(z, Full)},

{Level(x, Midway)})) (3)
{({NetFlow(z, Minus), Level(z, Midway)},

{Level(z, Empty)}) (4)
We have chosen to use the state Net Flow(z,y) to rep-
resent the value of the net flow (y) of liquid into z, and
Level(z,y) to represent the liquid level (y) in z.

The next set of transition schemas models the pos-

sible changes in net flow and valve state:
{{NetFlow(z, Plus), Valve(y, z,z), Open(y)},

{-Open(y), NetFlow(z,0)})) (5)
{{NetFlow(z, Minus), Valve(y, z, z), Open(y)},
{-Open(y), NetFlow(z,0)})) (6)

{({NetFlow(z, Plus), Valve(y, z, z)},

{Open(y), NetFlow(x, Unknown)})) (7)
{{NetFlow(z, Minus), Valve(y, z,z)},

{Open(y), NetFlow(z,Unknown)})) (8)
{({NetFlow(z,0), Valve(y, z, z), -Open(y) }.

{Open(y), NetFlow(z, Minus)}) (9)
{({NetFlow(z,0), Valve(y, z,z), -Open(y)},

{Open(y), NetFlow(z, Plus)})) (10)
Here, we have used the state Valve(z, y, z) to represent
the information that valve x takes input from source y
and feeds an output z. Open(z) is intended to denote
that z is open.

Consider the state Level(z,y) in the above schemas.
We can think of Full, Midway and Empty as
defining a qualitative parameter space for y. It
is necessary to ensure that for any particular z, y
takes one of these parameter values only ie. we
need to ensure that state sets containing pairs such
as {Level(Tank, Full), Level(Tank, Empty)} are out-
lawed. This is easily accomplished with the following
compatibility conditions.
Incomnpatible({ Level(x, Empty). Level(z, Midway)})
Incompatible({ Level (z, Empty), Level(z, Full)})
Incompatible({ Level(x, Full), Level (z, Midway)})

Similarly, for states of the form Net Flow(z, y) it is nec-
essary to ensure that for any r, y takes only one value
from its parameter space of Plus, Minus, 0, Unknown:
Incompatible({ Net Flow(x, Plus),

NetFlow(z, Minus)})
Incompatible({Net Flow(z, Plus),

NetFlow(x,0)})
Incompatible({Net Flow(z, Plus),

NetFlow(x,Unknown)})
I'ncompatible({ Net Flow(x, Minus),

NetFlow(z,0)})

Incompatible({ Net Flow(z, Minus),

NetFlow(z,Unknown)})
Incompatible({ Net Flow(z,0),

NetFlow(z,Unknown)})
Finally, in this model, we place three further con-
straints on the net flow value. The net flow into a
tank cannot be 0 if any valve connected to it is open:
Incompatible({ Net Flow(z,0),

Valve(y, z,z),Open(y)})
Incompatible({ Net Flow(z,0),

Valve(y, z,z),Open(y)})
The net flow into a tank cannot be positive if it has an
open output valve:
Incompatible({ Net Flow(z, Plus),

Valve(y, z,z), Open(y) })
The net flow into a tank cannot be negative if it has
an open input valve:
Incompatible({ Net Flow(x, M inus),

Valve(y, z,z),Open(y)})

The transition schemas above describe single events
in the system and can be viewed as isolated behaviour
fragments. Our task now is to link these fragments to-
gether in order to model the behaviour of the system
as a whole. We do this by constructing a transition
network — a directed graph in which the nodes rep-
resent individual transition schemas and the arcs in-
dicate which schemas may be sequentially composed
and in what order. A path through such a network
corresponds to a potential behaviour of the system. In
order to create a transition network we take each pair
of transition schemas in turn and determine whether
or not they can form a legal transition sequence. For
each legal sequence T} 0T we draw a directed arc from
Ty to T3. The resulting structure is the full transition
network for the system.

It should be noted that the transition schemas that
we have used to describe a system are, in some cases,
incomplete. This is useful in that it allows us to write
quite general schemas and also prevents us from having
to repeat in the postcondition states present in the
precondition that are unchanged (e.g. Level(z,y) in
schemas (1), (2), (3) and (4) above). This presents
a problem when constructing the transition network.
Consider a sequence made up from (1) and (4):
{({NetFlow(x, Plus), Level(z, Emply)},

{Level(z, Midway)})) o
{({NetFlow(z, Minus), Level(z, Midway)},
{Level(z, Empty)})
This forms a legal transition sequence as
{Level(z, Midway)} U
{NetFlow(z, Minus), Level(x, Midway)}
is compatible. However, this sequence suggests that
the net flow into & somehow changes from Plus to

Minus during first transition. This mysterious change
is clearly not a direct result of the event modelled by
(1) and we cannot explain it in terms of known events.
In order to eliminate arcs in the transition network
resulting from such spontaneous state changes we re-
quire a method for giving priority to the most plausible
transition sequences — those in which no unexplained
state changes occur. A virtually identical problem can
be found in the literature on nonmonotonic reasoning
about action and change. Given an initially incomplete
scenario involving action and change it is usually pos-
sible to produce a number of alternative (completed)
models in which different state changes occur. The dif-
ficulty is to select the most plausible model. In (Goo-
day & Galton 1996) we showed how this problem could
be overcome using a specially developed model prefer-
ence criteria that minimizes unexplained state change.
We can use this approach to eliminate arcs in the tran-
sition network that correspond to unexplained state
changes.

Eliminating unexplained state change

In order to overcome the above problem, we must first
automatically complete the transition sequences and
then evaluate the completed sequences against a set
of preference criteria in order to determine whether
they are plausible or not. Only pairs of nodes in the
transition network representing schemas that can form
plausible sequences will have arcs linking them.
A transition sequence is said to be complete iff
for each s € U?:l {Sl,i U S:gl.')
forallj,1<j<n, andfork=1,2
either s € Sk ;
ors e Sk_j

We say that a transition sequence

T= «Sl-ls 82.1)) ©...0 «Sl,nss‘i.n»

is a model for the (possibly incomplete) transition se-
quence T" = (S} ,,55) ... (S ,,, S5 ,)) if and only
if

1. T is a completion of 7" (generated from 7" by ar-
bitrarily adding either s or —s for every s € S} | U
S§5,U...US] ,US; toany S, ;;i=1,2;j=1...n
containing neither).

2. T obeys the composition rule: for all
1<i<n-1.55;US] 4+ must be compatible.

We define a penalty assignment function, 7, that
returns the penalty associated with a model. This is
an integer value calculated according to the following
scheme:

For each s €], (51 U S3.),
foreach k=1,....n,

Gooday 77

(Rule 1) If s € Sy x and s € Sy ¢ then no penalty.
(Rule 2) If s € 5] , and 5 € S ;then no penalty.

(Rule 3) If s € 5\ % and 5} U S}, is incompatible
then no penalty.

(Rule 4) A penalty of 1 is awarded for each instance
of every other case.

The penalty scheme checks each state in every state-
set of the model and attempts to explain its presence
according to three basic principles: inertia, motivated
action and ramification. For every state that cannot
be explained, a penalty point is awarded to the model.
A plausible transition sequence will yield at least one
model with no penalty points i.e. at least one model
that adheres to all three principles. Rules (1) to (3)
above check for the three different kinds of explanation:

(Rule 1) Inertia. If a state appears unchanged in
both preconditions and postconditions of a schema
then this satisfies the general principle of inertia:
things tend to remain the same if they can.

(Rule 2) Motivated action. If a state appears in the
precondition of the schema and its complement ap-
pears in the postcondition then this change should
have been explicitly motivated: i.e it should be
forced by the original, uncompleted, sequence.

(Rule 3) Ramification. Quite often a state change
that may be explained by an action or observation
will, in turn, force additional state changes via com-
patibility conditions. Rule (3) checks for this.

Additional constraints
Compositional constraints

In order to increase expresivity further, we introduce
an additional kind of constraint: compositional restric-
tions. These allow us to explicitly state that transi-
tions of a certain specified type may only be followed
by transition of some other specified type. Such con-
straints are not part of Transition Calculus itself, they
are meta-level restrictions that can be applied to the
completed models of transition sequences.

We write compositional restrictions in the following
form:

CCon(T : {T1, ..., Tn})

where T,T},...,T,, are transition schemas and n > 1
We say that a model T} o ... o T}, for some transition
sequence 1] o ... o T}, satisfies compositionality restric-
tions for every pair T;, Tiyy; i = 1. n—1 for which there
exists a compositional restriction CCon(Ty,TS) such

78 QR-96

that 77 C T there is some element 75 of T'S such that
15 C Ty,

For example, in our tank system we might reason-
ably want to specify that transitions in which the net
flow into a tank changed from 0 to Plus should be im-
mediately followed by transitions in which the level of
the tank increases or remains full. We can do this by
adding the following compositional restrictions:
CCon({({NetFlow(z,0)}, {NetFlow(z, Plus)})) :

{{{Level(z, Empty)}, { Level(z, Midway)}),
({Level(z, Midway)}, { Level (2, Full)})),
({Level(z, Full)}, {})})

Deriving more specific event schemas

The schemas that we have used to model our exam-
ple system are quite general and make use of states
that contain variables. This means that we can use
these same schemas to describe transitions in more
complicated systems than our simple example (e.g.
a system in which there are many tanks and valves
interconnected)®. However, when considering a par-
ticular system it is useful to be able to derive from
these general schemas more specific schemas in which
the relevant variables have been assigned the names of
objects and values that actually feature in the system.
These instantiated schemas provide more specific infor-
mation and it is therefore desirable to base the transi-
tion network on these. By associating a particular type
of state with the range of values and or objects this is
easy to accomplish. In our example system there are
only two valves so all states of the type Valve(z,y, 2)
can take only two value sets corresponding to these.
Either (z,y, z) takes the value set (V}, Pipe,, Tank) or
(Va, Tank, Pipey). We introduce state constraints to
handle this. These are written
SCon(S(zy,...,zn):

{(Ul,h vesy Ul,n)v vray (Ul,m.- = vl,m)})
which force the variables in the state S(z,,...,z,) to
take one of the value sets given.

Constructing the network

In order to create a preferred transition network for a
system described by a set of transition schemas Trans,
a set of compatibility constraints Const, a set of state

“In fact, in order to fully generalise our tank example
we must take into account multi-valve systems in which
opening or closing a single valve may not change the net
flow in an attached tank. We do this by adding two further
transition schemas:

{({Valve(z,y,z), Open(z}}, {—Open(z)})) (11)
{({Valve(z,y, z), -Open(z)}, {Open(x)})) (12)

constraints Stat and a set of compositional restrictions
Comp we use the following procedure.

1. Generate a set of system-specific schemas, Trans’
from Trans according to the constraints in Stat.

2. Create a node for each schema in Trans' and label
it with the schema.

3. For each ordered pair (T1,T%); Ty € Trans', Ty €
Trans': such that a plausible model M of Ty o T3
can be generated and M satisfies the compatibility
constraints in Const and the compositionality re-

strictions in Comp, draw a directed arc from the
node labelled by T} to the node labelled by T5.

Applyving this procedure to our tank example pro-
duces the transition network shown in figure 2 (in fact,
this network was generated using a Prolog implemen-
tation of the above procedure (and drawn by hand)).

Figure 2: Transition network for the watertank exam-
ple

Given the Transition Network, it is possible to derive
a behaviour tree for the system. Each non-cyclic path
through the graph that has a corresponding plausible
model can be viewed as a branch of the behaviour tree.
By extracting all such maximal paths from the graph,
we obtain the tree.

Rational reconstructions

In this section we show how some Qualitative Reason-
ing systems from the literature can be reconstructed
in the Transition Calculus. The first system we will
consider is a qualitative spatial simulator developed
here at Leeds. In the second subsection below we will
sketch how to reconstruct the well known QSIM system
(Kuipers 1994).

Reconstructing QSSIM: A Qualitative
spatial simulator

In (Cui, Cohn, & Randell 1992a; 1992b) a qualitative
spatial simulator was presented which was based upon
the RCC spatial calculus presented in (Randell, Cui,
& Cohn 1992). In this system, regions are the primi-
tive spatial entities and various jointly exhaustive and
pairwise disjoint (JEPD) sets of relations which may

hold between pairs of regions are defined in terms of a
very small number of primitives. One of the simplest
of these, which is defined entirely in terms of a primi-
tive notion of connection, C(x,y), which holds when the
two regions x and y are connected (there is not space
to discuss the precise semantics here) is a system of §
relations, known as RCC8*; figure 3 presents 2D ex-

TPP NTPP
DC EC
'I’PP: NTPPI
Figure 3: 'The continuous transitions (conceptual

neighbourhood) for RCC8

ample configurations for these 8 relations (though the
calculus is not limited to 2D). The figure also presents
the continuity network (sometimes known as a concep-
tual neighbourhood) which shows which transitions be-
tween relations are possible assuming continuous mo-
tion and/or deformation of the regions. The spatial
simulator is based around these networks: each pair of
regions defines a kind of quantity space whose structure
is given by this network, with the relation names being
the values in the space. The essence of the simulator
is to take a state set defined as a set of ground atoms
whose relation names are RCC relations and to build
a set of next state sets by forming the cross product
of all possible transitions given by considering the ad-
jacent values in each quantity space. Domain specific
modelling is achieved by intrastate constraints which
specify conditions which must always hold in any state
set, and interstate constraints which effectively rule out
certain transitions in a particular quantity space, de-
pending on particular conditions appertaining in the
originating state set. Add and delete rules are also
provided for creating new regions with specified rela-
tions to existing regions under certain conditions, and
similarly deleting regions under specified conditions.
The paper shows how the phagoctyosis of a unicellular
organism can be modelled with this system.

“There are simpler RCC systems (e.g. RCC 5 which
corresponds to mereology or simple set theoretic relations)
and many more expressive RCC systems with much larger
sets of JEPD relation sets, e.g. allowing non convex regions
to be reasoned with (Gotts 1994; Cohn, Randell, & Cui
1995). However, RCCS will suffice to explain qualitative
simulation in RCC.

Gooday 79

It is not difficult to see how this system can be recon-
structed within the Transition Calculus. The quantity
space/conceptual neighbourhood diagram is modelled
by a set of local transition schemas. Since there are
11 links in the RCC8 conceptual neighbourhood, there
are 22 such transition schemas, e.g. the ones involving
transitions from EC are

(({Holds(EC, z.y)}, {Holds(DC, z,y)}))
and

(({ Holds(EC, z,y)}, { Holds(PO, z,y) }))*.

Intrastate constraints are easily modelled by in-
compatibility statements; e.g. the intrastate con-
straint NTPP(E, A) is modelled by the statment
Incompatible(—Holds(NTPP. E, A)).

Interstate constraints are slightly trickier; however
the composition restrictions described earlier in this
paper can be used for this purpose. E.g. consider
the QSSIM interstate constraint: ¢ — (EC(F, A) =
PO(F, A)) which ensures that as soon as ® and
EC(F, A) hold, then in the following state set, EC(F, A)
will transition to PO(F, A); this can be modelled as a
composition restriction thus:

CCon({{}{®, Holds(EC, F, A)})) :

{({ Holds(EC, F, A)}{ Holds(PO, F, A)})))
This ensures that any event which results in both
® and EC(F, A) being true, will be immediately fol-
lowed by another event in which EC(F, A) transitions
to PO(F, A), as required.

Add and delete rules are logically rather intricate,
since they involve changing the universe of discourse:
new individuals can be created and existing ones can
cease to exist! Since the completion mechanism of
the Transition Calculus completes across all state sets
with respect to a fixed set of propositions, this creates
problems®.

There are a number of possible approaches to mod-
elling this kind of situation formally; the approach we
will take here is as follows. Each region r which ex-
ists in a state set must have a proposition Exists(r)
asserted in that state set. An add rule is modelled as
a transition schema. E.g. consider the add rule:
add V wnth relations TPP(V, A) A TPP(F, A)

when TPP(F, V)
This can be modelled thus:
{({—FExists(V'), Holds(TPP, F, V)},

{ Enists(V'), Holds(TPP, V, A), Holds(TPP, F', A)}))
Forward and backward completion will propagate the
relevant statements about the existence of V' to past

*It turns out that it is easier to represent spatial facts
using the notation Holds(EC,x,y) rather than EC(x,y).

5This problem is not unique to the transition calculus;
e.g almost every existing QR system assumes the set of
modelled items does not change within a model (QSIM’s
landmark generation is a notable exception),

80 QR-96

and future state sets appropriately.

A delete rule such as delete ' when TPP(E, F)

is modelled thus:
(({ Enists(E), Holds(TPP, E, F)}, {—Erists(E) }))
Again, forward and backwards completion will han-
dle the existence of E in past and future state sets
appropriately. However the same completion mech-
anism will also propagate TPP(E, F) forwards even
though E no longer exists! Similarly in the add rule
above, TPP(V, A) will be propagated backwards before
V existed! To eliminate such nonsense propositions we
adopt the following technique. A special symbol None
will be introduced as a 9th possible first argument to
the Holds(,,) predicate and we introduce an incompat-
ibility statement
Incompatible ({—Erists(z),
Contains(Holds(a,v, w),z)})
for each RCCS8 relation «, where Contains(y,z) is a
special meta predicate which is true when the expres-
sion y is true in the state set and contains the term z7.
We need to express the fact that if z exists then no
Holds(None, ,) statement can be present containing z:
Incompatible({ Contains(Holds(None, u,v), z),
Enists(z)}).

This then provides a way of representing the mod-
elling language of QSSIM in Transition Calculus. How-
ever our representation task is not complete. In partic-
ular we need to represent the composition table (some-
times also known as the transitivity table(Allen 1983))
which is needed in order to check for logical consistency
of state set descriptions with respect to the semantics
of RCC. The composition table for RCCS8 is an 8 by 8
table which specifies the possible relations which may
hold between z and z given that the relationship be-
tween r and y and y and z is known; i.e. each entry
encodes a theorem:

V(z,y, 2)[[Ri(z, ¥) A R;(y,2)] =
[Ri(z,2) V...V RR(z, 2)]]

However it is straightforward to model this with in-
compatibility statements: each RCCS8 relation R not
present in the (R;, R;) entry (i.e. which is not an R}])
gives rise to an incompatibility statement:
{Incompatible(Holds(R;, z, y),

Holds(R;, y, z), Holds(R, z,z))}.

Similarly the pairwise disjointness of all the RCC8
relations can be modelled by statements of the
form Incompatible({ Holds(R;, z,y), Holds(R;,x,u)}),
for each pair of differing RCCS relations R;, R;. The
mutual exhaustion of the eight RCCS relations is also

"Logically such an incompatibility statement could al-
ways be replaced by a finite number of incompatibility
statements which did not make use of Contamns, but this
notation is certainly much more convenient and efficient.

2
!
e

4
:

3

specifiable by a set of incompatibility statements of the
form:
Incompatible ({ Holds(Ry, z,y), ...,
Holds(R7, 2, y), —Holds(Rg,z,y)})
where Ri...Rg are the eight RCCS relations; since each
RCCOR relation could take the place of Rg in the negated
Holds(Rg, z,y) literal, there are eight such incompat-
ibility statements. Finally, we need to represent the
symmetry and asymmetry of the various RCC rela-
tions: for example EC is symmetric and TPP is asym-
metric (with inverse TPPi). The appropriate incom-
patibility statements for these two examples are:
Incompatible({Holds(EC, z, y), —Holds(EC, y, z)})
Incompatible ({ Holds(TPP, z,y), —Holds(TPPi, y, z)})
Incompatible({ Holds(TPPi, z, y), —Holds(TPP, y, z)})

Reconstructing QSIM

The operation of QSIM is well known and will not
be described here in detail; we will content ourselves
with indicating how the essence of QSIM can be re-
constructed in the Transition Calculus. In fact, this is
relatively straightforward (at least for QSIM in its sim-
plest form which we will restrict ourselves to here) since
Kuipers explicitly describes the operation of the simu-
lator in terms of transitions between values of quahta—
tive quantities.

QSIM distinguishes between states which endure
only for an instant and those which endure for longer®.
We will model this with propositions of the form In-
stant and —Instant. P-transitions (from a point to an
interval), e.g.:

P2: (I, std) = ((I;,lj+1),inc)
are modelled by transition schemas of the form:

({{Instant,(l;, Std)}, {dnstant,((l;,lj4+1). Inc)}))
I-transitions (from an interval to a point) are very sim-
ilar but of course with the polarity of the Instant state-
ments reversed.

QSIM has a variety of constraint primitives
which provide the basis for domain modeling; e.g.
ADD(z,y,2), MT(x,y) and DERIV (z,y). Each of
these is modelled straightforwardly with a set of in-
compatibility statements; this follows from theorem 3
of (Kuipers 1994) which states that

“each QSIM constraint C is associated with a
set{P... P, }of provisions that are easily evaluated
given a tuple of qualitative values for the variables
appearing in C, such that ... PL V..V P, = -C".

* Although the RCC simulator described above in (Cui,
Cohn, & Randell 1992a; 1992b) does not distinguish these
two different kinds of temporal state. (Galton 1995) has ex-
tended the RCC conceptual neighbourhood to take account
of these distinctions which could be exploited if desired.

Each P; can be represented as an incompatibility state-
ment. Typically, each P; is a simple equality in the
qualitative interval algebra SR1 (Williams 1991). E.g.
a condition for ADD(a,b,c¢) is [a] + [b] = [¢]. Given
the table defining qualitative addition over the quan-
tity space {-,0, + }. this yie]ds the following seven
incompatibility statements®:

icompuilel (6 = +). (5] = +). ([= +)})
Incompatible({([a] = []— R s
Incompatible({([d] = —), ([}l = —), ~[c] = —)})
Incompatible({([a] [b =0),~[¢e] =-))}
Incompatible({({a] = 0), (18] = 0), <[= 0)})
Incompatible({([a] = 0), (4] = +). ~([é] = +))}
Incompatible({(a] = 0), (1] =), <[] = —))}

All the other QSIM constraints may be similarly mod-
elled. Two further points are worth noting briefly.
Firstly, QSIM allows the possibility of a new qualita-
tive landmark being introduced into a quantity space.
This is somewhat akin to the introduction of new re-
gions in the RCC spatial simulator described above
and a similar mechanism might be used to handle this
situation. Secondly, QSIM allows a model to have dif-
ferent operating regions, each of which has a separate
set of modelling constraints. Our approach to this sit-
uation would be to build a transition network for each
operating region separately; it would be easy to flag
automatically (via a proposition in the state set de-
scription) which nodes in a network have outgoing arcs
to other networks.

Conclusions and future work

In this paper we have described Transition Calculus, a
formalism for reasoning about action and change. We
extended the expressive power of the calculus and, with
the aid of a simple example, showed how it could be
used for event-based qualitative simulation. We then
explained how our formalism could be used to recon-
struct both QSIM and the RCC spatial qualitative sim-
ulator.

To the extent that we view Transition Calculus as a
tool for reconstructing Qualitative Reasoning systems,
it would be interesting to reconstruct other systems.
For example, we have done some preliminary work on
modelling QPE. The basic mechanism of direct influ-
ence resolution can be modelled as the following set of
incompatibility statements:

Incompatible({I%(z), I~ (z),—Ds(z) =7})
Incompatible({I* (z), =~ (z), —Ds(x) = +})
Incompatible({I~ (z), —I*(z), —Ds(z) = —})

9Only seven are required since two of the nine possible
additions (when summing + and -) do not constrain the
value of ¢ at all).

Gooday 81

Incompatible ({—I* (z),—I" (x), =Ds(z) = 0}) De Kleer, J., and Seely Brown, J. 1984. A qualitative
physics based on confluences. Artificial Intelligence
Of course, there is a great deal more to QPT than in- 24:7-83.
fluence resoiuti.orl, but we believe the e.:n.tire inecha.nism Forbus, K. D. 1090, The qualitative procsss engine: T
should be specifiable using the Transition Calculus. Weld. D.. and de Kleer: J.. eds.. Readinias in 5 lit
The system described here is still in an early stage of P : A $ oo
development and there are a number of improvements
that could be made. For example, the present im-
plementation would be likely to benefit from using an Galton, A. 1995. Towards a qualitative theory of
ATMS when checking inconsistency statements across movement. In A Frank, W. K., ed., Spatial Infor-
many largely similar state sets. Another inefficiency in mation Theory: a theorelical basis for GIS, number
the current implementation is in the handling of sets 988 in Lecture Notes in Computer Science, 377-396,

tive Reasoning About Physical Systems. Morgan Kauf-
manmn.

of JEPD relations (for example the RCC relations or Berlin: Springer Verlag.
statements about the values of a variable in a large Gentzen, G. 1955. Recherches sur La Deduction
quantity space). In such cases, there will be a single Logique. Presses Universitaires de France.

positive literal in the state set description and many
negative literals. State set descriptions may therefore
become rather large and additional machinery or struc-
turing may be required to obtain a satisfactory level of

(Gooday, J. M., and Galton, A. P. 1996. The tran-
sition calculus: A high-level formalism for reasoning
about action and change. Journal of Theoretical and
Ezxperimental Artificial Intelligence. To appear.

efficiency.

Transition Calculus includes a number of other fea- Gooday, J. M. 1994. A transition-based approach to

tures that we have not, so far, made use of. One such reasoning about action and change. Ph.D. Disserta-
feature is the parallel composition of transition schema tion, Department of Computer Science, University of
i.e. the ability to have events occurring concurrently. Exeter, Exeter EX4 4PT, England.
By making use of this, we hope to produce an enhanced Gotts, N. M. 1094, How far can we ‘C’? defin-
simulator capable of modelling a wider range of sys- ing a ‘doughnut’ using connection alone. In Doyle,
tems than our present implementation.A further as- J.; Sandewall, E.; and Torasso, P., eds., Principles
pect of the calculus that we have not fully exploited is of Knowledge Representation and ,Reasc;m'ﬂg: Pro-
its nonmonotonic reasoning capabilities. We hope to ceedings of the 4th International Conference (KR94).
exploit these in order to incorporate default behaviours Morgan Kaufmann.

that can be used to make predictions about system be-

haviour in the presence of incomplete information. Kuipers, B. 1994. Qualitative Reasoning. Cambridge,

MA.: MIT Press.

Acknowledgements Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spa-
We are grateful to the Engineering and Science Re- tial logic based on regions and connection. In Proc.
search Council for supporting this work under grant Jrd Int. Conf. on Knowledge Representation and Rea-
number: GR/H 78955. soning, 165-176. San Mateo: Morgan Kaufmann.
Williams, B. C. 1991. A theory of interactions: Unify-
References ing qualitative and quantitative algebraic reasoning.
Allen, J. F. 1983. Maintaining knowledge about Artificial Intelligence 39-94:51.

temporal intervals. Communications of the ACM
26(11):832-843.

Cohn, A. G.; Randell, D. A.; and Cui, Z. 1995. Tax-
onomies of logically defined qualitative spatial rela-
tions. Int. J of Human-Computer Studies 43:831-846.

Cui, Z.; Cohn, A. G.; and Randell, D. A. 1992a.
Qualitative simulation based on a logical formalism
of space and time. In Proceedings AAAL-92, 679-684.
Menlo Park, California: AAAI Press.

Cui, Z.; Cohn, A. G.; and Randell, D. A. 1992b.
Qualitative simulation based on a logic of space and
time. In QR-92.

82 QR-96

