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Abstract

We present a paradigmatic example of a feedback-
controlled system: an electric motor with sensor and
controller, Diagnosis of this system is performed
based on a qualitative model that reflects deviations of
parameters and behavior from a fixed reference state.
The hypothesis that has been examined in this case
study is that detection of behavior discrepancies does
not necessarily require simulation of behavior, but can
be done by checking (qualitative) states only. The
qualitative models and the state-based diagnosis
algorithm proved to establish a basis sufficient for
fault detection and fault identification in the motor
example. Some of the general preconditions for this
are discussed.

Introduction

Dynamic systems are considered as the challenge for
modeling, particularly for qualitative modeling. Since the
evolution of characteristics over time is the crucial aspect
of such systems, it is often taken for granted that
computational methods for problem solving necessarily
involve simulation of the behavior of the respective
system.

Numerical simulation is not applicable if there is only
partial, or qualitative, information about the system and its
initial conditions. Qualitative simulation, designed for
such cases, can be complex due to ambiguity in the
predicted set of behaviors. Anyway, it would be good if one
could get along without simulation.

In our project on diagnostic techniques and tools for car
subsystems, we successfully demonstrated the utility for
Qualitative modeling and consistency-based diagnosis for
tasks such as failure mode and effects analysis (FMEA) and
automated generation of repair manuals (see [Struss-Malik-
Sachenbacher 96]). The solutions were based on static
models. However, many subsystems of vehicles that
dﬂma_nd for automated diagnosis, such as the Anti-lock
Braking System (ABS) and the Electronic Diesel Control

(EDC), are dynamic feedback systems. "If you want to

diagnose such dynamic systems, you need (qualitative)

simulation”. Our response to this prejudice was a case

study checking our working hypothesis "you can achieve a

lot without simulation” in preparation of work on the ABS

and EDC.

The example we chose was a simple feedback system
involving an electrical motor, speed sensor, and controller.
Nevertheless, it constitutes a challenge in three respects:

e [t is a dynamic system. Is it possible to diagnose it
without having to perform some kind of simulation?

« |t is a continuous system. Is it possible to diagnose it
based on a qualitative model?

e Jt is a feedback system. Is it possible to diagnose it
using  consistency-based diagnosis (especially
dependency-based diagnosis) despite the fact that each
observation in the feedback loop is dependent on all
components in the loop?

In this paper, we present the results of this case study. The

answer to the third question, which is not the focus here, is

that fault localization in feedback loops with limited
observability, if possible at all, inevitably has to be based
on fault models (which is necessary for fault identification
for even more obvious reasons, anyway). The basis is

“physical negation” ([Struss-Dressler 89]), i.e. exonerating

components whose entire set of fault models is refuted by

the observations.

The ultimate reason for a positive answer to the second
question is that a fault is almost defined as a cause of some
qualitative deviation from normal behavior. In our case,
faults can be described as qualitative deviations of actual
parameter values from the nominal ones.

The answer to the first question, which is central to this
paper, is based on the following consideration: the essence
of consistency-based diagnosis is to refute (correct of
faulty) behaviors that are inconsistent with the
observations. In qualitative reasoning, behaviors are
sequences of qualitative states. If a model predicts a
sequence different from the observed one it obtains an
inconsistency. Predicting a sequence (or a tree) of states
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means performing some kind of simulation (or
envisionment). However, we can do with less: if we
observe a single state that is not consistent with the
(dynamic) model of a particular behavior, this suffices to
establish an inconsistency and, hence, to refute this
behavior. For detecting this inconsistency, simulation is
not required. All we need is to check whether the
observed states are consistent with the respective behavior
models.

In the following section, we describe the paradigmatic
example of the controlled electric motor, the faults
considered, and the diagnostic scenario. The models of the
three components of the circuit are based on a formalized
concept of qualitative deviations. Then we introduce the
foundations for diagnosis of the circuit. Finally, we present
the results of our experiment and discuss its preconditions
and limitations in more detail.

The Problem

The Control Circuit with Motor

The example deals with a direct-current motor that is
controlled in a feedback loop (Figure 1). The actual speed
o of the axis of motor M is measured by a revolution
counter S. The respective value @, is fed to the controller
C. Using knowledge about the present measured motor
speed and the desired speed d, the controller adjusts the
voltage v driving the motor.

(O]

d

Figure 1: Control circuit with motor

The (differential) equations of the three involved compo-
nents and the physical constants are given in Table 1.
Measurement of speed is achieved by means of counting
pulses generated by a ferromagnetic toothed wheel (,,pulse
wheel”) and an inductive sensor. This sensor has also been
modeled in more detail which is not discussed here.

The Faults Considered

The example, although simplified, is taken from a real
application problem where numerical simulation alone
could not meet requirements of fault prediction and fault
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Motor M: T*%_?=CM*V-UJ
Controller C: cc*v =2*d-q,

Revolution counter S: W, = Cs*W

rotational speed of the motor [s”]
inertia of the motor [s]

constant of the motor [s" V']
driving voltage [V]

_| constant of the controller [s"V"]
measured rotational speed [s"]
desired rotational speed [s']
measurement coefficient [1]

ga@g:k&qg

Table 1: Equations and quantities of the control circuit

identification. It includes, along with the differential
equations stated above, a catalog of faults that are to be
distinguished. This set of faults was extended by some less
likely defects. The clear-cut success criteria were defined
as to how well the diagnostic system can detect, isolate and
discriminate among the faults listed in the left-hand column
of Table 2,

It is obvious that not all faults can be distinguished from
each other solely by the effects on the input/output
variables of the components. For example, a pulse wheel
with too few teeth will cause the same deviation as a
constant positive slippage does.

The Diagnostic Situation

We assumed conditions similar to on-board diagnosis. The
diagnostic system is situated in or near the controller and
can inspect the measured rotational speed (w,), the
desired speed (d) and possibly information about the
derivatives of these quantities. The current (v) and the
actual speed of the motor (w) are not available to the
diagnostic system.

The scenario we discuss in detail here is observing the
response of the system to a stepwise change in d, ie. a
discontinuous switching from one constant value to
another. The goal was to analyze if, and to what extent, the
applied models and the diagnostic algorithm are suitable
for
o fault detection, i.e. to detect that a fault is present,

o fault localization, i.e. to detect where the fault lies,

» fault identification, i.c. to determine which fault is

present.

In the following sections, we will discuss what
requirements this imposes on the applied modeling and
diagnosis techniques, which solutions were chosen, and
what results were achieved by their implementation with
respect to these tasks.
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Failure cause

| Behavior model

Motor

flow constant too low, ferro-
magnetic loss to high

[em] = [+], [Akn] = [-],
(M =+, [AT] =[]

" motor constant too low

[em] = [+], [Aky] = [+],
(T]=[+], [AT] =[]

resistance of field- and/or rotor
coil too high

[em] = [+), [Akyg] =[],
[T] = [+], [AT) = [+]

inertia of motor too high

(o) = [+], [Aky] =0,
[T] = [+], [AT] = [+]

inertia of motor too low

[em] = [+], [Akm] =0,
[T] = [+]. [AT] =[]

rotor totally jammed

[em] =0, [Akyw] =[],
[T']=0, [AT] = [+]

Controller

controller constant too high

[ec] = [+]. [Acc] = [+]

controller constant too low

[ed] = [#], [Acc] =[]

broken wire controller-motor

[ec']=0, [Acc] = [+]

Revolution Counter

complete slippage, pulse wheel
not ferromagnetic, gap pulse
wheel - sensor too big,

 trigger threshold too high

[es] =0, [Acs] =[],
305 =0

constant slippage, pulse wheel
with too few teeth, assumed
number of teeth too high

[es] = [+], [Acs] =[],
aCS =0

pulse wheel with too many teeth,
assumed number of teeth too
low

[es] = [+], [Acg] = [+],
a'Cs =0

sporadic slippage, missing or [cs] = [+],
broken tooth (teeth) [Acs] =[] or [Acs] =0
notch in tooth, ridge between [cs] = [+],
teeth of pulse wheel [Acg] = [+] or [Acs] =0

displaced tooth, too early or too
late

[es] = [+]

Table 2: Component faults and their behavior models

The Models

The important issues to be addressed in this case study

were

* Is qualitative modeling sufficient to capture the dynamic

aspects of the example?

* How are the obtained models to be used for diagnosis,

especially: is qualitative simulation inevitable?

The first question is vital for the robustness and generality
of the diagnostic system; both questions have decisive

influence on the complexity of the solution.

In the following, the main ideas underlying the modeling
of the control circuit will be presented. Later, we will

describe the application to diagnosis.

Qualitative Modeling of the Control Circuit

If we analyze the set of possible faults listed in the previous
section, we notice that all of them can be described by a
deviation of parameters occurring in the equations of the
respective component. For instance, the controller constant
can be too high, and a missing signal @, is given by c = 0.
Note that the list of faults actually talks about classes of
faults, rather than specifying numerical distinctions. For
example, it would be highly inappropriate to try to
characterize slippage by exact figures. Characterizing
parameters just by the direction of their deviation appears
to suffice for diagnostic purposes. This is the basis for the
models we used in this case study. For each parameter x
we introduce
AX = Xaor — Xeef s
the deviation of the actual value from the nominal one,
which characterizes normal behavior. Only [Ax], i.e. the
sign of Ax, matters. Deviation of parameters potentially
produces deviations in the system variables. They could
be defined as the difference between the dynamic quantities
corresponding to the actual behavior and a reference
behavior:
AX(1) = Xaei(t) = Xper(1).

Determining Ax(t) requires, besides a measurement of
Xaei(t), computation of x.¢(t) for the respective time point t,
i.e. simulation. However, nothing prevents us from
choosing an arbitrary quantity for reference.

In our models, we chose fixed values of the variables as
a reference which could be easily determined: the value of
the equilibrium state of the system under correct behavior
of all components, i.e.

Oref = Wryorer = d,
Vief = Cc_’ * d,
and O for all derivatives:

do) _(dop) _/dv) _dd_
(dt)"f_ ( dt )“’f‘ (dl)"f_ dt — 0.

In particular, we obtain

A(qn =0y — dl
which can be determined from the measurements in the
diagnostic scenario as defined in earlier.

Qualitative deviations of sums and products can be
expressed as qualitative sums and qualitative products.
With the definition of Ax we obtain the following rules
(which actually hold independently of the particular choice
of reference values):

[A(a+Db)]=[(a+b)~(a+b)] =[a+b— (2 + b)) =
[Aa + Ab] = [Aa] @ [Ab]
[A(a*b)]=[(a*b)—(a*b)e]=[a*Db—ame* bl
=[a* Ab+b * Aa— Aa * Ab]
= [a] ® [Ab] @ [b] ® [Aa] © [Aa] ® [Ab]

The deviation of a product can be simplified if at least one
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of the reference values, e.g. [by], is known:
[A(a * b)] =[a * Ab+ Aa * b,]
= [a] ® [Ab] @ [Aa] @ [by]

Finally, [Aﬂ can be transformed to:

[Ai]g[i_i E[ﬁ]s — [Aa] @ [a] @ [ag].

For qualitative derivatives, we use the notation 9:

ox = [%{I .

and JA denotes the qualitative deviation of a derivative,
which is justified because

[A%:l = [gf Ax] = dAx .

Since all component faults can be described as parameter
deviations, the equations presented above hold for both the
correct and the faulty behaviors. From these equations (and
their derivatives) we obtain the following generic
qualitative models of the respective components,
comprising the qualitative and the A-version of the original
ones:
Motor: [T] ® 0w ® [w] = [em] @ [v]
[AT] @ 0w @ dAw & [Aw)] = [Acy] ® [v] @ [Av)
Controller: [ec] @ [v] @ [wy,] = [d]
[Acc] ® [v] @ [Av] ® [Awy,] = [Ad]

Rev. counter: (0] = [cs] ® [w]

[Awn] = [Acs] @ [w] © [Aw]

00y, = [cs] ® 0w @ des ® [w)

dA®y, = [Acs] ® dw @ JA® & dcs ® [w)
Models of the correct and the faulty behavior are derived
from these generic models by conjunction with their
characteristic constraints on signs of parameters and their
deviations. A non-negligible, but not total, constant
slippage of the sensor wheel, for instance, is given by
[Acs] =[], [cs] = [+], dc, =0
and, hence, the behavior model
[0n]= [0] = [+]
[Awy] = [A0]© [0] = [A®]© [+]
00, = 0®
dA®, = JA® O Jw

if @ is assumed positive. This model captures, for example,
the information that the measured speed will be too low if
the speed of the motor coincides with the reference value
([Aw] = 0).

The constraints for the various fault models which
combine with the generic models are given in Table 2.

One has to keep in mind that the models, being
derivations of the underlying (differential) equations, are
considered valid at any time point, and the variables are
treated as continuous functions. This is only an
approximation, since, after all, the speed is computed
whenever a new pulse is received and then kept constant
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until the next computation. Hence, @y, is actually a step
function with discontinuities at each time point
corresponding to a pulse. As a result, the models presented
here have limited power when it comes to discrimination
between different faults within the sensor. For this purpose,
a refined model of the sensor has been developed.

Foundations of the Diagnostic Approach

Consistency-based Diagnosis of Dynamic Systems

As stated in the introduction, our work is based on
consistency-based diagnosis ([Dressler-Struss 96]) which
checks consistency of a behavior model with a set of
observations of the actual system behavior. Expressed in a
more formal way, the diagnostic algorithm decides whether
a set of observations, OBS, an assignment of particular
modes of behavior (correct or faulty) to the components,
C,, of the system, and the structural and behavioral model
of this system together form a consistent theory or entail an
inconsistency:

MODEL U {mode(C;)} U OBS - 1 .

This allows for

e fault detection, if there is an inconsistency with the
model of correct behavior,

» fault localization by suspecting all components whose
models of correct behavior contribute to the
inconsistency (,.dependency-based diagnosis*),

¢ fault identification by refuting component faults whose
models are inconsistent with the observations.

In each case, a behavioral discrepancy is the starting
point. For static models, such a discrepancy is simply given
by two contradictory states, i.e. different values of one
variable. For a system that changes state over time, a
discrepancy is obtained if there are two conflicting
predicted/observed states for the same time points. Often,
it is concluded that, in order to detect this,

* we need simulation to derive a description of behavior
over time, and

¢ we need numerical simulation, because different values
establish a discrepancy only if they refer to the very
same time point.

The example in our case study sheds a light on these

hypotheses. Fault detection may work with a numerical

model: initial values of @, and &u\n could be used to

simulate the expected behavior based on the given
(differential) equations, provided there is an appropriate
way to distinguish a real behavior discrepancy from a
virtual one which is due to errors of the simulation
algorithm. Fault identification would be impossible, since
for simulating the possible faults, initial values would be



required which are simply not derivable.

If we apply qualitative simulation, we face the problem
of synchronization, i.e. relating observed, real time and
the qualitative representation of time in the model. There
are several diagnosis systems that are based on running
qualitative simulation of a system concurrently with the
observation of its actual evolution (e.g. MIMIC, [Dvorak-
Kuipers 92]). Again, based on the assumption of a known
initial state (and real-time performance of the qualitative
simulation algorithm), the detection of a (qualitative)
discrepancy between predicted and observed behavior and,
hence, fault detection is possible. Identification of the fault
usually faces complexity problems, since simulation of
many fault situations may be required, even though the
problem of unknown initial conditions is somewhat
relaxed: there is only a finite number of initial states to
begin with. A system like MIMIC has to assume some
effective heuristic for selecting fault models to try.

With the background given above, what simulation-
based systems like MIMIC do can be described in a general
and formal way as checking consistency of a sequence of
observed states, (Sqps 1, Sobs 2. ---» Sobs k), With the given
(qualitative) dynamic model:

MODEL U {mode(C))} U {(Sessts Sasss -+ Seoa)} P L .
At least theoretically, we can regard the conjunction of the
mode assignment and the model as the set (disjunction) of
possible behavior sequences emerging from the initial state,
Sobs 1. according to the model:

0]

(Sobs 12 Sis s Sind} U {(Sobs 12 Sets2s -+ S} =L,
and to be consistent with this set, the observed state
sequence has to be a subsequence of at least one of the
predicted ones (with or without "gaps"). This also
subsumes approaches that, instead of generating the
predicted sequence concurrently with the evolving real
process, compile empirical knowledge or first principles
into associations between modes and resulting system
evolution. [Milne et al 94] presents an example which
matches observations over time with given "chronicles",
Le. sequences of events including temporal constraints.

As we stated earlier, we tried to prove our working
hypothesis:
Model-based  diagnosis of dynamic
does not necessarily require simulation.
The basic idea is more than simple and may appear close to
naive: we ignore the chronological information, represent
observations over time by a set of states, {Sq, i}, rather
than a sequence, and the diagnostic engine checks each
individual state

systems

MODEL U {mode(C;)} U {Sqbs:) I"— 1 foralli.
This means checking whether there exists an observed state
that is not in the set of states specified by the model under
the mode assignment, although this set is not enumerated.

Rather, the usual constraint-based consistency check of the
"static” consistency-based diagnostic engine applies. We
got rid of simulation, and we do not need to assume subse-
quent observations. Obviously, inconsistency of an
individual state with the model is a sufficient condition for
a whole sequence that contains it to be inconsistent. Hence,
our diagnostic algorithm is guaranteed to produce a
superset of the diagnoses (consistent mode assignments)
generated by the state-sequence-based approach which, in
turn, contains the actual diagnosis,

Because one may suspect that this diagnosis algorithm is
too weak, we use the motor example to provide some
evidence for why it might work. (In the final section, we
outline a more systematic analysis of its preconditions and
limitations.)

Fault Detection and Identification in the Control
Circuit

Figure 5 depicts the possible qualitative behaviors of the
control circuit under normal conditions and for a particular

fault ("controller constant too high") for varying initial
conditions.

O 4
d

1 iz ij

v

Figure 5: Development of o, for correct

behavior (left) and controller constant too low
(right) for different initial w,,

The difference is clearly captured by the chosen qualitative
representation ([Awm,], dAwy,) where (d, 0) is the reference
value, leading to a compact description of the possible
states as in Figure 6.

{(+. =D {([+]), =), ([+1, 0)
(0,0) (=1, [+D, O, [+D)
([_ll [+D} ([+]& [+})}

Figure 6: Set of possible qualitative states for correct
behavior (left) and controller constant too low (right),
expressed in (Ao, dA®y,)

This tells us, for instance, that state (0, 0) does not
conform with the illustrated faulty behavior, whereas (0,
[+]) contradicts correct behavior, and illustrates the
possibility to dispense with simulation and simply check
each observed state for consistency with the behavior
models currently under consideration. Suppose the
controller fault is present, and the diagnostic engine
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observes states in a snapshot manner and checks them for
consistency. Starting with the observation ([-], [+]) at
snapshot t; (in Figure 5), both cases are conceivable, but
when state (0, [+]) at snapshot t; is reached, correct
behavior can be excluded (fault detection). Because this
state also contradicts, for instance, "controller constant too
high", this also enables fault identification.

Practical Evaluation of the Models and the
Diagnosis

In this section, we first summarize the results of applying
the state-based diagnostic algorithm to the electric motor
example. Because it worked remarkably well, we also
provide a more detailed analysis of why and how the
system achieved its results for this example.

Diagnosis of the Control Circuit - Results

The models were implemented using constraint-based

component-oriented modeling and evaluated in the

diagnostic tasks. The change in the desired rotational speed

was chosen to be a step (i.e. dd = 0); observations were

available as described above:

* d, the desired rotational speed

® Wy, the measured rotational speed

® Jw)y, the (sign of the) derivative of @,

From these observations, the system determines

* [Aw,] = [®, — d], the qualitative deviation of w,, from
the desired rotational speed and

¢ JA®, = J©y,.

Application of the models for fault detection yields the

following results:

e Of 26 considered faults

® 24 are detectable merely by checking state-consistency.

The fault identification results are discussed below.

How Does it Work in Detail?

The world spanned by the qualitative representation (Awy,
dAw,,) with three possible values for each variable is quite
perspicuous,

The nine theoretically possible states are listed in Table 3,
Three of them (marked with "c") are consistent with correct
behavior of the control circuit (but also with some faulty
behaviors). The remaining cases are only consistent with
faulty behavior and are hence suitable for fault detection:
1. The measured rotational speed remains constantly zero
(specialization of 2).
2. The measured rotational speed remains constant, being
lower than the desired rotational speed.
3. The measured rotational speed remains constant, being
higher than the desired rotational speed.
4. The measured rotational speed matches or exceeds the
desired rotational speed, but increases.
5. The measured rotational speed matches or does not
come up to the desired rotational speed, but decreases.
Table 4 indicates for each type of fault the instances when
these faults are detected because they produce one of these
states. Please note that, although the evolutions of the
behaviors are sketched for illustrative purpose, this is
nothing actually generated by the system or given to it as an
input. Where fault detection is achieved over a longer
period of time this is also indicated. Notably, some faults
can be detected quite early, with certainty after some period
of adjustment has finished. The two unrecognized faults are
due to a deviate inertia of the motor, and only manifest
themselves in a slower or faster period of adjustment. As
the models contain no concept of "slow" or "fast”, these
faults remain undetected.

Table 5 shows how the observable qualitative states con-
tribute to fault identification (states ([-], [+]) and ([+], [-])
are omitted, because they are consistent with almost all
behaviors). A tick ("v") marks those states that are
consistent with a certain cause of failure; likewise a cross
("%") marks inconsistencies. The table makes evident that,
for example, state 2 is still consistent with five different
failure causes, yet with a previous observation of state 4
only three causes remain: controller constant too high,
motor constant too low, and measurement coefficient too
low. It should be noted though, that even numerical
simulation cannot distinguish these three causes: all three
components stay suspect.

Next page, Table 4: Failure causes, effects and detection in

Oun,e Qb the control circuit. Legend:
(-] 0 [+] :
[Awg] [-] 4 4 ¢
0 2(1) c 3
[+] c 5 5

Table 3: Possible observable states. ¢ marks states that
are consistent with correct behavior.
The numbers refer to categories in the text.
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Fault

Effect of fault (w)

Fault detection ()

correct

sporadic slippage

total slippage, gap too large,
pulse wheel not ferromagnetic
trigger threshold too high

too few teeth,
too many teeth assumed,
constant slippage

too many teeth,
too few teeth assumed

missing tooth (or teeth)

notch or ridge

displaced tooth
(too early or too late)

controller constant too low,
motor constant too high

controller constant too high,
flow constant too low,
ferromagnetic loss too high

resistance of field- and/or rotor-coil too
high

inertia of motor too high

inertia of motor too low

Jammed motor,
broken wire controller-motor

Malik
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Qualitative state

T 12 [3.]4 [5~]|00
—— -l
Fault el == i s
P e ol e
control consttoolow | s | 3¢ | /' | ¢ | v | %
[Acc] =[-]
control const too
x|V|x|vV|x|x
high [Acc] = [+]
motor const zero VIiVIivVIix| x| x
[em] =0
motor consttoolow | ¢ | /| 3¢ | | % | %
[Acm]l =[]
motor const too high | 4 | g | /| 5 x
[Acum] = [+]
rotor jammed VvV Iix | x| x| x
"T=ml‘

inertia of motor too
i (AT = -] X | X | X | X | X

AN

inertia of motor too X x x x X
high [AT] = [+]

measure coeff. too x / x ‘/ x x
low [Acs] =[-]

(des = [?])

measure coeff, too x X / x / x
high [Acs] = [+]

(des = [?])

correct x| x| x|x|x |V

Table 5: Consistency (,,v"**) and inconsistency of
behavior and qualitative states

Extensions

The experiment can be extended to cover more general
situations. Particularly, one can

¢ change the type of input and

* use a different controller.

Instead of using a step function for d, a ramp could be
considered. This input can be characterized qualitatively by
[d)=[+],0d = [+],9’d =0

(or dd = [=]). The same reference values as before can be
used:
rer = Opy.reg = d,
er:Cc'l *d,
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do) _(dog) _(dv) _dd
de Jof=\ dt )=~ \dt Jof T de

o) _(doy) _(dv) _d%d
e Je={"ae Je={ae Jor=q2 =0

but now d is varying over time. Furthermore, we have to
extend the component models by including equations
corresponding to the next order of derivatives.

Note that a deviation of w (and wy) from d, i. e. Aw, # 0,
is consistent with the correct behavior (@ does not follow d
instantaneously). This already suggests that we also need to
include 8201‘, = [d—d&)“] in the observable states in order to
obtain the discrepancies required for fault detection and
fault identification. One has to be aware that determining
the second derivative may constitute a practical problem,

Secondly, different controllers can be modeled. PI-
controllers are described by

dv
$=C‘(d-mm)-

which results in the qualitative model
dv =[d] © o]
dAv = [Av] © [Awy,].

With such a controller, the speed of the motor, w, does not
approach the set point asymptotically, but exhibits
"overshooting” and reaches the set point in an oscillatory
manner. This implies that all states in the ([A®,], JA®,)
representation space can occur in a correct behavior
(except for the "degenerate case" 1). As for ramp,
discrepancy detection requires observation of d”Aw,, and
the respective extensions of the component models.
Basically, the important characteristic that distinguishes
correct behavior from others is

alm,, =—Awy,

Discussion

The case study presented here is meant to provide an
"existence proof' (as does [Dressler 95]), not more. A
systematic and formal analysis of the properties and
preconditions of the state-based approach to diagnosis of
dynamic systems is presented in another paper. This
analysis aims at determining restrictions on both the
physical system to be diagnosed and the modeling
formalism (possibly including the simulation algorithm)
and at characterizing different model representations and
prediction algorithms with respect to their diagnostic
power. In the following, we summarize some of the results.

The diagnostic power of the application of a particular
algorithm to a specific physical system is its ability to
distinguish the correct behavior from faulty behaviors (for
fault detection) and the faulty behavior from each other




&

(fault identification). It is influenced basically by three

different conditions:

s The physics of the device, particularly the physics of
faults, determining distinguishability of (the actual)
behaviors.

¢ The observability of the device, i.e. which quantities
are measurable, determining distinguishability of
(actual) states (and, hence, also of behaviors).

+ The model of the device, especially its granularity w.r.t.
quantities and time, determining distinguishability of
values, states and behaviors.

For our state-based approach to diagnosis of dynamic

systems, we derive more specific criteria:

¢ Subsumption of sets of states: Fault detection does not
work properly, if the states of correct behavior are a
superset of the states of some faulty behavior:

STATES(FAULT;) ¢ STATES(CORR-BEHVR),
and, likewise, for fault identification.

¢ Observability of inconsistent states: Fault detection
also fails if the distinction between a faulty state that is
not consistent with the correct behavior and a correct
state does not manifest itself in the observable variables:

Pors(STATE(FAULT))) = pas(STATE;(CORR-BEHVR))
A STATE(FAULT,) ¢ STATES(CORR-BEHVR) ,
where pg, denotes the projection of the full state
representation to the observables. Again, there is the
obvious analogous criterion for fault identification.

¢ Model granularity: Even in case the distinctions
between different states are observable in principle, the
model may fail to reveal this distinction:

Pors(STATE,(FAULT)) # pus(STATE(CORR-BEHVR))

A Pl T(STATE(FAULT))) = pounl(T,(STATE(CORR-BEHVR) ,
where 1, denotes the transformation to a ,,coarser* (e.g.
qualitative) domain. This may be because the obser-
vables are lacking a landmark corresponding to a land-
mark of some internal variable. The electric motor case
study contains another example: the difference between
the correct behavior and a motor with deviating inertia,
although observable with numerical measurements, is
eliminated in the sign representation.

Note that the issues discussed above also affect the results

of simulation-based diagnosis systems. However, the latter

appear stronger because of additional information about the
temporal order of the states. It is possible to determine the
relationship between the techniques more precisely. Let

DOM(y) denote the state representation for a device with a

vector v of all variables and T be some temporal universe.

The step

T {behvr: T — DOM(v)} — P(DOM(v))

from a representation of behaviors as state changes over

time 1o the sets of states occurring in a behavior,

T.(behvr) := behvr(T),

is a representational transformation in the sense of our
theory of multiple models for diagnosis ([Struss 92],
[Struss 94]), more specifically an abstraction. This theory
then tells us that the diagnoses obtained by our state-based
system is a superset of those generated by the simulation-
based one. For the same reason, limited observablity of
variables leads to a superset of diagnoses, because the
projection
Pobs: DOM(v) = DOM(v,,)

to the subvector of observables is a representational
transformation.

However, neither limited observability of variables, nor
ignorance of temporal information necessarily implies that
the diagnostic results are weaker. For diagnosis, we need to
observe the relevant inconsistencies. This is the intuition
behind the following concept:

Definition (Complete observability of inconsisten-
cies)

Let (v, DOM(v)) be a representational space for

behavior models and

R(behvr) c DOM(v)

be a relational model (state set) of a behavior. The

property of complete observability of inconsistencies

holds iff

VYFAULT; Vse R(FAULT)\R(CORRECT)
Pobsl5) € poss{ RICORRECT)).

Proposition 1:
Fault detection is not affected by limited observability
of variables as long as complete observability of
inconsistencies holds.

The condition may appear quite strong (actually, it can be
weakened under certain conditions by replacing the second
quantifier by an existence quantifier), but the motor
example fully satisfies it, at least for single faults (note that
FAULT; in the definition refers to a fault of the entire
device, and, hence, may correspond to multiple failures).
Also note that it is a condition on (sets of) states, rather
than on behaviors (state sequences).

Finally, it is worth while analyzing whether or under
which conditions simulation-based diagnosis can be strictly
stronger than state-based diagnosis.

The key consideration (already discussed in [Dressler
95]) is that most qualitative simulation algorithms generate
a state sequence (S, S, ..., Sy) as a possible behavior, if
and only if
e each S, is consistent with the model and
¢ each transition (S;, S,,;) satisfies continuity conditions.
The first condition means checking states which is what our
approach does, as well. The second condition seems to
become obsolete, if we assume that we obtain a gapless
sequence of observations of a continuously changing
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system. However, one has to take into account that a
gapless continuous sequence of consistent observed states
may correspond to a sequence of internal states that
contains an inconsistent state or a discontinuity. The
property of complete observability guarantees that ,internal
inconsistencies” would be made visible by the observed
states.

Proposition 2:

Assume that

e complete observability of inconsistencies holds, and
that

e the sequence of observations is gapless, i.e. does not
miss an actual state.

Then simulation-based and state-based diagnosis are

equivalent w.r.1. their results.

But, of course, state-based diagnosis is more efficient.
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