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Abstract
Therapy planning benefits from derived qualitative values
or patterns which can be used for recommending therapeu-
tic actions as well as for assessing the effectiveness of
these actions within a certain period. Dealing with high-
frequency data, shifting contexts, and different expecta-
tions of the development of parameters requires particular
temporal abstraction methods to arrive at unified qualita-
tive values or patterns.
This paper addresses context-sensilive and expectation-
guided temporal abstraction methods. They incorporate
knowledge about data points, data intervals, and expected
qualitative trend patterns to arrive at unified qualitative
descriptions of parameters (temporal data abstraction).
Our methods are based on context-sensitive schemata for
data-point transformation and curve fitting which express
the dynamics of and the reactions to different degrees of
parameters' abnormalities, as well as on smoothing and
adjustment mechanisms to keep the qualitative descrip-
tions stable in case of shifting contexts or data oscillat-
ing near thresholds.
The temporal abstraction methods are integrated and
implemented in VIE-VENT, an open-loop knowledge-
based monitoring and therapy planning system for artifi-
cially ventilated newborn infants, The applicability and
usefulness of our approach are illustrated by examples of
VIE-VENT.,

1. Introduction: the Need for Deriving
Temporal Patterns

If one dares to work with monitoring and therapy planning
in real-world environments, one faces a host of data analy-
sis problems. The available data occur at various observa-
tion frequencies (e.g., high or low frequency data), at vari-
ous regularities (e.g., continuously or discontinuously
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assessed data), and at various types (e.g., qualitative or
quantitative data). The monitoring and therapy planning
process has to cope with a combination of all these data
sources. Additionally, the interpretation context is shifting
depending on observed data, and the underlying expectations
of the development of parameters are different according to
the interpretation context as well as to the degrees of
parameters' abnormality.

Theories of data analysis (Avent and Charlton 1990; Kay
1993) mostly deal with well-defined problems. However, in
many real-world cases the underlying structure-function
models are poorly understood or not applicable because of
incomplete knowledge and complexity as well as the vague
qualitative data involved (e.g., qualitative expected trend de-
scriptions). Therefore statistical analysis, control theory, or
other techniques are often unusable, inappropriate or at least
only partially applicable.

To overcome these limitations, qualitative values or pat-
terns are derived and used to improve monitoring and ther-
apy planning. An advantage of using qualitative descrip-
tions is their unified usability in the system model, no
matter of what their origin. These derived qualitative values
or patterns are used for recommending therapeutic actions as
well as for assessing the effectiveness of these actions
within a certain period. Several different approaches have
been introduced to perform data abstraction (e.g.,
(Haimowitz, Le, and Kohane 1995; Shahar and Musen
1993) a detailed comparison is given in Section 2).
However, dealing with high-frequency data, shifting con-
texts, and different expectations of the development of
parameters require particular temporal abstraction methods
to arrive at unified qualitative values or patterns.

We propose context-sensitive and expectation-guided tem-
poral abstraction methods. They incorporate knowledge
about data points, data intervals, and expected qualitative



trend patterns to arrive at unified qualitative descriptions of
parameters (temporal data abstraction). Our methods are
based on context-sensitive schemata for data-point trans-
formation and curve fitting which express the dynamics of
and the reactions to different degrees of parameters’ abnor-
malities, as well as on smoothing and adjustment mecha-
nisms to keep the qualitative descriptions stable in case of
shifting contexts or data oscillating near thresholds. Our
temporal abstraction methods combine Al techniques with
time-series analysis, namely linear regression modeling.
The stepwise linear regression model approximates vague
medical knowledge, which could be determined only in
verbal terms.

Our approach is oriented toward, but not limited to, our ap-
plication domain: artificial ventilation of newborn infants
in intensive care units. The temporal abstraction methods
are integrated and implemented in VIE-VENT, an open-loop
knowledge-based monitoring and therapy planning system
for artificially ventilated newborn infants (Miksch, et al.
1993). VIE-VENT had been tested and evaluated in real
clinical scenarios. The applicability and usefulness of our
approach are illustrated by an example of VIE-VENT.,

In the first part of this paper we will illustrate why previ-
ous methods are not applicable and fail to meet our
requirements. The second part will describe the application
domain by introducing a sample case and the basic concepts
to proceed with our approach. In the third part we will con-
centrate on the context-sensitive and expectation-guided
temporal abstraction methods and illustrate them using our
sample case. Finally, we will describe our experiences
within a real-clinical setting concluding with strengths and
limitations of our approach.

2. Alternative Approaches and their
Limitations: the Need for New Data-
Abstraction Methods

During the recent years, several different approaches have
been introduced to perform temporal abstraction tasks. The
systems were implemented mainly for clinical domains. A
pioneer work in the area of knowledge-based monitoring
and therapy planning systems was the Ventilator Manager
(VM, (Fagan, Shortliffe, and Buchanan 1980)), which was
designed to manage postsurgical mechanically ventilated pa-
tients. VM was developed in the late 1970s as one of a
series of experiments studying the effectiveness of the
MYCIN formalism. In recent years the most significant and
encouraging approaches were the temporal utility package
(TUP, (Kohane 1986)), the temporal control structure
system (TCS (Russ 1989)), the TOPAZ system (Kahn
1991), the temporal-abstraction module in the M-HTP
project (Larizza, Moglia, and Stefanelli 1992), the Guardian
Project (Hayes-Roth, et al. 1992), the TrenDx system
(Haimowitz, Le, and Kohane 1995), and RESUME (Shahar
and Musen 1993; Shahar and Musen 1996). A comprehen-
Sive review of temporal-reasoning approaches and useful
references are given in (Shahar and Musen 1996). In the fol-

lowing we will concentrate only on the two approaches
most closely related to our approach, pointing out their dif-
ferences and limitations for our purpose.
Haimowitz and Kohane (Haimowitz, Le, and Kohane 1995)
have developed the concept of trend templates (TrenDx) to
represent all available information during an observation
process. A trend template defines disorders as typical pat-
terns of relevant parameters. These patterns consist of a par-
tially ordered set of temporal intervals with uncertain end-
points. The trend templates are used to detect trends in
series of time-stamped data. The drawbacks of this approach
lie in the predefinition of the expected normal behavior of
parameters during the whole observation process and the
usage of absolute value thresholds matching a trend tem-
plate. The absolute thresholds do not take into account the
different degrees of parameters' abnormalities. In many do-
mains it is impossible to define such static trajectories of
the observed parameters in advance. Depending on the
degrees of parameters’ abnormalities and on the various con-
texts, different normal behaviors are expected. These normal
expectations vary according to the patient's status in the
past. Therefore these thresholds have to be derived dynami-
cally during the observation period. For example, the
decreasing of transcutaneous partial pressure of carbon diox-
ide (PtcCO2) from 94 mmHg to 90 mmHg during the last
25 minutes would be assessed as "decrease too slow"
because the patient's respiratory status was extremely above
the target range in the past. However, the same amount of
change (4 units) from 54 mmHg to 50 mmHg would be
assessed as "normal decrease"” during a period where the
patient's respiratory status was slightly above the target
range.
RESUME (Shahar and Musen 1993; Shahar and Musen
1996) performs temporal abstraction of time-stamped data
without predefined trends. The system is based on a model
of three basic temporal abstraction mechanisms: point tem-
poral abstraction (a mechanism for abstracting the values of
several parameters into a value of another parameter), tem-
poral inference (a mechanism for inferring sound logical
conclusions over a single interval or two meeting intervals)
and temporal interpolation (a mechanism for bridging non-
meeting temporal intervals). However, their approach is not
;{Elicablc because of the following reasons: First,
SUME covers only limited domain dynamics (e.g., dif-
ferent classifiers for different degrees of parameters' abnor-
malities are not included). Second, it requires predefined
domain knowledge to perform the temporal interpolation
(e.g., gap functions), which is not available in some
domains. Third, it concentrates on methods to cope with
low-frequency observations which cannot easily be adapted
for high-frequency data due to their different properties.
Fourth, different contexts have to be defined in advance and
are not automatically deduced from the input parameters.
Fifth, the high level abstraction mechanism (pattern match-
ing based on external and internal knowledge) is super-
fluous for therapy planning.
Our approach benefits from using all available information
based on temporal ontologies (time points and intervals
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(Allen 1991; Dean and McDermott 1987), on different
granularities (continuously and discontinuously assessed
data) and on various kinds of data (quantitative and qualita-
tive data). Our temporal data-abstraction methods cover the
different degrees of parameters’ abnormalities caused by
shifting contexts and their corresponding dynamics (e.g.,
"the higher the degree of a parameter's abnormality the big-
ger is the amount of positive parameter's change which is
classified as normal") as well as expected qualitative trend
descriptions (e.g., "the transcutaneous partial pressure of
oxygen (PicO3) value should reach the normal region
within approximately 10 to 20 minutes") to arrive at uni-
fied qualitative descriptions of parameters. To keep our
qualitative descriptions stable we apply smoothing and ad-
justment methods.

Additionally, we do not predefine absolute, time-dependent
expected normal behavior of parameters during the whole
observation process (as in (Haimowitz, Le, and Kohane
1995)), because the course of a parameter according to an
absolute temporal dimension (axis) is not known in
advance. We derive schemata for curve fitting in relation to
the specific states of each parameter. The combination of
different parameters’ states reflects a particular context.
Improving or worsening of these parameters are assumed to
be best described as exponential functions. The costs to
compare such exponential functions are reduced by stepwise
linearization.

3. Application Domain and Basic
Concepts

In the following section we will explain our application
domain, specify the input and the output of our temporal
data-abstraction methods, introduce a sample case, and
explain the basic notion of our concepts "context-sensitive"
and "expectation-guided".

3.1 Application Domain: Monitoring and
Therapy Planning of Artificially Ventilated
Newborn Infants in NICUs

Medical diagnosis and therapy planning at modern intensive
care units (ICUs) have been refined by the technical
improvement of their equipment. However, the bulk of
continuous data arising from complex monitoring systems,
in combination with discontinuously assessed numerical
and qualitative data, create a rising information management
problem at neonatal ICUs (NICUs). We are particularly
interested in the monitoring and therapy-planning tasks of
artificially ventilated newborn infants in NICUs. These
tasks can be improved by applying derived qualitative
values or patterns (temporal data abstraction).

Our temporal abstraction methods are integrated, imple-
mented, and evaluated in VIE-VENT. VIE-VENT is an
open-loop knowledge-based monitoring and therapy plan-
ning system for artificially ventilated newborn infants
(Miksch, et al. 1993; Miksch, et al. 1995). It incorporates
alarming, monitoring, and therapy planning tasks within
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one system. The data-driven architecture of VIE-VENT con-
sists of five modules: data selection, data validation, tempo-
ral data abstraction, data interpretation and therapy plan-
ning. All these steps are involved in each cycle of data col-
lection from monitors. VIE-VENT is especially designed
for practical use under real-time constraints at NICUs. Its
various components are built in analogy to the clinical
reasoning process.

3.2 Input and Output

VIE-VENT's input data set can be divided into continuously
and discontinuously assessed data. Continuously assessed
data (e.g., blood gas measurements, like P02, PicCO3,
S;07, and ventilator settings, like PIP, F;03) are taken
from the output of the data selection module every 10
seconds. Discontinuously assessed data are entered into the
system on request by the user depending on different condi-
tions (e.g., critical ventilatory condition of the neonate,
elapsed time intervals, missing monitoring data). The
system output consists in primarily therapeutic recommen-
dations for changing the ventilator setting. Additionally,
VIE-VENT gives warnings in critical situations, as well as
comments and explanations about the health condition of
the neonate.

The input of the temporal data-abstraction methods includes
a set of time-stamped parameters (the continuously assessed
data retrieved every 10 seconds and the discontinuously as-
sessed data at a particular time-stamp) and expected qualita-
tive trend patterns (e.g., "the parameter P;cCO3 is moving
one qualitative step towards the target range within 20 to
30 minutes."). The specific context of the observed parame-
ters is automatically deduced from the input parameters,
mainly the ventilator settings. The output of the data-
abstraction methods is a set of time-point- and interval-

based, context-specific, qualitative descriptions. These qual-

itative descriptions can be a separate abstraction at a partic-
ular time-stamp and/or a combination of different time-spe-
cific abstractions (a higher level of abstraction, e.g., a
combination of different time-stamped qualitative data-point
categories or a combination of time-point- and interval-
based values called qualitative trend category).

3.3 A Sample Case

Figure I shows a sample case of VIE-VENT. In the follow-
ing sections this sample case will be used to illustrate our
temporal data-abstraction methods. The left-hand region
shows the blood gas measurements (transcutaneous CO3,
03, 5302) and their corresponding qualitative temporal ab-
stractions on the top. The actual ventilator settings (first
column, e.g., FjO2 is 38%), and VIE-VENT's therapeutic
recommendations at the current time (second column, e.g.,
decrease FjO2 to 30%) are given below. The upper right-
hand region shows two status lines. First, the combination
of different time-specific abstractions is labeled by "Status”
(e.g., "hyperoxemia" is the combination of the qualitative
data-point categories of S302 and Pyc07). Second, addi-
tional warnings are labeled by "Warns"(e.g., "worsening"
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means that VIE-VENT detected, that the respiratory system
of the neonate is worsening). The right-hand region gives
plots of the most important parameters over the last four
hours. Scrolling to previous time periods is possible by
pushing the buttons (<<) for a four-hour step backward, (<)
for an one-hour step backward, (>>) for a four-hour step
forward, or (>) for an one-hour step forward, respectively.

Additional information and explanations about other param-
eters, the history, and the temporal abstraction can be re-
trieved on users' request (pushing the buttons <Plot 2>,
<History> and <Trend>, respectively). The therapeutic rec-
ommendations are displayed as red vertical lines in the cor-
responding curve of the ventilator setting.
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Figure 1: Sample case of VIE-VENT. The left-hand region shows the blood gas measurements, their corresponding qualitative
temporal abstractions on the top and the actual and recommended ventilator settings below. The right-hand region gives plots of
the most important parameters over the last four hours, namely transcutaneously assessed blood gas measurements and some

ventilator settings.

3.4 Meaning of ""Context-Sensitive"

The abstraction problem becomes more difficult when the
behavior of a system involves interactions among compo-
nents or interactions with people or with the environment.
Under these conditions, correct abstractions become con-
lext-sensitive. It is possible to determine a priori a set of
Sensor parameters with their fixed plausible ranges.

However, if the context is shifting, e.g., one component
gets in a critical condition or a changing of specific phases
or protocols occurs, a capability for dynamic adjustment of
threshold values is needed.

The context is automatically deduced from the set of input
parameters. For example, we monitor the patient during the
whole artificial ventilation process. The ventilation process
can be divided into different phases, namely an initial
phase, a phase of contrelled ventilation (intermittent posi-
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tive pressure ventilation, IPPV), a phase of weaning
(intermittent mandatory. ventilation, IMV), and a phase of
returning to spontaneous breathing. All phases characterize
a particular context and can be deduced from the current ven-
tilator setting. In Figure 1 the context "imv" is shown in
the first row of the ventilator settings labeled by "RESP".
The second column gives the current recommendation of
VIE-VENT (i.e., change the context to "ippv"). The user
interface is designed for physicians. Therefore we used
labels which are meaningful for physicians. We defined
context-specific transformation schemata of time-stamped
data as well as adjustment methods in case of shifting
contexts and data oscillating near thresholds.

3.5 Meaning of "Expectation-Guided"

Usually, the temporal abstraction is either exclusively
based on the observed input parameters (compare (Shahar
and Musen 1993; Shahar and Musen 1996)) or predefined
trajectories of observed parameters are used (compare
(Haimowitz, Le, and Kohane 1995)). The first neglects
available knowledge, in many domains expectations of pa-
rameters' courses are obtainable. However, trajectories of
observed parameters are often difficult to define in advance.
The problem lies in the lack of an appropriate curve-fitting
model to predict the development of parameters from actual
measurements. Nevertheless, verbal descriptions about ex-
pectations of parameters’ developments are attainable from
domain experts. We improved our temporal data-abstraction
process, including expected qualitative trend descriptions,
which are derived from domain experts.

In the next section we will explain our temporal data-
abstraction methods in detail.

4. Temporal Data-Abstraction Methods

The aim of the temporal data-abstraction process is to arrive
at unified, context-sensitive qualitative descriptions. The
data abstraction is based on time points, time intervals and
expected qualitative trend descriptions within a particular
context.

Dealing with high-frequency data, shifting contexts, and dif-
ferent expectations of the parameters' development requires
particular temporal abstraction methods to arrive at unified
qualitative values or patterns. Our temporal data-abstraction
process consists of five different methods: (1) transforma-
tion of quantitative point data into qualitative values
(context-sensitive schemata for data-point transformation),
(2) smoothing of data oscillating near thresholds, (3)
smoothing of schemata for data-point transformation, (4)
context-sensitive adjustment of qualitative values, (5) trans-
formation of interval data (context-sensitive and expecta-
tion-guided schemata for trend-curve fitting).

The schemata for data-point transformation transform single
observations into qualitative values. To keep the qualitative
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values stable in case of shifting contexts or data oscillating
near thresholds, we apply different smoothing methods. In
critical states of the patient we have to adjust the qualitative
values avoiding severe lung damage (context-sensitive
adjustment of qualitative values). The schemata for curve
fitting represent the dynamically changing knowledge to
classify the observed parameters in combination with differ-
ent expectations of the parameters' courses during time
periods. The next sections explain these methods in detail,

4.1 Context-Sensitive Schema for Data-Point
Transformation

The transformation of quantitative point data into qualita-
tive values is usually performed by dividing the numerical
value range of a parameter into regions of interest. Each
region represents a qualitative value. The region defines the
only common property of the numerical and qualitative
values within a particular context and at a specific time-
stamp. It is comparable to the "point temporal abstraction"
task of Shahar and Musen (Shahar and Musen 1993).

The bases of our transformation of the blood gas measure-
ments are context-sensitive schemata for data-point trans-
formation, relating single values to seven qualitative cate-
gories of blood gas abnormalities (qualitative data-point
categories). The seven numerical regions of interests are not
equal sized. The value range of an interval is smaller the
nearer the target range. This is an important feature repre-
senting the dynamics related to the different degrees of
parameters’ abnormalities. It is extensively used in the
schemata for trend-curve fitting (compare Section 4.5). The
schemata for data-point transformation are defined for all
kinds of blood gas measurements depending on the blood
gas sampling site (arterial, capillary, venous, transcuta-
neous) and all different contexts (e.g., “imv"). The different
contexts require specific predefined target values depending
on different attainable goals. Figure 2 shows the schema of
transcutaneous partial pressure of carbon dioxide (PicCO?2)
during IMV. For example, the transformation of the tran-
scutaneous PycCO; value of 34 mmHg during IMV results
in a qualitative PycCO; value of g2 (“substantially below
target range") whereas during IPPV it would represent g/
(“slightly below target range"). The wj x values divide the
qualitative regions. The transformation of interval data is
based on these qualitative data-point categories, which are
described later.

In Figure 1 the temporal abstraction of the blood gas mea-
surements is displayed in the left upper corner. The qualita-
tive data-point categories are expressed using a color chart
with different gradation (e.g., deep pink represents values
extremely above the target range (s3), lime green represents
values extremely below the target range (g3)). The above
example of the transcutaneous PicCO; value of 34 mmHg
during IMV is displayed in color chartreuse.
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Figure 2: Schema for data-point transformation of PycCO27 during context IMV. On the left-hand side the abbreviations of the
seven derived qualitative data-point categories are used. The labels wj yx indicates the thresholds of the regions of interests. The
square brackets [ and ] show the interval order (e.g., 175, 148] is a left-side open interval).

4.2 Smoothing of Data Oscillating Near
Thresholds

To avoid rapid changes of the qualitative categories trig-
gered by data which oscillate near the thresholds of the
schema for data-point transformation, we apply a smooth-
ing method. The key idea is to keep the qualitative cate-
gories stable if the quantitative values cross the border to
the next qualitative category just minimally for a few
moments. Our smoothing method is based on the size of
the regions of interests, predefined € regions, and lasting
time intervals. Alternative smoothing approaches could use
statistical measurements (e.g., interval of confidence) or
fuzzy sets to classify the parameter values.
Let - in contrast to Figure 2, the second index (upper and
lower region) has been eliminated to increase readability -
a be the actual value at current time t with a; € [w;, wiy1],
at-1 be the value on time-step before (with a;.] € [wj.|,
wilor ;) € [wj, wis1] or ag € [wis], wis2]), wk be the
borders of the qualitative data-point categories, qual(am) be
the related qualitative data-point categories at time point m,
then
if qual(ay) # quallap.1) and

(lag S wy + &) or (ap 2 wis1 - €))
then start smoothing

Vap, m € [t, t+x] :

if qual(ap) #qual(ag-1) and
(lamg € wj + €) or
(am 2 wis1 - €))
then qual (ap)« qual(ag-3)
else if ((ay > wy; + E) or
(am < wis1 - E))
then stop smoothing

with 1f |wj,1 - wi| > 3 then £=2
else =1

and [t, t+x] be the lasting time interval

The smoothing method starts if the current qualitative data-
point category (qual(ay)) is not equal to the previous
qualitative data-point category (qual (ay-1))and at is in the
€ region. At the starting point, the actual qualitative cate-
gory gets the value of the previous category. During the
lasting time interval the new actual category qual (ay) gets
the value of the category at the time point t-1 (qual (a,
1)) if the preconditions hold. The smoothing lasts as long
as one of the following preconditions holds:

(1) predefined time period (e.g., 5 minutes) since the start

of smoothing (t) has not been elapsed and

(2) ap is in the € region

Figure 3 gives an example of our smoothing method. At
time point t the smoothing method is activated, because the
two preconditions "qual(ap) # qual(ag.1)" and
"(ap € wy + e)" are satisfied. Therefore the shifting of
the qualitative categories starts at time point t. The gray ar-
rows (w) illustrate the shifting of data values from the
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qualitative data-point category "s2" to the qualitative
category "s1". At time point t+3 no shifting is necessary
because the qualitative category is the same as at the
starting point of the smoothing. The data smoothing lasts
until time point t+5, because the distance between a1
and ag,g is greater €. In this example, the predefined time
period of 5 minutes has not been exhausted.

?Idiﬂn
ata-point category
53

Parameter value

N -

wj L] —_L Y } cregion
.1 p
" ]
- I I nomal
B T e S
Blitsl 143 145 147 149 141l w3 Time
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1 t+ 2.5 minutes  t + 5 minutes
aan end
smoothing period

Figure 3: Example of data smoothing.

4.3 Smoothing of Data-Point Transformation
Schemata

The schemata for data-point transformation are defined for
all contexts (i.e., modes of ventilation: IMV, IPPV) repre-
senting different target values. Changing context would
therefore result in an abrupt change of the schema for data-
point transformation and by this in a sudden shift of the
qualitative category. As a consequence, this could lead to
recommendations for rather drastic changes of the ventilator
settings. To avoid too-abrupt changes of the qualitative cat-
egories, we smooth the thresholds of the schemata for data-
point transformation within a predefined time period (three
to eight hours depending on the "aggressiveness" of the
user).

For example, if the mode of ventilation is changed from
IPPV to IMV, the thresholds of the schemata for data-point
transformation are changed stepwise during eight hours in
the case of a conservative user. This results in a slow
change of the target range in the next eight hours, and with
respect to the therapeutic consequences, in a graceful start
of the weaning process.

4.4 Context-Sensitive Adjustment of Qualitative
Values

For extremely critical or life-threatening situations, the
thresholds defined in the schemata for data-point transforma-
tion are too strict. In such cases we adjust the qualitative
value of a parameter, which is equal to a shift of the numer-
ical threshold value. The adjustment of qualitative values
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holds as long as the precondition of "life-threatening situa-
tion" is true.

For example, the degree of artificial ventilation determined
by values of the ventilator settings can lead to modification
of the transformation process. If the peak inspiratory pres-
sure (PIP, measured in cm H20) is very high, higher
PcCO2 values are tolerated as better ones in order to pre-
vent extreme pressure settings. The following rule repre-
sents this kind of knowledge.

if (30 < PIP £ 35) and
(PecCOp is "extremely below target range")
then (Py.CO, is changed to "substantially below
target range")

4.5 Transformation of Interval Data (Context-
Sensitive and Expectation-Guided Schema for
Trend-Curve Fitting)

Similar to the transformation of numerical data points to
qualitative values, interval data are transformed to qualita-
tive descriptions resulting in a verbal categorization of the
change of parameters over time. Physicians' experiences
about the expectations for how a blood gas value has to
change over time to reach the target range in a physiologi-
cally proper way are expressed in verbal terms. For exam-
ple, "the parameter P;CO3 is moving one qualitative step
towards the target range within 20 to 30 minutes”. These
qualitative statements are called expected qualitative trend
descriptions. The qualitative classification of the abnormal-
ity of a blood gas value resulted in different sized qualitative
ranges (s3, s2, s1, normal, g1, g2, g3) as shown in Section
4.1. Combining these qualitative data-point categories with
the expected qualitative trend descriptions we reach the
schemata for trend-curve fitting. The schemata for trend-
curve fitting express the dynamics of and the reactions to
different degrees of parameters' abnormalities. A physician
classifies a higher degree of a parameter's abnormality as
more severe and classifies a faster positive change of this
parameter as normal. The different sizes of the data-point
categories express this circumstance. The corresponding
dynamically derived trends depending on the expected quali-
tative trend descriptions represent different dynamic
changes.
Based on physiological criteria, four kinds of trends of our
10-second data samples can be discerned:
(1) very short-term trend: sample of data points based on
the last minute
(2) short-term trend: sample of data points based on the
last 10 minutes
(3) medium-term trend: sample of data points based on the
last 30 minutes
(4) long-term trend: sample of data points based on the last
3 hours
Comparing different kinds of trends is a useful method of
assessing the result of previous therapeutic actions, of
detecting if oscillation is too rapid, and of isolating the
occurrence of artifacts (compare (Miksch, et al. 1994)).
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The transformation of interval data into qualitative values is
the last step of the temporal data-abstraction process. All
necessary smoothing procedures are already done and only
validated and therefore reliable data are involved. In case of
missing or invalid measurements certain criteria of validity
to proceed with the trend-based data-abstraction process are
needed.

In a monitoring process, the position of a measurement in
the sequence of time-ordered data influences the reasoning
process: namely, recent measurements are more important
than historical measurements. Hence, criteria dealing only
with an average distribution of measurements are insuffi-
cient. Due to this precondition we defined two criteria of
validity to make sure that the used trend is actually mean-
ingful: a certain minimum amount of valid measurements
within the whole time interval, and a certain amount of
valid measurements within the last 20 percent of the time
interval. These limits are defined by experts based on their
clinical experience. They may easily be adapted to a specific
clinical situation based on the frequency at which data
values arrive.

4.5.1. The Guiding Principle

The guiding principle of our approach is illustrated in
Figure 4. The schema for trend-curve fitting transforms the
different quantitative trend values (e.g., short-term or
medium-term trends) into ten qualitative categories guided
by physiological criteria. The x axis describes the discrete
granularity of the representation in minutes. The y axis
shows the PycCO2 levels and the corresponding qualitative
data-point categories. The value space of a parameter is
divided into an upper and a lower region by the normal
range. The dark gray area represents the expected qualitative
trend description for a normal change of a parameter in the
upper and the lower region, respectively. The derived
qualitative trend categories are written in bold, capital
letters.

Improving or worsening of parameters are fitted by expo-
nential functions. An appropriate approach classifying trend
data is to transform the curve (borders of the dark gray area)
shown in Figure 4 into an exponential function and to
compare it with the actual growth rate. To classify the trend
data, we used a dynamic comparison algorithm which per-
forms a stepwise linearization of the expected exponential
function to overcome complexity (compare Section 4.5.2).
For example, if a P,cCO3 data point during the context
"IMV" is classified as s/, s2 or s3 (* ... above target
range") we would expect a therapeutic intervention to result
in an decrease of type A2 (dark gray area) as "normal" trend.

4.5.2 The Dynamic Comparison Algorithm

'I.he dynamic comparison algorithm classifies data within a
time interval to a qualitative trend category depending on
the relative position of corresponding data points and the
expected qualitative trend descriptions. As an example,
Figure 5 gives the schema for trend-curve fitting of P,cCO2
where we have reached a value of 85 mmHg after 58
minutes. The x axis describes the discrete granularity of the
Tepresentation in minutes. The y axis shows the P;.CO»
levels. It indicates the quantitative values of data points (at

thresholds horizontal dotted lines are drawn). Their

corresponding qualitative categories are listed on the right-

hand side. Based on the guiding principle depicted in Figure

4, we compute the actual curve for selecting between the

different qualitative categories. The striped area A2 shows

the expected normal development. The qualitative trend
categories are written in bold, capital letters. They
determine if an additional therapeutic action should be
recommended (visualized with light-gray arrows in Figure

S).

The growth rates are calculated and classified for all kinds of

trends (very-short-, short-, medium-, and long-term). To

increase readability, we show only the principal method and
not the results for the four kinds of trends. The algorithm
works the same way for all trends.

The dynamic comparison algorithm consists of two steps:

Step one: calculates the actual growth rate k, using the
linear regression model and two thresholds for the
growth rate k| and k3 depending on the relative position
of the data points; kj and k; are used for discerning the
qualitative trend categories Al, A2, and A3.

Step two: classifies the qualitative trend category depending
on the actual growth kg, on the two thresholds ki, ka,
and on the qualitative region where the previous data
point (at-1) belongs. In addition to k1 and kp we use an
€ range around zero to classify a trend as "ZA" and
"ZB", respectively. The & range is created on
physiological grounds in order to support a wider range
for defining "no change of a parameter”.

The results of this algorithm are classifications of all

parameters to one of the ten qualitative trend categories.

The target range of a parameter divides the qualitative

regions into an upper part (Al, A2, A3, ZA, C) and a

lower part (B1, B2, B3, ZB, D) as explained in Figure 4.

The classification process results in instantiations of

qualitative trend descriptions for each blood gas

measurement, for each kind of trend, and for each activated
context.

In Figure 1 the qualitative trend categories are visualized by

colored arrows next to the qualitative data-point categories.

The four arrows show the directions of the very-short,

short, medium, and long-term trends. For example, all qual-

itative trend categories of PycCO2 during the context

"IMV" are derived as "D" (their directions are down-going

and the color is deep-pink). This expresses a dangerous

decrease of the measurement. Consequently, our therapy
planning module recommends a therapeutic action to
decrease PIP (compare fourth plot on the right-hand side in

Figure 1). The qualitative trend categories for the short-term

trend (second arrow) of PicO7 and S307 are derived as "ZA"

(zero change) and "A3" (slow decrease), respectively. For

S$a02 we see a short-term trend of slow decrease, but a zero

change during the last 30 minutes (third arrow) and a dan-

gerous increase during the last 3 hours (red fourth arrow
pointing upwards). This knowledge is used in our therapy
planning module to recommend therapeutic actions. In this
case a therapeutic action to decrease FjO27 is recommended
(compare third plot on the right-hand side in Figure 1).
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9) ZB .. zerochange

10) D dangerous decrease

Figure 4: Schema for trend-curve fitting of PycCO7. The dark gray area indicates the expected qualitative trend description of a
normal change of a parameter in the upper and the lower region, respectively.
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Figure 5: Example of schema for trend-curve fitting of

5. Applicability and Practical Usefulness

We have tested the applicability of our approach both on
generated data sets and on real data. The generated data sets
were used to simulate extreme cases. The results obtained
demonstrated the robustness of VIE-VENT. Real data were
obtained from a NICU using on-line data acquisition. We
collected sequences of 16-28 hours of continuous recording
of transcutaneous blood gas measurements and pulsoxime-
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try. Discontinuously assessed data were taken from the
computer-based patient records. The evaluation of these
cases demonstrated the applicability of our approach in the
clinical setting.

The usefulness of the qualitative categories and their
visualizations have been manifested in different ways. First,
they support the physicians to get a closer insight into
their medical reasoning process. This has eased the fine-
tuning of our therapy planning component. Second, the
qualitative trend categories improved our data validations
component. Third, applying the qualitative trend categories
for formulating and assessing therapeutic actions resulted in
a graceful weaning process avoiding too abrupt changes of
therapeutic recommendations. In Figure | the therapeutic
recommendations are displayed as red vertical impulses in
the corresponding plot of the ventilator setting. The
therapeutic recommendations show a very consistent and
reasonable picture, except in cases where the measurements
were set invalid (gray areas between the two horizontal
lines in the two upper plots in Figure 1).

During our evaluation phase we discovered also limitations
of our temporal data-abstraction methods. First, information
about the frequency of temporal abstractions in the past
(e.g., "three episodes of hyperoxemia during the last 3
hours occurred”) would be very useful for future reasoning
processes. Second, dealing with real data during longer time
periods has to take into account that more recently observed
data are more important for the reasoning process than data
observed in older time periods. Therefore, the data-abstrac-
tion methods have to include a memory which weights the
time-ordered data,
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6. Conclusion

We demonstrated very powerful temporal data-abstraction
methods, which combine all available information to
perform a context-sensitive and expectation-guided temporal
abstraction process. Designing our abstraction, we concen-
trate on knowledge-based monitoring and therapy planning
in real clinical environments. Dealing with high-frequency
data, shifting contexts, and different expectations of the
development of parameters requires particular temporal
abstraction methods to arrive at unified qualitative values or
patterns. Our temporal data-abstraction methods incorporate
knowledge about data points, data intervals, and expected
qualitative trend patterns. Additionally, the problem defini-
tions are not as clear as expected, because the underlying
structure-function models for predicting the time course of
clinical parameters are poorly understood and incomplete
knowledge is involved. Therefore theories of data analysis
are only partially applicable. We overcome these limita-
tions applying qualitative statements (called expected quali-
tative trend descriptions), which are obtainable from domain
experts. These qualitative statements are approximated
using linear regression models. To keep the qualitative
descriptions stable in case of shifting contexts or data oscil-
lating near thresholds we apply smoothing and adjustment
methods.

Integrating the temporal abstraction methods in VIE-VENT
results in easily comprehensible and transparent definitions
of the data-interpretation, therapy-planning, and data valida-
tion modules. The data interpretation can be performed on
different levels using data-point and data-interval (trend)
abstractions as well as a combination of different abstrac-
tion categories. The derived qualitative values and patterns
are used for recommending therapeutic actions as well as for
assessing the effectiveness of these actions within a certain
period. Additionally, the data validation could be extended
using the derived qualitative values and patterns (applying
an assessment procedure based on qualitative descriptions).
The clinical experiences show that the enhancement of our
temporal data-abstraction methods has improved our therapy
planning component remarkably. They guarantee a graceful
weaning process, avoiding too abrupt changes of parame-
ters.
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