
Transformation of Qualitative Dynamic Models
- Application in Hydro-Ecology

Abstract
Hydro-ecological systems comprise complex interaction
among physical, chemical, and biological processes . Com-
positional modeling, i . e . creating a system's behavior mo-
del by aggregating models of its constituents, is crucial for
making the modeling task feasible . However, the composed
model is often too fine-grained for a particular task, for
instance, in containing too many irrelevant intermediate
variables or obscuring the basic interdependencies . For this
reason, the model may have to be transformed and sim-
plified. The paper presents a graph-oriented representation
for dynamic systems closely related to existing process
languages, and a set of syntactic operators that transform
such a model while preserving certain properties of the mo-
del . The formalism is motivated and illustrated by an exam-
ple taken from our work on modeling hydro-ecological
systems, but we also demonstrate its utility for technical
applications .

Introduction
In our work on modeling complex ecological systems for
decision-support systems, a number of important challen-
ges arises . In particular, our efforts to obtain prediction
models for algal blooms Rio Guafba (Southern Brazil),
have to address problems of :

Compositional modeling, i . e . generating a behavior
model of a complex system through aggregation of
models of its elementary constituents taken from a
library .
Modeling of dynamic systems, i.e . adequately cap-
turing the evolution of the system and its phenomena
over time, which in our application comprise a variety
of processes from the flux of the river to chemical
reactions .
Qualitative modeling in order to make the essential
distinctions only, thus enabling the modeling of classes
of situations and the exploitation of partial information,
since both knowledge about the relevant types of
processes and information about their specific instances
is inherently imprecise, and available measurements are
sparse w.r .t . time and space .

Several existing qualitative reasoning systems, such as
QPE ([Forbus 841) and QPC/QSIM
([Crawford/Farquhar/Kuipers 90]) have been built to
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satisfy these needs, and we were able to formulate models
of relevant processes in our domain using QPC . However,
we encountered several difficulties that we consider to be
instances of general problems involved in compositional
qualitative modeling of dynamic systems . Several of them
are related to the granularity of the model, seen from
different perspectives :

Compositional modeling effects the structural
granularity and there is the potential of generating
overly detailed models . This is because the constituent
models in the library have to be stated in terms of local
variables and parameters only . The resulting model can
be inappropriate both from its cognitive and a technical
point of view . Many variables and parameters may be
irrelevant from the perspective of the entire system or a
particular task and conceal the elementary influence
structure of the system . Besides, some reasoning tools
exhibit exponential behavior in the number of variables,
so it is desirable to keep the model small .
Models of dynamic systems affect the temporal
granularity of the model . It can be can be too fine-
grained, again for both humans and predictive engines,
if it captures all aspects of the dynamics . For instance,
rapid but minimal fluctuations of the concentrations of
some substances that are basically held in chemical
equilibrium complicate the long term prediction of the
behavior of the entire system .
Qualitative modeling concerns the granularity of
behavioral distinctions . Qualitative models can be too
weak to derive all possible conclusions . This does not
only concern the domains of variables and parameters,
but also the qualitative description of functional
dependencies is limited to monotonic functions, as is the
case for many qualitative simulators, the analysis of
their counteraction or comparison may lead to spurious
results .

Some research has been carried out to address these issues :
Structural aggregation, particularly hierarchical
modeling responds to the first problem by eliminating
internal variables and parameters .
Behavioral approximation through distinction of time
scales (sometimes called time-scale "abstraction") aims
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at suppressing the irrelevant details of temporal
evolution ([Iwasaki 92), [Kuipers 87]) .

" Hybrid modeling attempts to introduce more distinc-
tions through (semi-)quantitative information . This is
mostly confined to possibly repeated refinement of
quantity spaces and algebraic operations (for instance
[Williams 88]) .

Our general view on the task is as follows . Often the
following steps are distinguished and potentially supported
by different systems (Figure 1) :
" creation of a model library, i .e . representing primitive
model fragments for a particular domain,

" model composition, i .e . aggregating appropriate model
fragments from the library to establish the model of a
specific system (this is, for instance, the task of QPC),

" prediction/simulation, i .e . generating a description of
the behavior of the entire system (e.g . QSIM's job) .

We propose to explicitly introduce a step of
" model transformation that takes an initial model

generated by composition and transforms it into a model
appropriate for a particular task (Figure 1) .

Figure 1 : Overview of model-based prediction

This reflects our oppinion that a representation of
knowledge relevant to modeling in science and engineeing
should distinguish between basic models and knowledge
how to modify and use these models, and that both types
of knowledge should be represented in a formal and
declarative way . This is different form other approaches to
compositional modeling which presume in some way that
all elements needed for an adequate compositional model
are already "pre-manufactured" and simply need to be
collected from the library . We do not believe that it is
feasible to produce in advance all kinds of combinations of
abstractions, approximations, and simplifications of the
basic models .
The presentation of our work focuses on the

transformation step . This means, we assume an existing
composed model of a system as an input to our formalism
which then generates a new model under preservation of
certain properties . There are two contributions in this
work :
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" a modeling language for specifying influences and
" a set of local syntatic operators that transform models

expressed in this language .
In order to improve both the predictive power of the
models and the results of the operators, the confinement of
qualitative functional relationships to monotonic depen-
dencies only has to be overcome . A common answer to
ambiguity and insufficient distinctions in quantitative mo-
dels is "Hybrid models by integrating quantitative infor-
mation!" . We believe that this seemingly obvious solution
is often inappropriate and obscures the fact that the
expressive power of the models can be extended without
having to leave the realm of qualitative descriptions .
Our modeling language extends the expressive power of
languages like QPFJQPC in allowing for
" more distinctions between functional dependencies

(than just monotonic and algebraic ones) and
" more general types of influence combinations (than just

linear combination) .
We illustrate the application of the language using an
example from the hydro-ecological domain. We aim at a
formal characterization of model relations and
transformations is required a) for an automated solution
to the problem and b) for determining the impact of the
transformation, i . e . the properties gained and the pro-
perties preserved by the transformation, which is required .
The set of operators includes
" generation of strict abstractions of a model as well as
" approximation of dynamic relationships through

functional dependencies
These transformations are independent of the quantity
spaces chosen for the variables and parameters (in contrast
to [Williams]) . The use of the operators is illustrated by
the ecology example and, to demonstrate the versitility of
our formalism, by an example taken from a technical
domain. We continue by giving a brief introduction to the
hydro-ecology background .

The Problem Domain
In an international collaboration between researchers of
Brazil, France and Germany, we have been examining a
specific ecosystem, namely the Rio Guaiba in Southern
Brazil, with the objective of analyzing and predicting
undesirable occurrences of algal blooms . The modeling of
the complex hydrodynamics and the various chemical and
biological processes involved provided us with important
challenges for our modeling and reasoning techniques .
Among the elementary conditions for the possibility of

algal blooms is the availability of nutrients, which is
influenced primarily by distribution and transformation
processes . In this paper, we will examine a typical
example of an interaction of two such processes .



Advection
Advection is the transport of matter by directed flow of
water . The complex hydrodynamics in the bays of the Rio
Guaiba prevent us from using a linear water flow model
and we had to choose a flexible repesentation of spatial
distributions and water transportation . By using compart-
ments, the elements of a topological partitioning of the
water body (described below and in more detail in [Heller
95]), and by locating the transport processes between
adjacent compartments, we also gain more generality .
The advective effect on the concentration of some speci-

fic chemical constituent in two adjacent compartments can
be easily determined if the volumes are assumed constant
(requiring the net flow for each compartment to be zero) .
A simple model under this assumption is discussed below .

Ammonia Dissociation
One of the most important constituents is ammonia,
appearing both in free (NH3) and ionized form (NH4 ) .
Both forms can act as nutrient, but free ammonia in high
concentrations can also exhibit toxic effects, so we have to
study the chemical equilibrium (NH4 + OHH NH3 + H2O)
established by the counteracting reactions of ionization
and dissociation .

Both reactions are strongly influenced by the pH of the
location . To put it more precisely, if the ratio between (the
molar concentrations of) NH3 and NH4 is below
IOtpM.26), then the dissociation reaction dominates ioni-
zation . Above the given reaction constant, the ionization is
predominant . Both reactions will be modeled as a single
process with a rate that is linearly dependent on the
difference between the ratio NH3/NH4 and the reaction
constant (modeled as positively monotonic in the pH, see
Figure 7) .

Model Representation

We present a modeling language with a flexible
representation of functional and integrative influences and
we depict models in this language by using a graphical
notation, which will help to illustrate the examples
throughout the paper.
A system model consists of a finite set of variables with

continuous real-valued functions over time (or any
appropriate qualitative abstraction thereof) as domains .
There is a set of constraints on these functions,
represented by the existence of "influence functions"
specifying the dependency of a variable on a set of other
variables .

Characterization and Combination ofInfluences
The basic influence function is a multivariate monotonic
function with multiple parameters . In particular, we want
to express that a variable, A,depends monotonically on a

set of other variables, {B 1 , B2, . . ., B� 1 (possibly with
different direction coefficients, S,, S2, . . ., S � E {+1, -1 D-
Formally :

3fE MOn(s,,s2, .. .s� ) dt E IR
A(t) = f (B I (t), B2(t), . . ., B �(t)),

where fE Mon(s,,s2. . . .s �) iff Vi (=- (1,2,...,n)
f (x,, . . ., xi, . . ., x.) > f (x,, .. ., x ; , . . ., x.) b (Si - x ; > Si - x ;')
with S ; E {+1, -11

	

(1 <_ i!5 n)

	

(simply "+" or "-") .

This allows for more general forms of combination than
the linear combination assumption implicitly used in other
modeling languages (e . g . QPC, see
[Crawford/Farquhar/Kuipers 90]) .
There are several ways to represent additional infor-

mation about the influence function . The most important
one is a further restriction by a Lipschitz condition or even
linearity in one of the arguments . A Lipschitz condition in
the i-th argument is given by

3M E IR+If(x,, . ..,xi, . . .,x�)-f(xl, . ..,xi, ...,x�)I <-M-Ixi -x i I

and linearity in the i-th argument can be expressed as

Va, b E IR ((x;=) n ((1 # i => x;" = x; = x;')) =>
f(xl, . . ., a .xi+b, . ..,x�) = a - f (xl, ._xi, . . .,x� ) + f(xi, . . ., b, . . ., x � ) .

Graphically, we represent variables by boxes and the
influence functions by labeled arrows and a combination
information box containing the direction indicators
S,, S2 , . . ., S � . The basic elements of this notation, called
influence diagram, are shown in Figure 2 . The arrow
labels denote the function restriction of the dependency
("Mon" for monotonicity, "Lin" for additional linearity
and "Lip" for the Lipschitz condition) . For a function with
a single parameter, we use also strict identity ("Id") and
the following (proper) inclusions are valid :

Id c Lin c Lip c Mon.

Figure 2: Basic elements of influence diagrams
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Decomposable Influences
Furthermore, certain influence functions can be
decomposed in the sense that they are known to consist of
groups of influences combined additively or multipli-
catively . More precisely, a function f E Mon(s1 ,S 2 , . . .s n) is
said to be decomposable additively, iff

3i E { I__ n-1)

	

3f1 E Mon(sl,. . .s;) 3f2 E Mon(s;+l . . . .sn)
VX1, .-X � E IR f(X1, X2, . . ., Xn) = f(X1, . . ., Xl) + f (Xi+1, . . ., Xn)
A special case is the complete decomposition into single
influences, which corresponds to the assumption of linear
combination.
We depict decomposed influences by separating the

combination information . Compare Figure 3 for the
notation for completely additively decomposed influences .
The restrictions given at the arrows refer only to the
respective group of influences, thus making e . g . linearity
a weaker condition in the decomposed case .

Figure 3: (Completely) additively
decomposed influences

Analogously we can decompose (single) influences
multiplicatively . For more sophisticated constructions,
intermediate variables have to be used . The graphical
notation uses two new combination symbols ('Y' and 'T',
see Figure 4) .

Figure 4: (Completely) multiplicatively
decomposed influences
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Integrative Influences
The discussed influences correspond to the qualitative
proportionalities used in QPT ([Forbus 84]) . To represent
the so-called "direct influences" of QPT, we need an
integrative influence, expressing that the derivative of a
variable A is (monotonically) dependent on a group of
other variables 13 1 , B2 , . . ., Bn :

dA(t)
dt

	

= f (Bt (t), . . ., B . (t)),

	

f E Mon(sl ,s2 . . . .s n)

We use all of the constructions of function restrictions and
decomposition discussed above. In graphical display we
enclose the combination information in a circle or a
rectangle with rounded edges, as is shown in Figure 5 .

Figure 5: Integrative influences

In this way we can represent a qualitative abstraction (with
respect to the functions involved) of an ordinary diffe-
rential equation in our modeling language and in turn
extract a partially specified differential equation from a
diagram . Together with a mechanism for instantiating and
composing model fragments, we can also visualize models
written in QPE/QPC notation .

Process Models for the Domain Problem
Processes are described by partial influence diagrams
(possibly with parameters) and additional information
about how to compose them with other processes acting on
common variables . A process is instantiated by giving the
parameters defined values that can be obtained from the
system description and aggregating the partial diagrams
into the system model . The formal semantics described in
the last section depend on the closedness of the model. In
the cases discussed here (transport and chemical transfor-
mation), we have apparently additive combination of
influences .
We developed models for prediction tasks for both the

short and the long term behavior of hydro-ecological
systems . Here we will present only two simple ones to
study their interaction .
As a basic modeling decision, we divided the water body

of the river under consideration into compartments, i . e .



regions with similar flow characteristics, that are assumed
to have homogenous parameter values . The partitioning is
a spatial abstraction that preserves only topological infor-
mation (basically the neighborhood relation) and some
individual properties of the compartments (e . g . volume) .
Variables are associated with single compartments (e . g .
ammonia concentration) or a set of compartments (e . g .
the directed water flow between adjacent compartments) .
A simple generic process description for advection of

some constituent (e. g . ammonia) between two adjacent
compartments (src and dest) is shown in the influence
diagram in Figure 6 .

constituent
[src]

rate.adv
[const,src,dest]

flow[src,dest]

constituent
[dest]

Lin

Figure 6: The advection process (simple version)

Unlabeled arrows are to be read as bearing the identity
label "Id" . The boxes with a black shadow denote
important state variables . They represent concentrations .
Thus, the transported amount of matter is obtained by
multiplication of the source compartment concentration
with the (absolute) flow between the compartments . The
loss respectively gain in concentration is then calculated as
a linear function (the linearity factor being in either case
the reciprocal of the volume of the respective
compartment, which is assumed constant) .

It will instantiated for various chemical constituents,
const(ituent), and locations, src and dest . Note that the
semantics in the strict sense given in the last sections will
be valid for the complete (composed) model only .

NH4[location]

percentage .
dissoc[location]

NH3[location]

Li rate .
dissoc

[location]

Lin

+ Lm reaction-constant .41 dissoc[location]

Mon

pH[location]

Figure 7: Dissociation process without feedback

However, the combination of the influences on the
concentration in the destination compartment are assumed
to be additively decomposable from other influences .

Furthermore, a version of the dissociation process
without feedback will be used . The concentration of NH4
will be treated as equaling the total ammonia concen-
tration . Thus, we can neglect the loss of NH4 by the
transformation . The resulting influence diagram is pre-
sented in Figure 7 .

Model Composition

We compose the advective transport of ionized ammonia
(which we treat as total ammonia, so that NH3 is assumed
not to be subject to advection) from compartment "In" into
a specific compartment, X, and from X to compartment
"Out", with the dissociation taking place inside compart-
ment X, we obtain the diagram in Figure 8 .
So we benefit from being able to compose the system

model from a simple structure description and a library of
generic process descriptions (both described in detail in
[Heller 95]), but the simulation of the resulting model is
unnecessarily complicated by the large difference in the

Figure 8: Interaction of advection and ammonia dissociation
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strength of the integrative influences . Some qualitative
simulation frameworks lack a way to express the different
orders of magnitude and therefore even produce spurious
solutions by erroneous assessment of the counteraction .
For testing purposes, we transformed the obtained

influence diagram into the modeling language of QSIM
([Kuipers 86]), like QPC would do . Unfortunately, we
loose the causal information represented in our models,
which is partially responsible for some problems of
efficiency . A part of the QSIM algorithm exhibits
exponential behavior in the number of involved variables .
From the misjudgement of the relative orders of

magnitude of the effects of transport and transformation
also impossible behavior branches resulted . Even for
slowly rising NH4 values, the ratio of the concentrations is
hypothesized to be significantly out of equilibrium . For the
illustration of this effect, an extended example is given in
[Heller 95] .
We propose a solution that will will both reduce the

number of variables and make use of the information
about the different orders of magnitude in the effects of the
interacting processes to rule out spurious solutions . This
will be achieved by local syntactical operators trans-
forming a given influence diagram .

Abstraction Operators

Model Transformations
We developed a set of transformation operators to simplify
influence diagrams in order to identify the basic influence
structure in more complex interactions . The goal is to
examine in a formal way the applicability of the so-called
time-scale abstraction . Time-scale abstraction, as intro-
duced by Benjamin Kuipers ([Kuipers 87]), will formally
be treated as an approximation . In the formal framework
of model relations developed in [Struss 92], abstraction
transforms a model into a strictly weaker version, whereas
approximation replaces one model by another one that
may violate validity .

An overview of abstraction operators is shown in Figure 9
(on the next page) .

If a variable specified in a model fragment is assumed
constant in the context of the complete model, we can
eliminate it, because it unnecessarily complicates the
reasoning task . The elimination of constants is achieved
by the operator (9a) . The class of functions on the right
hand side is obtained by taking the maximum with respect
to set inclusion (remember that Id c Lin c Lip (z Mon) .
The resulting model transformation is an abstraction (even
more precisely, a "view" as defined in [Struss 92]) . The
proof for this operator and for the following ones can be
found in [Heller 95]) .
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Some variables might be irrelevant, e . g . because they
are not observable . The elimination of intermediate
variables for multiple influences is shown as (9b) .

Analogous operators exist for integrative influences, on
some variable Ci . For an integrative influence on B there is
a restriction (at least in the semactics used) : B can only be
eliminated, if all of the influence originating from B are
linear (see 9c).

Partial decomposition of influences can be preserved, if
the relating function is linear. For completely
decomposable influences, the operator has the form shown
in (9d) .

Various cases with additional influences on C, not
originating from the intermediate variable B, are
considered in [Heller 95], but will not be discussed here .

All of the operators above reduce the number of
variables, which is an advantage in itself .

Another class of operators achieves the subsumption of
parallel influences, i . e . of influences with the same
source and destination and the same combination symbol
(either "+" or "-") . Figure 9e shows the decomposed case,
which is the simplest one .

Time-Scale Abstraction as Approximation
To cope with widely separated time-scales and to make the
reasoning task feasible in cases where "fast" and "slow"
processes interact, we intend to identify subsystems (by
employing the operators introduced above) that can - un-
der certain conditions - be substituted by functional de-
pendencies, while committing only a neglectable appro-
ximation error . This corresponds to the technique of
"abstraction by time-scale" as defined in [Kuipers 87] . If
the elementary influence structure has one of the following
forms, we use the solution of the equilibrium equation as
substitute .

In Figure 10 we show two operators acting on closely
related structures, namely on direct linear self-stabilization
(l0a) and on multiplicatively mediated linear self-
stabilization (10b) . Both are discussed in detail in
[Heller 95] .

In the first case it is even possible to derive precise
bounds on the approximation error committed, by analysis
of the underlying ordinary differential equation . In
general, the quality of the approximation increases with
the linearity factor of the stabilizing function (class FB )
and decreases with the Lipschitz coefficient of the transfer
function (class FA ) and the maximum variation of the
derivative of A.
So we profit from preserving the information about the

function class restrictions (namely linearity and the
Lipschitz condition) while using the abstraction operators
shown in Figure 9 . At this point the additional
information represented pays off .



9a) Elimination of (multiplicative) constants :

9b) Elimination of intermediate variables (with multiple influences) :

9d) Variant for completely decomposed influences :

9e) Subsumption of parallel influences (decomposed case) :

A F ,
S, B

9c) Elimination of intermediate variables (shown for a single integrative influence):

FA E (Id, Lin, Lip, Mon )
S E (x, /),
K constant

FA'= max (Lin, FA)
S'= sign(K) E {+,-)

Fi, Fj E (Lin, Lip, Mon),
S� Si, E (+,_)
(1<i<n, I<j<m)

F ;j = max(Fj,Fj),
Sii = Si.Sj,
(1<i5n, I<j<m)

FA E (Id, Lin, Lip, Mon)
Fs E (Id, Lin )
SA, SB E I+, - )
F= max (FA, FB)
S' = SA . SB

Figure 9: A selection of basic abstraction operators for influence diagrams

Fi E (Lin, Lip, Mon)

	

(1 < i < n)
FB E (Id, Lin)
SB, Si E (+,-)

	

(I < i < n)

Fi = max (Fe, Fi)

	

(1 <_ i <_ n)
Si' = SR-Si

	

(I <- i<- n)

F,, F2 E ( Id, Lin, Lip, Mon)
Si = S2 E (+,-)

F= max (F,, F2, Lin)
S' = S, (= S2)
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10a) Time-scale abstraction for linear self-stabilization :
FB

E___LA

10b) Time-scale abstraction for multiplicatively mediated
linear self-stabilization (with an additional influence) :

B

FAe f Id, Lin, Lip)
FB E

	

(Id, Lin )

Fn' = max(FA, FB)

FA t=_ (Id, Lin, Lip)
Fp e [ Id, Lin, Lip, Mon )

FA' = max(FA, Lin)
F l) ' = max(FD, Lin)

To use this kind of approximation for the model given in
Figure 8, we have to identify the elementary influence
structure of the faster subsystem . Therefore, the variables
reaction-constant.dissoc[A] and then rate.dissoc[A] are
leiminated using the the operator from Figure 9b, which
yields the influence diagram on the left hand side of
Figure 11 .
The influence structure that appears now in the lower

part of the figure is a case of a multiplicatively mediated
linear self-stabilization . It will be approximated by using
the operator shown in Figure IOb, which is justified by the
strong stabilization by the chemical reaction and the
comparatively slow changes in NH4 (the effects differ by a
factor of about 107 ) . The background knowledge about the
orders of magnitude of the influences can be attached to
the model fragments by the modeler (and propagated
consistently through all abstraction operations), so the
decision about the application of the approximation
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Figure 10: Two time-scale abstraction operators for influence diagrams

Application to the Example Model
operator can be taken by formal reasoning about local
information .
So the simpler model on the right hand side of Figure

11 can be used for purposes of middle and long term
prediction with a substantial increase in efficiency . In our
test runs with QSIM, we obtained much more focused
predictions (usually a single one instead of more than 10
behavior branches) and all truly spurious solutions were
ruled out .

Another Example: Motor with Control Circuit
We give a short example for the use of the modeling
language and the transformation operators in the technical
domain . We have modeled a direct current motor with
control circuit (described in more detail in
[Malik/Struss 96]) . The influence diagrams of the
components were derived directly from the following
differential equations (for the parameter descriptions refer
to the table below) :

NH4Pn]

flow[In,A]

rate .adv
[NH4,In,A]

pH[A]

flow[A,out]

NH4[A]

0
percentage .
dissoc[A]

NHAA]

rate .adv
[NH4,A,Out]

Lin

Lin

Lin

mo~

NH4[In]

flow[In,A]

rate .adv
[NH4,In,A]

pH[A]

01

flow[A,out]

NH4[AI

NH3[A]

rate .adv
[NH4,A,Out]

Lin

MonMon
Lin

Lin

Figure 11 : The example model. Left side : after the elimination of intermediate variables,
Right side : after applying time-scale abstraction



2d-w �,
cc

(em= (1-S).co

	

(sensor)

_dco _ cm .v - co
dt T

v= (controller)

(motor behavior)

From a simple structure description, the following
influence diagram will be derived (Figure 12) :

Application of the developed operators eliminates the
constants (inclusively the derived constant 1-S) from the
model (operator from Figure 9a) and also successively the
intermediate variables 2d, 2d-co�� cMv, dWdt, and cMv-co
(operators shown in Figure 9, b through d) yielding the
simpler model in Figure 13 .

Figure 13 : Motor model after the first simplification

In Figure 14 the result of further elimination (of W» and
then v) is shown :

Figure 14 : The motor model after the second
simplification

Finally, subsumption of the resulting parallel influences
(operator 9e) identifies the elementary influence structure
as a (direct) linear self-stabilization that can be
approximated by a functional dependency (see Figure 15,
TSA-operator- from Figure 10a) :

Figure 15: The final time-scale abstraction of the
motor model

In the desired case (no slip : S = 0, controller constant
equals motor constant : cc = cm), the approximation error
can be bounded by '/z-T-c, c being a bound on the
derivative of d, thus showing the response of the motor
being dependent solely on the inertia. For details refer to
(Heller 95] .

Figure 12: Structure description and influence diagram of a motor with control circuit

Via ",
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v driving voltage
w rotational speed (of the motor axis)

~m measured rotational speed
d desired rotational speed
cc controller constant
CM motor constant
T motor inertia
S slip (of the measuring pulse wheel)



Future Work
What we have achieved at the present time, is an initial
theory of transforming models of dynamic systems . The
sets of operators developed and proved so far is certainly
not complete. We also intend to introduce more function
classes, for instance, in order to determine dominant
influences in a combination of counteracting ones (e . g .
overlinear versus linear growth) .

Another theoretical issue is to analyze fixed points of
the application of the set of operators . A goal would be a
guarantee for deriving some normal form of a model, at
least w . r . t. information about a specific task and objective
of analysis . This raises the issue how to represent such
information and how to control the application of the
operators (as indicated in Figure 1) .
An implementation will be done probably based on a

hypergraph grammar approach . Such a model transforma-
tion module interacts to some degree with its neighboring
tasks . Although the transformed model could, in principle,
be fed to a system like QSIM, the increased power of our
modeling language in terms of characterization of
functional dependencies and the preservation of causal
information will presumably also lead to stronger
predictors . On the other hand, although a model stated in
QPEIQPC could be an input, this would lack the
distinctions necessary to achieve the strongest possible
results . We consider to the graphical notation introduced
in this paper for interactive definition of model fragments
and composed models .
Some fundamental issues about the specification of

model fragments have to be examined further . So far, the
semantics are defined only for the completely composed
(and closed) model . However, compositional modeling
requires a formulation of isolated fragments in the first
place, and it is not obvious what such a "context-free"
model fragment "knows" about the appropriate way of
combining with other fragments .

For some class of processes, like transportation and
transformation processes, it is evident, that the effects
combine additively with other processes . Possibly, the
ontology has to be extended by a classification of processes
which, based on their physical nature, uniquely determines
the correct type of combination . Studies in other domains
and with different examples will shed a light on different
mechanisms for combining processes influencing shared
variables .
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